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How Statistical Mechanics met Algebraic Combinatorics

wikipedia:
Rutherford scattering experiments

Halley comet, photo by Dennis Mammana in northern Mexico, March 13 1986
https://www.rocketstem.org/2020/03/07/ice-and-stone-comet-of-week-11/

“Newton Physics” is the physics of
dynamical systems, i.e. the equations
describing the motion of point parti-
cles possibly with mutual interactions
and in a potential.

By the work of Lagrange, Euler, Hamilton,. . . the Hamiltonial has
been introduced. It generates the time evolution, is a conserved
quantity, and its value describes the total energy of the system.

In generic systems, the total energy and momentum are the only
conserved quantities, and the motion is typically chaotic. But some
“lucky” systems have many more conserved quantities.

Integrable Systems à la Liouville possess a full set of conserved
charges, that Poisson-commute with each other. The dynamics is
so constrained that, essentially, the trajectory in phase space is
determined by the conservation laws.
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How Statistical Mechanics met Algebraic Combinatorics

Classical Mechanics evolved into Quantum Mechanics, and then
into Quantum Field Theory. Integrable Quantum Field Theories
then developed as the QFT version of Liouville integrability.

The work of Yang (and others!) found that, in a simple class of
(1+1-dimensional local relativistic) QFT’s, the scattering matrix
factorized to that of the two-body problem if the (later called)
Yang–Baxter Equation was satisfied.
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How Statistical Mechanics met Algebraic Combinatorics

Measurement of the critical temperature of ethane, and illustration of critical opalescence
https://commons.wikimedia.org/wiki/File:CriticalPointMeasurementEthane.jpg

Subcritical state,
liquid and gas phase
coexist

Critical point
(32.17 ◦C, 48.72 bar),
opalescence

Supercritical state,
fluid

Statistical Mechanics of phase transitions and critical phenomena
is a different field of physics, describing matter near to a critical point.

“Solving” a stat-mech problem is, in general, easy in dimension
d = 1 or in mean-field approximation (corresponding to d →∞),
but virtually impossible in the “physical” dimensions d = 2, 3 or 4.

However, by the beginning of the 70’s we had a few exactly-solved
models in d = 2: Kirchhoff’s 1847 Matrix–Tree theorem, counting
the spanning trees of a graph (for all d); Onsager’s 1944 solution
of the Ising Model; the Kac–Ward 1952 alternate solution of Ising;
Kasteleyn’s 1961 solution of the Dimer Model; Lieb and
Sutherland’s 1967 solution of the 6-Vertex Model; . . .

Then, Baxter in 1971 had a key idea: in Statistical Mechanics,
exactly-solved models in d = 2 are solvable because they are, in
disguise, models for scattering in 1+1 dimension, which are
“integrable” because of the presence of a Yang–Baxter Equation.
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How Statistical Mechanics met Algebraic Combinatorics

Billiard balls: when they hit each
other, they change velocities,
but keep their colours. . .

keep their “rapidities” λj ,

Integrable Baxter models:
“balls” hit at intersections

but may change their colours xi

This is an incredible change of perspective.

Now, if you suspect that a stat-mech model is specially nice or
solvable, you can try to “Baxterise” it,

i.e. invent a one-parameter
deformation of the weights such that:

1. The graph is described by bundles of lines that intersect each
other. A spectral parameter λj is attached to line j .

2. The variables xi live on segments between intersections.
3. The measure µ(~x) factorises into W x3,x4

x1,x2 (λi − λj) at crossings.
4. The Yang–Baxter equation is an identity for a certain sum

over internal states, for a system with three lines.
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How Statistical Mechanics met Algebraic Combinatorics
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Many facts follow from the YBE: in a cylinder geometry transfer
matrices T (λ) do commute, which implies that H = ∂

∂λT (λ)|λ=0

commutes with all charges Qj = ∂j

∂λj
T (λ)|λ=0. All is “clean”, and

different notions of integrability come together!
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An example: Schur functions and weighted lozenge tilings

Semi-Standard Young Tableaux SSYT(λ, n):

Fillings of λ with the integers {1, 2, . . . , n},
repetitions allowed, satisfying

• ≤ •<

•

1 1 3 4 4

2 3

5 6

6

Schur polynomials are ‘generating functions’ of SSYT’s
s (x1,...,x6)=

···+x2
1 x2x2

3 x
2
4 x5x2

6 +···
and a basis of symmetric polynomials

sλ(x1, . . . , xn) =
∑

T∈SSYT(λ,n)

n∏
i=1

x
#{i∈T}
i def. SSYT

[∆(~x)=
∏

i<j (xi−xj )] =
1

∆(~x)
det
((

x
λj+n−j
i

)
i ,j=1,...,n

)
Weyl formula

= det
((
hλi+j−i

)
i ,j=1,...,`(λ)

)
Jacobi-Trudi

= det
((
eλ′i+j−i

)
i ,j=1,...,λ1

)
dual Jacobi-Trudi
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An example: Schur functions and weighted lozenge tilings

(Skew-)Schur polynomials can be represented as partition functions
of the (f.f.) 5VM, which is a Uq(ŝl2) Yang–Baxter integrable model,

on a horizontal strip of the square lattice, with homogeneous
vertical spectral parameters, the horizontal ones determine the

alphabet, and the top/bottom b.c. determine the partitions λ and µ

1 2 2 6

2 3

1 4 4

6

1 1

2 2 2

3

4 4

6 6

T (xi ) :

