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Definition of the model

0

State space C = R/Z. m0, · · · ,mn with
∑

mi < 1.

At every step k :

• arrival of a drop of mass mk at uk ∼ U(C)

•
:::::::::
continuous

::::::::
spreading of the drop (so that the new

covered area has size mk)

Configuration at time k (i.e. after drop k − 1 has been
spread):

• occupied space O(k) of size Leb
(
O(k)

)
=

∑k−1
i=0 mi

• free space F (k) = C\O(k)

• more precisely, N(k) blocks of each type

=⇒ (O
(k)
i ,F

(k)
i )1≤i≤N(k) ordered around the circle with

0 ∈ O
(k)
1 ∪ F

(k)
1
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Examples of spreading policies

• Right diffusion at constant speed:
−−→
O(k),

−−→
F (k)

0 1 = 0 mod 1u0 u2u1

m1 +m2m0

(studied by Bertoin, Miermont [BM06])

• Diffusion to the closest side (with or without constant reevaluation)

• Range of a brownian path

• short-sighted jam spreader

• for any ball, pick at random some spreading policy

• ...
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What is a valid spreading policy ?

As a continuous process: local and continuous diffusion

u1 uku3

m3 + εm1

t = k + ε

u1 uku3

m3 + ε+ dεm1

dl dr

t = k + ε+ dε dl + dr = dε

Hypotheses:

• dl and dr only depend on what is inside the current component of uk (one of the O
(k+ε)
i )

• invariance by translation of the process
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A universality result

We consider σ.|F (k)|
R =

(
|F (k)

σi
|

R

)
1≤i≤N(k)

, for σ ∼ U(SN(k)). Let R = 1 −
∑k−1

i=0 mi .

Theorem
Independently of the diffusion policy,

• Number of blocks: N(k) (d)
= 1 + Binomial(k − 1,R)

• Lengths of the free blocks: σ.|F (k)|
R ∼ Dirichlet(N(k); 1, . . . , 1)

• Lengths of the occupied blocks: a formula for P
(
|O(k)| = (M0, . . . ,Mb−1)

)
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d0 d1 d2 d3

(d0, . . . , d3) ∼ Dirichlet(4; 1, . . . , 1)

u1, u2, u3 ∼ U([0, 1])
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Some background on the continuous and discrete parking models

Discrete parking

• introduced by Konheim, Weiss
[KW66], studied by Knuth [Knu73]

• asymptotic behavior studied by
Chassaing, Louchard [CL02]

Generalized parking

• Parking on Z (Przykucki, Roberts, Scott
[PRS23])

• Parking on (random) trees (Contat et. al.)

• Bilateral parking procedures (Nadeau),
Golf model [Var24]

Continuous version of the classical parking
Caravans (Bertoin, Miermont [BM06])

Additive coalescent
studied by Aldous, Pitman
[AP98], Chassaing,
Louchard,...

mi

mj

mk Proba
∝ mi +mj
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A universality result
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Main principle

Consider 4 uniform points on [0, 1].

Conditional on :

Then:

0 1

0 1

4 uniform points in

0 1

0 1

3 uniform points in

7 / 19



Intuition on the proof

Peaks representation:

0

dl dr

0

? 0

?

allow to see that, at every step:

• the positions of the peaks are uniform on the smaller cycle CR of size R = 1 −
∑

mi

• the distributions of the peaks number, heights and positions do not depend on the
diffusion policy
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Distribution of the lengths of the free blocks

Reminder: |F | = (|Fi |)1≤i≤N(k) and σ.|F |
R =

(
|Fσi

|
R

)
1≤i≤N(k)

,

for any σ ∈ SN(k) .

Theorem (Distribution of |F | conditional on N(k))
Recall that R = 1 −

∑
mi .

• unbiased version: if σ ∼ U(SN(k)), σ.|F |
R ∼ Dirichlet(N(k); 1, · · · , 1)

• biased version:

(|F1|, . . . , |FN(k) |)
R

∼

{
Dirichlet(N(k); 1, · · · , 1) with probability 1 − R

Dirichlet(N(k); 2, 1, · · · , 1) with probability R
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Intuition on the proof (bis)

Peaks representation:

0

dl dr

0

allow to see that, at every step:

• the positions of the peaks are uniform on the smaller cycle CR of size R = 1 −
∑

mi

• the distributions of the peaks number, heights and positions do not depend on the
diffusion policy

• even more surprisingly, for the peaks number and positions: do not depend on which
peak is extended by the diffusion
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Distribution of the number of blocks N (k)

Theorem

L
(
|F (k)|

∣∣∣ (m0, · · · ,mk−1)
)
= L

(
|
−−→
F (k)|

∣∣∣∣ (∑mi , 0, · · · , 0)
)

L
(
|F (k)|

∣∣∣ (m0, · · · ,mk−1)
)
= L

(
|
−−→
F (k)|

∣∣∣∣ (m0, · · · ,mk−1)

)

