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Definition of the model

F®
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Definition of the model

F®)

State space C = R/Z. mg,---, m, with > m; < 1.
At every step k:
arrival of a drop of mass m, at ux ~ U(C)

continuous spreading of the drop (so that the new
covered area has size 171,)

Configuration at time k (i.e. after drop k — 1 has been
spread):

occupiedispace O of size Leb (0)) = S5 ' m;
free space F(K) =\ 0%

more precisely, N(X) blocks of each type
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Examples of spreading policies

]
0 Uo uy 2 1=0 mod1

(studied by Bertoin, Miermont [BMO06])
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Examples of spreading policies

]
0 Uuo upu2 1=0 modl1

(studied by Bertoin, Miermont [BMO06])

Diffusion to the closest side (with or without constant reevaluation)
Range of a brownian path

short-sighted jam spreader

for any ball, pick at random some spreading policy
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hat is a valid spreading policy ?

local and continuous diffusion

t=k+e¢ t=k+e+de dl + dr = de

Bl 1 .
——
uy u3 Ui uy dlus Uk dr
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What is a valid spreading policy ?

local and continuous diffusion

t=k+e¢ t=k+e+de dl + dr = de
/_\

Bl 1 .
} ——
uy u3 Ui uy dlus Uk dr

dl and dr only depend on what is inside the current component of uy (one of the O,.(HE))

invariance by translation of the process
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A universality result

o |FB) [F)| k-1
We consider = — = ( —¢-  foro ~U(GSpyw). Let R=1-3""1 m.
1<i<N®)

Theorem

Independently of the diffusion policy,
Number of blocks: N®) @ 1 ¢ Binomial(k — 1, R)
Lengths of the free blocks: %(k)l ~ Dirichlet(N®): 1,...,1)

Lengths of the occupied blocks: a formula for P (|O®| = (Mo, ..., My_1))
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Some background on the continuous and discrete parking models

[ Discrete parking

introduced by Konheim, Weiss
[KW66], studied by Knuth [Knu73]

| S

asymptotic behavior studied by
Chassaing, Louchard [CLO2]
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Main principle

Consider 4 uniform points on [0, 1].

0 1 0 1
Conditional on } { s
0 1 0 1
Then: | | | .
4 uniform points in 3 uniform points in
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dl dr
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0
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the positions of the peaks are uniform on the smaller cycle Cg of size R=1-5 m;

the distributions of the peaks number, heights and positions do not depend on the
diffusion policy
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Distribution of the lengths of the free blocks

2 . —(IF. alFl _ ‘Far‘)
Reminder: |F| = (\F,|)1§,-§N(k) and %5 7( R )1 cicn’ O

for any 0 € Gy .

Theorem (Distribution of |F| conditional on N(¥)
Recall that R =1 -5 m;.

unbiased version: if o ~ U(S yw), % ~ Dirichlet(N®); 1,... /1)
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Distribution of the lengths of the free blocks

Reminder: |F| = (|Fi])1<i<nw and %

- ()
R Ji<i<nw’
for any 0 € Gy .

Theorem (Distribution of |F| conditional on N(¥)
Recall that R =1 -5 m;.

unbiased version: if o ~ U(S yw), % ~ Dirichlet(N®); 1,... /1)
biased version:

(|Fils-- -5 | Frw]) {Dirichlet(N("); 1,---,1)  with probability 1 — R

R Dirichlet(N();2,1,--- 1)  with probability R
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Intuition on the proof (bis)

dl dr

0

allow to see that, at every step:
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Intuition on the proof (bis)

dl dr

0

allow to see that, at every step:

the positions of the peaks are uniform on the smaller cycle Cg of size R=1—-> m;
the distributions of the peaks number, heights and positions do not depend on the
diffusion policy

even more surprisingly, for the peaks number and positions: do not depend on which
peak is extended by the diffusion
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Distribution of the number of blocks N)

Theorem

r (|,c(k)| ’ (mo, - - 7,,,,(71)) :£<

Fﬁl ‘ (mo, -+ 7mk1)>
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Distribution of the number of blocks N)

Theorem
£ (1P| (o i) = £ (IFB] | mio.-+-0))
Theorem (Distribution of N())

Let B(k — 1, R) ~ Binomial(k — 1, R), then

NGO DLy Bk —1,R)

k—1
N(k) =1+ Z ]lukﬁz
Jj=1
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Distribution of the occupied blocks