1

1 xi

xi 1
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Littlewood–Richardson coefficients as a Vertex Model

The structure constants cλµν of the algebra Λ = spanK
(
sλ(~x)

)
λ

are non-negative integers known as Littlewood–Richardson coefficients

sµ(~x)sν(~x) =
∑
λ

cλµν sλ(~x) ; sλ(~x , ~y) =
∑
µ,ν

cλµν sµ(~x)sν(~y) ;

Also the Littlewood–Richardson coefficients are described by an
integrable Vertex Model, now with underlying Uq(ŝl3) symmetry.

z-w A. Knutson and T. Tao, Puzzles and (equivariant) cohomology of

Grassmannians, Duke Math. J. 119 (2003); P. Zinn-Justin,

Littlewood–Richardson Coefficients and Integrable Tilings, EJC 16 (2009)

The key idea is to express the two sides of the coproduct identity
sλ(~x |~y) =

∑
µ,ν c

λ
µν sµ(~x)sν′(~y) as partition functions

in a rank-2 model (i.e., with particles of three colours)

The identity is a consequence of commutation of transfer matrices,
which in turns comes from the Yang–Baxter Equation of the rank-2 model

Andrea Sportiello The Razumov–Stroganov correspondence: old and new



Littlewood–Richardson coefficients as a Vertex Model

T0

T0

.

.

.

T0

T0

T0

T̄ (y1)

T̄ (y2)

T (x1)

T (x2)

T (x3)

sλ(~x |~y) =
∑
µ,ν

cλµν sµ(~x)sν′(~y)

λ

λsλ(~x |~y)
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T0

T0

.

.

.

T0

T0

T0

T̄ (y1)

T̄ (y2)

T (x1)

T (x2)

T (x3)

sλ(~x |~y) =
∑
µ,ν

cλµν sµ(~x)sν′(~y)

µ ν ′ λ

λ

sµ(~x)

sν′(~y)

µ ν

cλµν
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A partial conclusion from the introduction. . .

We have seen that the mechanism

YBE =⇒ [T (λ),T (µ)] = 0 =⇒ Zλ/µ(~x) is symmetric

links Integrable Models à la Baxter to the Algebraic Combinatorics
of symmetric polynomials, and that, thanks to a further idea by

P. Zinn-Justin, also to their structure constants.

We think that, nowadays, we essentially understand all this.

Now we are going to talk about the Razumov–Stroganov correspondence,
which connects two distinct Integrable Models à la Baxter.

We will see symmetric polynomials and structure constants pop out
(although this was not quite needed for RS in itself)

We will also see that we mostly do not understand this. . .
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Two Problems of (integrable) Random Tilings

O(1) Dense Loop Model
on a semi-infinite cylinder (or strip)

= XXZ Quantum Spin Chain at ∆ = −1
2

= Edge-percolation (Potts Model at Q = 1)

Fully-Packed Loops (FPL) in a square
(or some other domain mostly locally like a
square lattice)
= Alternating Sign Matrices (ASM)
= Six-Vertex Model at ∆ = + 1

2 (Ice Model)
= Non-Intersecting Lattice Paths
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Link patterns

A link pattern π ∈ LP (2n) is a pairing of {1, 2, . . . , 2n}
having no pairs (a, c), (b, d) such that a < b < c < d
(i.e., the drawing consists of n non-crossing arcs).

1 2

3

4

5

67

8

9

10

1 2 3 4 5 6 7 8 9 10

They are Cn = 1
n+1

(2n
n

)
(the n-th Catalan number),

are in easy bijection with Dyck Paths of length 2n,
and with integer partitions boxed in a triangle,. . .
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Link patterns in the Dense Loop Model

We can associate a link pattern π to any dense-loop configuration
on a semi-infinite cylinder, as the connectivity pattern among the
points on the boundary.
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Link patterns in Fully-Packed Loops

We can associate a link pattern π also to any Fully-Packed Loop
configuration, as the connectivity pattern among the black
terminations on the boundary.
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The dihedral Razumov–Stroganov correspondence

1
2 3 4
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1112131415
16

17

18

19

20

Ψ̃n(π) : probability of π
in the O(1) Dense Loop Model
in the {1, ..., 2n} × N cylinder

Ψn(π) : probability of π
for FPL with uniform measure

in the n × n square

Dihedral Razumov–Stroganov correspondence
(conjecture: Razumov Stroganov, 2001; proof: AS Cantini, 2010)

Ψ̃n(π) = Ψn(π)
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Many Razumov–Stroganov-type conjectures

In fact, there exists a whole class of Razumov–Stroganov conjectures

z-w A.V. Razumov and Yu.G. Stroganov, Combinatorial nature of ground state
vector of O(1) loop model, Theor. Math. Phys. 138 (2004); —, O(1) loop model with

different boundary conditions and symmetry classes of alternating-sign matrices,
Theor. Math. Phys. 142 (2005); J. de Gier, Loops, matchings and alternating-sign

matrices, Discr. Math. 298 (2005); S. Mitra, B. Nienhuis, J. de Gier and
M.T. Batchelor, Exact expressions for correlations in the ground state of the dense

O(1) loop model, JSTAT(2004); J. de Gier and V. Rittenberg, Refined
Razumov–Stroganov conjectures for open boundaries, JSTAT(2004); Ph. Duchon,

On the link pattern distribution of quarter-turn symmetric FPL configurations, FPSAC 2008

