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Let C, be a finite collection of objects, e.g.
> permutations in &,
» Dyck paths of semilength n,
» (simple, unlabelled) graphs with n vertices,. ..

A statistic is a function s: C, — Z, its distribution is ) ¢, q°(9).
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Let C, be a finite collection of objects, e.g.

> permutations in &,

» Dyck paths of semilength n,

» (simple, unlabelled) graphs with n vertices,. ..
A statistic is a function s: C, — Z, its distribution is ) ¢, q°(9).
In www.findstat.org, we have

Permutations ~ 400 statistics 18 bijections
Dyck paths ~ 300 statistics 24 bijections

(simple, unlabelled) graphs ~ 300 statistics 2 bijections
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A statistic is a function s:C, — Z, its distribution is 3 ¢, q°(e).
If s; and s, are equidistributed, s; ~ sp, there must be a bijection

¢ :Ch = Cp
51(¢(e)) = s(e).
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If s; and s, are equidistributed, s; ~ sp, there must be a bijection

QZ) :Ch = Cp
51(¢(e)) = s(e).

Many statistics on Dyck paths or permutations have the same
distribution, e.g.

Permutations  maj ~ inv
Dyck paths  height ~ bounce count

No such (non-trivial) equidistributions were known for graphs.
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A statistic is a function s:C, — Z, its distribution is 3 ¢, q°(e).
If s; and s, are equidistributed, s; ~ sp, there must be a bijection

QZ) :Ch = Cp
51(¢(e)) = s(e).

Many statistics on Dyck paths or permutations have the same
distribution, e.g.

Permutations  maj ~ inv
Dyck paths  height ~ bounce count

No such (non-trivial) equidistributions were known for graphs.
However, FindStat found

#graphs without leaves = #graphs with distinct neighbourhoods
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Theorem (Kilibarda 2007, Gessel & Li 2011).
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mating

Theorem (Kilibarda 2007, Gessel & Li 2011).

#graphs without leaves = #graphs with distinct neighbourhoods

Theorem (Read 1989). The generating function for graphs with
distinct neighbourhoods is
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mating

Definition (Sumner 1973, Bull & Pease 1989).
The neighbourhood of uis N(u) = {v | (u,v) € E(G)},
the closed neighbourhood of uis N(u) = {u} UN(u).



mating

Definition (Sumner 1973, Bull & Pease 1989).

The neighbourhood of uis N(u) = {v | (u,v) € E(G)},
the closed neighbourhood of u is N(u) = {u} uN(u).

A graph is point determining or mating, if N(u) # N(v),
it is point distinguishing or co-mating, if N(u) # N(v),
for any pair of vertices u # v.

Theorem (Kilibarda 2007, Gessel & Li 2011).

#graphs without leaves = #mating graphs = #co-mating graphs



tufts and siblings

Definition (Alexandersson & R. 2022). The tuft number t(G) is the
maximal number of leaves adjacent to the same vertex.

a tuft:
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tufts and siblings

Definition (Alexandersson & R. 2022). The tuft number t(G) is the
maximal number of leaves adjacent to the same vertex.

a tuft:

t(G)=3 t(G)=1 t(G)=0 t(G)=1 t(G)=0 t(G)=0
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Definition (Alexandersson & R. 2022). The tuft number t(G) is the
maximal number of leaves adjacent to the same vertex.
The sibling number is the maximal number of siblings of a vertex:

$(6)= max |{u< V(6) [N(w) =N(v))] -

Conjecture (Alexandersson & R. 2022)
(s,t) ~(t,s)
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tufts and siblings

Definition (Alexandersson & R. 2022). The tuft number t(G) is the
maximal number of leaves adjacent to the same vertex.
The sibling number is the maximal number of siblings of a vertex:

$(6)= max |{u< V(6) [N(w) =N(v))] -

Theorem (Furnsmn & Gangl & R. 2024)
(s,t) ~(t,s)

Ko 38 68 o &8 &

s(G)=0 s(G)=0 s(G)=0 s(G)=1 s(G)=1 s(G)=3
t(G)=3 t(G)=1 t(G)=0 t(G)=1 t(G)=0 t(G)=0



first idea: look at small examples and find a bijection

Fact. In graphs other than K5, siblings cannot be adjacent to
leaves.