£ (1=1) = (Sm) = (e

and, conditional on N*) =1, O is reduced to an interval [A, A+ > m]
with A uniform on C
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Distribution of the occupied blocks

£ (1=1) = (Sm) = (e

and, conditional on N*) =1, O is reduced to an interval [A, A+ > m]
with A uniform on C

Theorem

b—1
P (|o(k)| = (Mo,...,Mb,l)) =T(Mo,...,Mo-1) > {H QUM 1) ey, mimh,

PeP(k,b) Le=0
where
- P(k, b) is the set of partitions P = (Po,...,Ps_1) of {1,..., k — 1} into b non empty parts,

_ b—1 _ b
- T(Mo, ..., My-1) = Mo U=5— + Bk
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Summary of universality results

Theorem
For any continuous model with valid spreading policy, the following distributions are explicit
and independent of the spreading policy:

With k fixed:
L£(0W, Fk)
L (|F(k)‘ ‘ (mO,"' 7mk—1)) =L (|m| ’ (Zm,‘,O,... ’0))
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Asymptotic results

With n (random) masses, n — oo, for example if

Vi, m; = 1/n and consider the process at time n

Vi, m; = {;/n (where ¢; are i.i.d. with E[{;] < co and satisfy some regularity assumption),
at time t = sup{k : fozo m; < 1},
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LargestBlock(
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Asymptotic results

With n (random) masses, n — oo, for example if

Vi, m; = 1/n and consider the process at time n
Vi,m; = {;/n (where ¢; are i.i.d. with E[¢{;] < oo an\
at time t = sup{k : Zf:o m; < 1},

Corollary (Bertoin, Miermont [BMO06]; Marckert, V.) Q
There exists a limit process S such that O
0]
<LargestB|ock , 1< §j> 108 (SortedExc(e(A));, 1<i gj) . O
n n—oo
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Key tools : the “collecting paths”

Se=—x+ Y1 g mily <y, Vx € [0,1]

'
ar

i S r .

VY when S converges to e,

\[‘[ \\ [ (SortedExC(g)i) ﬂ) (SortedExc(e(’\))i)

1<i<) p—soo

1<i<
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Discrete space and discrete masses

onC,:={0/n,---,(n—1)/n} CC:
masses arrive on C,, : Vi, u; ~U(Cp)
they cover intervals with extremities in C,,

their spreading policy is only invariant by 1/n rotation
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Discrete space and discrete masses

onC,:={0/n,---,(n—1)/n} CC:
masses arrive on C,, : Vi, u; ~U(Cp)
they cover intervals with extremities in C,,
their spreading policy is only invariant by 1/n rotation

Theorem (Similar universality result)

For any discrete model with valid spreading policy, the following distributions are explicit and
independent of the spreading policy:

With k fixed:

£(O(k), F(k))

r (|F(k)‘ ‘ (mo, - - 7,77,(71)) =L <|;-_‘(’3| ’ - mi,0,--- 70))
As a process in k:

L(NY) k > 0)

LH{{I0W[}}, k > 0)
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Discrete VS Continuous model
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Discrete VS Continuous model

(d) N
NGI =1 4 Binomial(k — 1, R) ORCE Binomial(k — 1, R — 1/n)
Asymtotic behavior when k =n— A\\/nand Vi,m; =1/n
(n)
Number of blocks: Y& 5 ) Number of blocks: M= =5 \(1—e™1)

VN poo Vn oo
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Discrete VS Continuous model

(d) . .
N = 1+ Binomial(k — 1, R) ORCEE Binomial(k — 1, R — 1/n)

Asymtotic behavior when k =n— A\\/nand Vi,m; =1/n

o)
Number of blocks: % n%c A ‘ Number of blocks: N—\jﬁ n%c AM1—eh)

Large block sizes: (M, 1< §j> ), (SortedExc(e™);, 1 < i < j)

2 n—00
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Conclusion and perspectives

Standard parking : if car k falls in a block of size By, it costs C, = | U.Bx|, with
U ~ U([0,1]). Chassaing-Louchard [CLO2]:

Ln—A/a]

1
(d) )
— Gk — dt
n3/2 ; K n—oo /g €t

Parking with different parking policies : see Marckert-V. for some of them.
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