These variants are naturally arranged into two main classes:

dihedral RS: FPL domains with Wieland dihedral symmetry,
⇔ O(1)DLM on the cylinder (the periodic quantum spin chain)

vertical RS: FPL domains with a “reflecting wall” of
U-turn/O-turn ⇔ versions of the O(1)DLM on the strip

(the open or closed boundary quantum spin chain)
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Some other dihedral Razumov–Stroganov (ex-)conjectures

HTASM L = 2n † HTASM L = 2n + 1 †
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Dihedral symmetry of FPL

A corollary of the Razumov–Stroganov correspondence. . .
(. . . that was known before the Razumov–Stroganov conjecture)

call R the operator that rotates a link pattern by one position

Dihedral symmetry of FPL (proof: Wieland, 2000)

Ψn(π) = Ψn(Rπ)

π

Rπ

1 2
3

4

5

67
8

9

10

1 2
3

4

5

67
8

9

10
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The domains where dihedral Razumov–Stroganov holds

In the case of the dihedral Razumov–Stroganov correspondence,
Wieland gyration (and its generalisations) has been a crucial ingredient

and led us to classify the family of domains for which RS holds

1 1 1 2 2
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The domains where dihedral Razumov–Stroganov holds

So, in proving the various existing (dihedral) Razumov–Stroganov
conjectures, we have been led to generalise them to a much larger
family of domains (∼ n3 different domains for LP (2n)).

There are three subclasses, according to the type of link patterns
and Temperley–Lieb algebras: ordinary, punctured even and
punctured odd.
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The domains where dihedral Razumov–Stroganov holds

1 corner, 3 triangles:

1 3 5 7 9 11 13

151719

21

23

2 4 6 8 10 12

14

1618

20

22

24
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The domains where dihedral Razumov–Stroganov holds

2 corners, 2 triangles:

1 3 5 7 9 11 13 15

17

192123

25

27

2 4 6 8 10 12 14

16

18

2022

24

26

28
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The domains where dihedral Razumov–Stroganov holds

3 corners, 1 triangle:

1 3 5 7 9 11

13

15

17

19

21232527

29

31

2 4 6 8 10

12

14

16

18

20

222426

28

30

32
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The domains where dihedral Razumov–Stroganov holds

1 corner, 1 face with ` = 2:

1 3 5 7

9

11

13

15

17

19

2 4 6 8

10

12

14

16

18

20

(this works with

punctured link patterns

of even size!)
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The domains where dihedral Razumov–Stroganov holds

1 corner, 1 vertex of degree 2:

1 3 5 7 9

11

13

15

17

19

21

2 4 6 8

10

12

1416

18

20

22

(this works with

punctured link patterns

of odd size!)
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The domains where dihedral Razumov–Stroganov holds

2 corners, 1 face with ` = 2:

(these are HTASM,

half-turn symmetric ASM’s,

and it works with punctured

link patterns, of even or odd size)

L = 2n
1 3 5 7

9

11
13

15

2 4 6 8

10

12

14

16

1 3 5 7
9

11

13

15

1357

9

11

13

15

2 4 6 8

10

12

14

16

2468

10

12

14

16
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The domains where dihedral Razumov–Stroganov holds

2 corners, 1 face with ` = 2:

(these are HTASM,

half-turn symmetric ASM’s,

and it works with punctured

link patterns, of even or odd size)

L = 2n + 1
1 3 5 7 9

11

1315

17

2 4 6 8

10

12

14

16

18

1 3 5 7 9

11

13

15

17

13579

11

13

15

17

2 4 6 8

10

12

14

16

18

2468

10

12

14

16

18
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The domains where dihedral Razumov–Stroganov holds

2 corners, 1 face with ` = 2:

L = 4n
1 3

5

7

2 4

6

8

1 3 5 7
1

3

5

7

1357

1

3

5

7

2 4 6 8

2

4

6

8

2468

2

4

6

8

(these are QTASM,

quarter-turn symmetric ASM’s)

and it works with punctured

link patterns of even size)
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The domains where dihedral Razumov–Stroganov holds

2 corners, 1 face with ` = 2:

L = 4n + 2

1 3 5

7

9

2 4

6

8

10

1 3 5 7 9
1

3

5

7

9

13579

1

3

5

7

9

2 4 6 8 10

2

4

6

8

10

246810

2

4

6

8

10

(these are qQTASM,

quasi–quarter-turn symmetric ASM’s)

and it works with punctured

link patterns of odd size)
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A Vertical Razumov–Stroganov Conjecture

1

2

3

4
5 6

7

8

9

10 1

2

3

4
5 6

7

8

9

10

3 4 5 6 7 8

9

101

2

Ψ̃V
n (π) : probability of π

in the O(1) Dense Loop Model
in the {1, ..., 2n} × N strip

ΨV
n (π) : probability of π

for vertically-symmetric FPL
with uniform measure in the
(2n + 1)× (2n + 1) square

Vertical Razumov–Stroganov conjecture
(Razumov and Stroganov, 2001, for the square of side 2n + 1)

Ψ̃V
n (π) = ΨV

n (π)
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3 4 5 6 7 8
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Ψ̃V
n (π) = ΨV

n (π)
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The domains where vertical Razumov–Stroganov holds

The Vertical Razumov–Stroganov conjectures are a whole second family
They involve FPL with some version of reflecting wall

and the O(1) Dense Loop Model on a strip with a boundary

Our proof methods do not seem to work for any of the Vertical
Razumov–Stroganov conjectures, which are all open at present

But at least we think we know the precise list of domains with Vertical RS

3 + x + 7y + 2xy + 4y2 + xy2 6 + 2x + 14y + 4xy + 8y2 + 2xy2
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A personal perspective on Razumov–Stroganov history

2001:
Razumov and Stroganov find the first versions of their
conjecture (for ASM’s and VSASM’s)

soon after: Many new conjectures of the same flavours pop up

Many good people work on this. They don’t find a proof,
but, in passing, they find a lot of other interesting things. . .