Theorem (Distribution of N(k))
Let B(k − 1,R) ∼ Binomial(k − 1,R), then

N(k) (d)
= 1 + B(k − 1,R)

∑
mi

R

N(k) = 1 +
k−1∑
j=1

1uk /∈
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Let B(k − 1,R) ∼ Binomial(k − 1,R), then

N(k) (d)
= 1 + B(k − 1,R)

∑
mi

R

N(k) = 1 +
k−1∑
j=1

1uk /∈
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Distribution of the occupied blocks

One block case:

P
(
N(k) = 1

)
=

(∑
mi

)k−1
=: Q

(∑
mi , k

)
and, conditional on N(k) = 1, O(k) is reduced to an interval [A,A+

∑
mi ]

with A uniform on C

General case:

0

Theorem

P
(
|O(k)| = (M0, . . . ,Mb−1)

)
= T(M0, . . . ,Mb−1)

∑
P∈P(k,b)

[
b−1∏
ℓ=0

Q(Mj , |Pj |) 1∑
i∈Pℓ

mi=Mℓ

]
where

- P(k, b) is the set of partitions P = (P0, . . . ,Pb−1) of {1, . . . , k − 1} into b non empty parts,

- T(M0, . . . ,Mb−1) = M0
(1−ΣMℓ)

b−1

(b−1)! + (1−ΣMℓ)
b

b!
.
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Summary of universality results

Theorem
For any continuous model with valid spreading policy, the following distributions are explicit
and independent of the spreading policy:

• With k fixed:
• L(O(k),F (k))

• L
(
|F (k)|

∣∣∣ (m0, · · · ,mk−1)
)
= L

(
|
−−→
F (k)|

∣∣∣∣ (∑mi , 0, · · · , 0)
)

• As a process in k :
• L(N(k), k ≥ 0)
• L({{|O(k)|}}, k ≥ 0)

Corollary: results on O(k),F (k) for one spreading policy are valid for any spreading
policy !
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Asymptotic results

With n (random) masses, n → ∞, for example if

• ∀i ,mi = 1/n and consider the process at time n

• ∀i ,mi = ℓi/n (where ℓi are i.i.d. with E[ℓi ] < ∞ and satisfy some regularity assumption),
at time t = sup{k :

∑k
i=0 mi < 1}.

Corollary (Bertoin, Miermont [BM06]; Marckert, V.)
There exists a limit process S such that(

LargestBlock(i)

n
, 1 ≤ i ≤ j

)
(d)−→

n→∞
(SortedExc()i , 1 ≤ i ≤ j) .
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e(λ) : t 7→ et − λt



Key tools : the “collecting paths”

Illustration:

u1

u2

u2

O(1)

O(2)

Definition: Sx = −x +
∑k−1

j=0 mj1uj≤x , ∀x ∈ [0, 1]

Periodic extension S̄ :

a
a

1 2 3 4 5 6 7 S̄

S

Convergence: when S̄ converges to e(λ),(
SortedExc(S̄)i

)
1≤i≤j

(d)−→
n→∞

(
SortedExc(e(λ))i

)
1≤i≤j

.
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Discrete space and discrete masses

New definition on Cn := {0/n, · · · , (n − 1)/n} ⊂ C :
• masses arrive on Cn : ∀i , ui ∼ U(Cn)
• they cover intervals with extremities in Cn
• their spreading policy is only invariant by 1/n rotation

Theorem (Similar universality result)
For any discrete model with valid spreading policy, the following distributions are explicit and
independent of the spreading policy:

• With k fixed:

• L(O(k),F (k))

• L
(
|F (k)|

∣∣∣ (m0, · · · ,mk−1)
)
= L

(
|
−−→
F (k)|

∣∣∣∣ (∑mi , 0, · · · , 0)
)

• As a process in k:

• L(N(k), k ≥ 0)
• L({{|O(k)|}}, k ≥ 0)
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Discrete VS Continuous model

Continuous process:

∑
mi

N(k) (d)
= 1 + Binomial(k − 1,R)

Discrete process:

∑
mi

N(k) (d)
= 1 + . . .

Asymtotic behavior when k = n − λ
√
n and ∀i ,mi = 1/n

Number of blocks: Nk√
n

P−→
n→∞

λ Number of blocks: N
(n)
k√
n

P−→
n→∞

λ(1 − e−1)

Large block sizes:
(

LargestBlock(i)

n , 1 ≤ i ≤ j
)

(d)−→
n→∞

(
SortedExc(e(λ))i , 1 ≤ i ≤ j

)
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Conclusion and perspectives

Cost of parking procedures:

• Standard parking : if car k falls in a block of size Bk , it costs Ck = ⌊U.Bk⌋, with
U ∼ U([0, 1]). Chassaing-Louchard [CL02]:

1
n3/2

⌊n−λ
√
n⌋∑

k=1

Ck
(d)−→

n→∞

∫ 1

0
e
(λ)
t dt

• Parking with different parking policies : see Marckert-V. for some of them.
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Conclusion and perspectives

Thank you !
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