2010: Cantini and myself find a first proof of dihedral RS (and
its generalisations)

People starts not caring anymore. But we are still
obsessed by the fact that the vertical RS is not proven. . .

2012:
Cantini and myself find a proof of a conjecture of
Di Francesco from 2004, which implies a second proof
of dihedral RS (and its generalisations)

today:
Still no proof of vertical RS in sight. But Cantini and
myself keep on trying, and, in passing, we still find a lot
of other interesting things. . .
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(Failed) plan of this talk: 1 – first attempts on RS

I Di Francesco and P. Zinn-Justin solve the “qKZ equation” for
the DLM, i.e. “add the spectral parameters” to the DLM side
of RS. They find multi-contour integral formulas for the Ψ̃(π).

I For FPL’s, Caselli, Krattenthaler, Lass and Nadeau show that
components Ψn+k(πn k) are polynomials in k (a bit like
Ehrhart polynomials for the number of integer points in a
polytope). This leads to the study of “FPL in a triangle”,
which form a three-index tensor aσ,π,τ of integers.

I Some statistics d are assigned to the indices, and aσ,π,τ = 0
unless d(σ) + d(τ) ≤ d(π). Nadeau shows that, when
d(σ) + d(τ) = d(π), the aσ,π,τ ’s are the Littlewood–
Richardson coefficients cπστ , as the FPL’s are Knutson–Tao
puzzles in slight disguise.

I P. Zinn-Justin conjectures a three-index multi-contour integral
formula for FPL in a triangle aσ,π,τ . From that, (dihedral) RS
would follow. But, even today that dihedral RS is solved, this
conjecture remains wide open.

Andrea Sportiello The Razumov–Stroganov correspondence: old and new



(Failed) plan of this talk: 2 – our work on RS, and new things

I We solve (dihedral) RS a first time, by promoting
Wieland gyration to a “symmetry that leads to Ward

identities”. But some parts are a bit tedious.
I We find a second proof, as a byproduct of the proof of

a stronger conjecture by Di Francesco on the eigenstate

of the scattering matrix S(x). We introduce a “heretical

enumeration” of FPL , for which the identity is quite simple
and only involves R and e1. But still no vertical RS. . .

I . . . We look at FPL in UASM, with black and white LP, and
#{©} statistics. We conjecture that the enumerations
Aπ•,π◦(τ) have leading coeffs coinciding with LR coeffs cδnπ•,π◦
for canonical Grothendieck polys (still no idea for the full polys).

I Also, we search for a (dihedral) RS with black and white LP
statistics. We find that the “heretical enumeration” of FPL

satisfies an identity involving only R•, R◦, e
•
1 and e◦1 .

The DLM side is a weird new loop model, on finite cylinders.
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The Temperley-Lieb monoid TL(1)

Consider the graphical action over link patterns π ∈ LP (2n)

R :
1 2 3 ··· 2n

ej :
1 2 3 ··· j j+1 ···2n

··· ···

In the TL(τ) Algebra, e2
j = τej . When τ = 1, the ej ’s and R±1 act

stochastically on link patterns

e1(π) :
1 2 3 4 5 6 7 8 9 10

=
1 2 3 4 5 6 7 8 9 10

e2(π) :
1 2 3 4 5 6 7 8 9 10

=
1 2 3 4 5 6 7 8 9 10

Consider the linear space CLP(2n), linear span of basis vectors |π〉.
Operators ej and R±1 are stochastic linear operators over CLP(2n)
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O(1) Dense Loop Model: the Markov Chain over LP (2n)

The “integrable weigths” of the O(τ) Dense Loop Model
(with τ = 2 cos γ) on isoradial graphs∗ are

θ = π
2 ξ

ξ ∈ [0, 1] sin γξ sin γ(1− ξ)

∗ The relation between the angle θ and the integrable weights is natural

in two respects: the density of free energy is uniform, and the YBE

condition corresponds to “flipping a cube”
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O(1) Dense Loop Model: the Markov Chain over LP (2n)

A config with t − 1 layers, and link
pattern π

Add a new layer, of i.i.d. tiles, with
probability p( )/p( )
= p/(1− p) = sin(π3 ξ)/ sin(π3 (1− ξ))
(say, p = 1/2, i.e. ξ = 1/2)...

Some loops get detached from the
boundary. You have a config with t
layers, and a new link pattern π′.

The rates Wp(π, π′) are encoded by a
big polynomial Tp in R±1 and the ej ’s:
Tp|π〉 =

∑
π′Wp(π, π′)|π′〉
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O(1) Dense Loop Model: the Markov Chain over LP (2n)

Now repeat the game,

but add i.i.d. tiles, with prob. p → 0

For most of the layers you just rotate
From time to time, you have a single
non-trivial tile. In the limit, the prob-
ability of having two non-trivial tiles
in the same row vanishes.

The rates are
Wp→0(π, π′) = δ(π′,Rπ) +O(p).
More precisely, the operator Tp has
the form

Tp = R
(
I + p

∑
j(ej − 1)

∑
j(ej − 1)

+O(p2)
)

Hamiltonian H
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Integrability: commutation of Transfer Matrices

The 1-parameter family of matrices for the transition rates,
Wp(π, π′), acting on CLP(2n) by filling one layer of lozenges with
angle θ, form a commuting family. I.e. the family of polynomials
Tp in the Temperley–Lieb Algebra form a commuting family.

Trivial: Ψ̃p(π), the steady state, is the unique eigenstate of
Tp(π, π′) with all positive entries

The Yang–Baxter relation implies:∑
π′Wp1(π, π′)Wp2(π′, π′′) =

∑
π′Wp2(π, π′)Wp1(π′, π′′),

or also, in TL alg., [Tp,Tp′ ] = 0

Consequence: Ψ̃p(π) ≡ Ψ̃p′(π) and we can get Ψ̃(π) := Ψ̃1/2(π)

from the study of Tp→0. Namely, calling |Ψ̃n〉 =
∑

π Ψ̃(π)|π〉 and
Hn = ∂

∂p (R−1Tp)|p=0 =
∑2n

i=1(ei − 1), we have

Hn|Ψ̃n〉 = 0
linear-algebra characterization of Ψ̃(π)
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Integrability: commutation of Transfer Matrices

...said with a picture...
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|Ψ̃n〉 :=
∑

π∈LP(2n)

Ψ̃n(π)|π〉

(Tn − 1)|Ψ̃n〉 = 0

|Ψ̃n〉 :=
∑

π∈LP(2n)

Ψ̃n(π)|π〉

Hn|Ψ̃n〉 = 0

the two linear equations for |Ψ̃n〉 are equivalent!
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The Razumov–Stroganov correspondence: reloaded
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|Ψ̃n〉 :=
∑

π∈LP(2n)

Ψ̃n(π)|π〉

Hn|Ψ̃n〉 = 0

|Ψn〉 =
∑

φ∈Fpl (n)

|π(φ)〉

Fpl (n) = {FPL in n× n square }

Razumov–Stroganov correspondence
(conjecture: Razumov Stroganov, 2001; proof: AS Cantini, 2010)

Hn|Ψn〉 = 0
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The Razumov–Stroganov correspondence: reloaded
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Refinement position in Fully-Packed Loops

Fully-Packed Loops have a unique straight tile on any external line
(and Alternating Sign Matrices have a unique +1 on any external line)

Concentrate on the bottom row, and call refinement position the
corresponding column index.

The Izergin–Korepin determinant gives us the total number of FPL
configurations, possibly refined according to these 4 statistics,
but not the numbers refined according also to the link patterns. . .
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O(1)DLM: the Scattering Matrix and Di Francesco’s 2004 conjecture

Repeat the game once more...

...but this time keep all tiles frozen, except
for the one in column i + 1

RXi (t) = R(t + (1− t)ei )

These simple operators seem to have
nothing to do with the original problem.

Nonetheless, calling Si (t) = (RXi (t))N

the Scattering Matrix on column i ,
we have Si (1− t) = 1 + t H +O(t2)

So, if we understand the Frobenius
vector Ψ(t) of Si (1− t),
(i.e. the Frobenius vector of RXi (1− t)),
we also understand the RS vector Ψ.
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nothing to do with the original problem.

Nonetheless, calling Si (t) = (RXi (t))N

the Scattering Matrix on column i ,
we have Si (1− t) = 1 + t H +O(t2)

So, if we understand the Frobenius
vector Ψ(t) of Si (1− t),
(i.e. the Frobenius vector of RXi (1− t)),
we also understand the RS vector Ψ.
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Dihedral covariance of the eigenvectors |Ψ̃(i)
n (t)〉

In the original formulation of the Razumov–Stroganov conjecture
we have |Ψ̃n〉 =

∑
π Ψ̃(π)|π〉, satisfying Hn|Ψ̃n〉 = 0

The operators RXi (t), and the scattering matrices Si (t),
induce the deformation

|Ψ̃(i)
n (t)〉 =

∑
π Ψ̃(i)(t;π)|π〉, satisfying (RXi (t)− 1)|Ψ̃(i)

n (t)〉 = 0.

Because of a dihedral covariance of these equations,
(and unicity of the Frobenius vector)

it suffices to study RX1(t) and |Ψ̃(1)
n (t)〉

i.e., 0 = (Xi (t)− R−1)|Ψ̃(i)
n (t)〉 = R(Xi+1(t)− R−1)R−1|Ψ̃(i)

n (t)〉
implies |Ψ̃(i+1)

n (t)〉 ∝ R−1|Ψ̃(i)
n (t)〉

Call Sym = N−1
∑N−1

i=0 R i , the operator that projects on the
rotationally-invariant subspace of CLP(N).
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The refined Razumov–Stroganov correspondence
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Ψ̃n(t;π) : probability of π
in the O(1) Dense Loop Model
with dynamics given by RX1(t)

Ψn(t;π) : count FPL’s φ
having link pattern π
give th(φ)−1 weight

Refined Razumov–Stroganov correspondence
(conjecture: Di Francesco, 2004; proof: AS Cantini, 2012)
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Ψ̃n(t;π) : probability of π
in the O(1) Dense Loop Model
with dynamics given by RX1(t)

Ψn(t;π) : count FPL’s φ
having link pattern π
give th(φ)−1 weight

Refined Razumov–Stroganov correspondence
(conjecture: Di Francesco, 2004; proof: AS Cantini, 2012)

Ψ̃n(t;π) 6= Ψn(t;π)
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The refined Razumov–Stroganov correspondence
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Ψ̃n(t;π) : probability of π
in the O(1) Dense Loop Model
with dynamics given by RX1(t)

Ψn(t;π) : count FPL’s φ
having link pattern π
give th(φ)−1 weight

Refined Razumov–Stroganov correspondence
(conjecture: Di Francesco, 2004; proof: AS Cantini, 2012)

Sym |Ψ̃n(t)〉 = Sym |Ψn(t)〉
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A quest for a new strategy

In 2010, Cantini and myself gave a first proof of the (unrefined)
Razumov–Stroganov conjecture. Later on, in 2012 we gave a proof

for the refined Di Francesco conjecture, which also provides a
(more illuminating?) proof of the original RS

2010: • Realize that H|Ψ̃〉 = 0 fixes |Ψ̃〉 univocally;
• Prove combinatorially that also |Ψ〉 satisfies H|Ψ〉 = 0...

...But the |Ψ̃(i)〉’s differ (they are only dihedrally covariant),
and satisfy different linear equations (with RXi (t))...

...and Sym |Ψ̃(i)〉 does not satisfy any simple
linear equation that fixes it univocally!

2012: • Find a new way π′(φ) of associating link patterns to FPL;

• Prove |Ψ̃(t)〉 = |Ψ′(t)〉 with no need of symmetrization;
• Prove combinatorially that Sym |Ψ′(t)〉 = Sym |Ψ(t)〉

Bonus: The new enumeration is interesting by itself
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The heretical enumeration
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The role of black and white is symmetrical...
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...who’s who is a matter of convention.

Swapping coloration in all FPL’s leads to an equivalent conjecture
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Here’s the new rule: if the refinement position is odd...
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Here’s the new rule: if the refinement position is odd...

...you just rotate the starting point to the refinement position
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if the refinement position is even...
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if the refinement position is even...

...you swap black and white, and rotate the starting point
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Use projectors to get 2 simple equations (instead of 1 difficult eq.)

We wanted to prove Di Francesco 2004 conjecture:
Sym |Ψ̃(t)〉 = Sym |Ψ(t)〉

with |Ψ̃(t)〉 solving (X1(t)− R−1)|Ψ̃(t)〉 = 0
and |Ψ(t)〉 =

∑
φ t

h(φ)−1|π(φ)〉

We have been led to split this in two parts:
|Ψ̃(t)〉 = |Ψ′(t)〉 and Sym |Ψ′(t)〉 = Sym |Ψ(t)〉

Sym |Ψ′(t)〉 = Sym |Ψ(t)〉

with |Ψ′(t)〉 =
∑

φ t
h(φ)−1|π′(φ)〉

The first relation is proven if you show that
(X1(t)− R−1)|Ψ′(t)〉 ≡ (t − R−1 − (t − 1)e1)|Ψ′(t)〉 = 0

recalling that e2
1 = e1, and (1− e1)2 = (1− e1):
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Use projectors to get 2 simple equations (instead of 1 difficult eq.)
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Wieland gyration: how it works
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Wieland gyration: why it works

Easier to visualize the ⇔ exchange on the few , faces...
...but better use the conjugate config at intermediate step,

and think that , are the only faces fixed in the transformation

This rule inverts degblack(v)↔ degwhite(v),
and preserves connectivity of open-path endpoints
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Wieland gyration: where it works

...in the original square domain for FPL we have “external legs”
(i.e., vertices of degree 1)... if we pair them, to produce triangles,
we solve this annoyance...
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A configuration on (Λ, τ+)
(i.e., first leg is black)
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Wieland gyration: where it works

...in the original square domain for FPL we have “external legs”
(i.e., vertices of degree 1)... if we pair them, to produce triangles,
we solve this annoyance...

The construction of G+,
pairing (2j − 1, 2j) legs
(plaquettes are in yellow)

mark in red and
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...in the original square domain for FPL we have “external legs”
(i.e., vertices of degree 1)... if we pair them, to produce triangles,
we solve this annoyance...

The result of map H+
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...in the original square domain for FPL we have “external legs”
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Wieland gyration: where it works

...in the original square domain for FPL we have “external legs”
(i.e., vertices of degree 1)... if we pair them, to produce triangles,
we solve this annoyance...

The construction of G−,
pairing (2j , 2j + 1) legs

mark in blue and
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Wieland gyration: where it works

...in the original square domain for FPL we have “external legs”
(i.e., vertices of degree 1)... if we pair them, to produce triangles,
we solve this annoyance...

The result of map H−
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Wieland gyration: where it works

...in the original square domain for FPL we have “external legs”
(i.e., vertices of degree 1)... if we pair them, to produce triangles,
we solve this annoyance...
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Split auxiliary vertices
to recover the (Λ, τ+)
original geometry
(with a rotated
link pattern). . .
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Wieland gyration: where it works

So, the trick is:
• invert degblack(v)↔ degwhite(v)
• preserve connectivity of open paths

• Works with the Wieland recipe, on faces ` = 4

• Works even more easily on faces ` = 1, 2, 3

• Can’t work on faces ` ≥ 5

• Stay tuned for the forgotten plaquette! (will come out later on. . . )

• At boundaries, pair external legs to produce triangles

A single move exists on plenty of graphs...
then, rotation comes from two moves

...many more domains than just n × n squares have this property!
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Wieland gyration: where it works

We can trade corners for points of curvature (i.e., faces with less
than 4 sides). But we need at least one corner, because closed
spectral lines have a trivial behaviour (1 + R)
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(bottom line: an elementary generalization of Wieland strategy
gives rotational symmetry for FPL enumerations above)
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Yet one word on gyration... the boundary conditions

We have seen how to generalise the domain,
using black/white alternating boundary conditions

What does it happen if we generalise on boundary conditions?

Pairing consecutive legs with the same colour produces arcs,
and “loses link-pattern information”: gyration holds for
linear combinations of Ψ(π), instead of component-wise.

These linear combinations, induced by arcs, are well-described by
Temperley-Lieb operators.

We will not need this in full generality. . .
the study of a single defect is sufficient at our purposes.
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Alternating boundary conditions, with one defect

Example: the state |Ψ[j]〉 =
∑

φ : h(φ)=j |π′(φ)〉 satisfies

(R ej−1 − ej)|Ψ[j]〉 = 0
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Alternating boundary conditions, with one defect

Example: the state |Ψ[j]〉 =
∑

φ : h(φ)=j |π′(φ)〉 satisfies

Rej(1− R−1)|Ψ[j]〉 = 0
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A first consequence

Recall our checklist of identities:

(1) : e1 (1− R−1)|Ψ′(t)〉 = 0

4 We have just proven this!

(2) : (1− e1) (t − R−1)|Ψ′(t)〉 = 0

4 Done!

(3) : Sym |Ψ′(t)〉 = Sym |Ψ(t)〉

ý Look at gyration even better!

(2) is equivalent to ask that tΨ(t;π) = Ψ(t;R−1π),
for all π such that 1 � 2...

but this is easily seen: 1 � 2 forces a small region,
that in turns implies a simple behaviour of the refinement position
under Wieland gyration
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The final orbit lemma

Consider the orbits under Wieland half-gyration
As FPL in the same orbit have the same link pattern up to rotation,
Sym |Ψ′(t)〉 = Sym |Ψ(t)〉 follows if, for every j , and every orbit,
there are as many contributions t j−1 to |Ψ′(t)〉 as to |Ψ(t)〉.

Study the behavior of the trajectory h(x) of the refinement
position:

I h(x + 1)− h(x) ∈ {0,±1}
I In a periodic function, any height value is attained alternately

on ascending and descending portions (or maxima/minima)

I All maxima/minima plateaux have length 2, the slope is ±1
elsewhere

I Ascending/descending parts of the trajectory have respectively
black and white refinement position
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The final orbit lemma

As a consequence, in any orbit O, and for any value j , the numbers
of φ ∈ O such that h(φ) = j , and

I are in even (resp. odd) position in the orbit;

I or have a black (resp. white) refinement position;

are all equal. This completes the proof.

1 2 3 4 5
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A bijective version of the last lemma
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The structure of the orbits gives
a bijection factory...
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A bijective version of the last lemma
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Consider the infinite orbit, and extend
ordinates from {1, . . . , L} to Z...
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A bijective version of the last lemma
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All 45-degree diagonals with odd ordinate
have a unique intersection with the orbit,
and it is white
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A bijective version of the last lemma
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All 135-degree diagonals with even ordinate
have a unique intersection with the orbit,
and it is black
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A bijective version of the last lemma
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This implies that, for any integer c ∈ Z,
there is a unique config in the infinite orbit
with refinement position on leg c!
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The RS obsession: why no black+white RS?

Last June there was the “At the crossroads of physics and
mathematics: the joy of integrable combinatorics — A conference
in the honor of Philippe Di Francesco’s 60th birthday” in IPTh
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The RS obsession: why no black+white RS?

Last June there was the “At the crossroads of physics and
mathematics: the joy of integrable combinatorics — A conference
in the honor of Philippe Di Francesco’s 60th birthday” in IPTh
I was presenting my other results, on the structure constants of the
canonical Grothendieck poly’s popping out in the (π•, π◦,#{©})
statistics of FPL’s in the VSASM’s.

A point of my talk was the disappointment for the fact that we
only have a (dihedral) RS correspondence for the π• statistics,
despite the fact that Wieland gyration is a statement on the triple
(π•, π◦,#{©}).

Since then, I have been thinking back to the question. And I found
a sensible recipe, and a further generalisation. . .

. . . at this aim, we need to introduce a gauge theory for FPL’s
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Colour-changing cuts in FPL’s

Let G be a 4-valent planar graph, and consider FPL on G

Let C be a subset of edges of the dual G ∗ (the cuts)

Our FPL paths change colour when they cross C
The set of FPL’s is defined up
to a gauge transformation of C,
that is, the lattice version of lo-
cal deformation of cuts, while
keeping the endpoint fixed.
In particular, the enumeration
according to the link pattern
is invariant under cut deforma-
tions.
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The forgotten dihedral domains

Above, we classified the domains allowing for the (dihedral, π•)
Razumov–Stroganov correspondence. None of them involved cuts
(as on such graphs we find paths that “start black and finish
white”, and we wouldn’t know what to do with them. . . )

If we had an idea on how to construct a bicoloured (π•, π◦)
Razumov–Stroganov correspondence, nothing would prevent in
principle to consider also domains with cuts.

but, again, where exactly does Wieland gyration work?
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The forgotten plaquettes

We said that: Ê squares barely work (must not swap if B/W/B/W)
Ë triangles and lower work easily Ì 2-gons and 1-gons work so
well that you can even put a puncture in them.

Now, with cut endpoints: Ê triangles barely work (must not swap
if B/W/B/W) Ë 2-gons and lower work easily Ì no room for a
puncture anymore.

Andrea Sportiello The Razumov–Stroganov correspondence: old and new



Reverse-engineering RS from FPL towards a loop model

We want to “invent” a black+white Razumov–Stroganov correspondence

But are disappointed to find no known good candidate on the
DLM side (the “rotor model” would have been promising, if it

weren’t for certain incompatibility issues on known enumerations)

So, we try to build on what we already know, from the FPL side,
and hope to interpret a posteriori what we find as a loop model.

Our best starting point is the Di Francesco 2004 (ex-)conjecture, i.e.
our proof that the heretical-enumeration-vector for FPL |Ψ′(t)〉 satisfies

e•1 (1− R−1
• )|Ψ′(t)〉 = 0

(1− e•1 ) (t − R−1
• )|Ψ′(t)〉 = 0
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The black+white equations

So, we consider the black+white heretical enumeration |Ψbw(t)〉,
e.g. with the convention that:

I the refinement is always on a black leg

I the refinement leg has black index Ê

I the black indices grow CCW

I the white leg left of Ê has white index À

I the white indices grow CCW
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The black+white equations

We can work out lemmas as in our previous proof, but now keeping
track of both black and white legs. It is more complicated but
similar in spirit. We find equations depending only on e•1 , e◦1 , R•
and R◦, namely: (note: these equations do not have a unique solution!)

(1− e◦1 )|Ψbw(t)〉 = 0

(1− e•1 ) (t − R−1
• )|Ψbw(t)〉 = 0

e•1e
◦
1

(
1− 1

1− tR◦(1− e◦1 )
R◦R

−1
•

)
|Ψbw(t)〉 = 0

These are consistent with our previous equations. Indeed, the first
one states that the refinement leg is black, and the other two,
under the identification R◦ → 1, e◦1 → 1, become

e•1 (1− R−1
• )|Ψ′(t)〉 = 0

(1− e•1 ) (t − R−1
• )|Ψ′(t)〉 = 0
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First nice surprise: a hidden symmetry

The heretical enumeration breaks the symmetry between black and
white.

Define the combination

|Φ(t)〉 =
R−1
•

1− t(1− e◦1 )R◦
|Ψbw(t)〉

Our equations above read

(1− e◦1 ) (1− tR◦)|Φ(t)〉 = 0

(1− e•1 ) (1− tR•)|Φ(t)〉 = 0

e•1e
◦
1 (R◦ − R•) |Φ(t)〉 = 0

which are both very compact, and symmetric in black and white.
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Second nice surprise: separation of TL• and TL◦

In terms of the vector |Ψ′bw(t)〉 = R−1
• |Ψbw(t)〉, we can write our

equations as

(1− e◦1 )|Ψ′bw(t)〉 = 0

(1− e•1 ) (1− tR•)|Ψ′bw(t)〉 = 0(
e◦1

1

1− tR◦
− 1

1− tR•
e•1

)
|Ψ′bw(t)〉 = 0

These equations can be interpreted as if TL• and TL◦ act on the
bottom and top sides of a cylinder, with the stochastic operator:

I apply e1

I apply R`, with probability p(`) = (1− t)t`

and its adjoint (that is, the two steps are performed in reverse
order)
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Second nice surprise: separation of TL• and TL◦

(1− e◦1 )|Ψ′bw(t)〉 = 0

(1− e•1 ) (1− tR•)|Ψ′bw(t)〉 = 0(
e◦1

1

1− tR◦
− 1

1− tR•
e•1

)
|Ψ′bw(t)〉 = 0

Ψ′bw(t)
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Second nice surprise: separation of TL• and TL◦

(1− e◦1 )|Ψ′bw(t)〉 = 0

(1− e•1 ) (1− tR•)|Ψ′bw(t)〉 = 0(
e◦1

1

1− tR◦
− 1

1− tR•
e•1

)
|Ψ′bw(t)〉 = 0

...N123...

Ψ′bw(t)
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Second nice surprise: separation of TL• and TL◦

(1− e◦1 )|Ψ′bw(t)〉 = 0

(1− e•1 ) (1− tR•)|Ψ′bw(t)〉 = 0(
e◦1

1

1− tR◦
− 1

1− tR•
e•1

)
|Ψ′bw(t)〉 = 0

... N 1 2 3 ...

...N123...

Ψ′bw(t)
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Second nice surprise: separation of TL• and TL◦

(1− e◦1 )|Ψ′bw(t)〉 = 0

(1− e•1 ) (1− tR•)|Ψ′bw(t)〉 = 0(
e◦1

1

1− tR◦
− 1

1− tR•
e•1

)
|Ψ′bw(t)〉 = 0

=
Ψ′bw(t) Ψ′bw(t)

Andrea Sportiello The Razumov–Stroganov correspondence: old and new



Third nice surprise: FPL domains with a cut as T (t)

Let us try to invent a loop model with properties above

It must contain loop diagrams, for the Temperley–Lieb action

It must also contain a “mark” from where to start counting

We will interpret the mark as a particle like in a 6VM in NILP
representation, in the sector in which there is a single particle

A set of tiles with these properties is a 5VM mixed to a O(1)DLM

1 t 1 1 1

Nice surprise: the Transfer Matrix of this model is the partition
function for FPL in the simplest cut domain (two rows)

More general cut domains can also be interpreted as Transfer
Matrices, but with more complicated (horizontal) auxiliary space,
and more complicated tiles (as for a “higher spin” line in the 6VM)
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Third nice surprise: FPL domains with a cut as T (t)

1

t

t2

t3

...

tN−1
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