Contract tufts with n leaves to a vertex T,
and groups of n+ 1 siblings to a vertex S,,.

O
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first idea: look at small examples and find a bijection
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first idea: look at small examples and find a bijection
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second idea: follow Read, Gessel & Li and count



combinatorial species (Joyal 1981)



a combinatorial species is . ..

Definition. ... a gadget to enumerate symmetry classes of
labelled objects. Given a set of labels, a species ‘produces’ the set
of (labelled) structures.
» Par, set partitions
Par[a,1,9] = {alv, al|v, av|1, 19|a, a|1|v}
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Definition. ... a gadget to enumerate symmetry classes of
labelled objects. Given a set of labels, a species ‘produces’ the set
of (labelled) structures.

» Par, set partitions
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» G, (vertex labelled simple) graphs



a combinatorial species is . ..

Definition. ... a gadget to enumerate symmetry classes of
labelled objects. Given a set of labels, a species ‘produces’ the set
of (labelled) structures.
» Par, set partitions
Par[a,1,9] = {alv, al|v, av|1, 19|a, a|1|v}

» G, (vertex labelled simple) graphs
» E, sets, and E,, sets of size n

E[a,1,0]={{a,1,0}} Ey[a,1,9]={}



a combinatorial species is . ..

Definition. ... a functor F from the category of finite sets with
bijections to the category of finite sets with maps:

> for a finite set of labels U,
F[U] is the finite set of F-structures on U,
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Definition. ... a functor F from the category of finite sets with
bijections to the category of finite sets with maps:

> for a finite set of labels U,
F[U] is the finite set of F-structures on U,

» for a bijection 0: U - V,
Flo]: F[U] » F[V] is the relabelling of the structures,

such that
Flidy] = id,_-[U]

and, for any two bijectionso: U - V and 7: V - W,

F[roo]=F[r]oFl[o].



a combinatorial species is . ..

Definition. ... a functor F from the category of finite sets with
bijections to the category of finite sets with maps:

> for a finite set of labels U,
F[U] is the finite set of F-structures on U,

» for a bijection 0: U - V,
Flo]: F[U] » F[V] is the relabelling of the structures,

such that
Flidy] = id,_-[U]

and, for any two bijectionso: U - V and 7: V - W,

F[roo]=F[r]oFl[o].

usually, the definition of relabelling is clear from context!



a combinatorial species is . ..

Definition. ... a functor F from the category of finite sets with
bijections to the category of finite sets with maps:

> for a finite set of labels U,
F[U] is the finite set of F-structures on U,

» for a bijection 0: U - V,
Flo]: F[U] » F[V] is the relabelling of the structures,

such that
Flidy] = id,_-[U]

and, for any two bijectionso: U - V and 7: V - W,
F[roo]=F[r]oFl[o].

Par[a,1,9] = {alv, al|v, av|1, 19|a, a|1|v}
Par[(3 5 2)1(all0) = xylz



isomorphism of structures

Definition. Structures s € F[U] and t € F[ V] are isomorphic if t is
obtained from s by relabelling:

t=F[o](s) for a bijectiono:U -V
(al|v) € Par[a,1,0] and (xy|z) € Par[x,y, z] are isomorphic,

because
Par[(212)1(a1[9) = xyz.



computing with species

Definition.

(F+G)[U]=F[U]+G[U] sum



computing with species

sum

product

Definition.
(F+G)[U]=F[U]+ G[U]
(F-G)[U]= > F[V]IxG[W]
V+W=U
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computing with species

Definition.
(F+G)[U] = F[U]+G[U] sum
(F-G)[U]= > F[V]IxG[W] product
V+W=U
(FoG)[U]= > F[x]x]]GI[B] composition
mePar[U] Berm
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computing with species

Definition.
(F+G)[U] = F[U]+G[U] sum
(F-G)[U]= > F[V]IxG[W] product
V+W=U
(FoG)[U]= > F[x]x]]GI[B] composition
mePar[U] Berm
Definition.

F(o = LIFIS

n>0

F(x) = > #isomorphism types of F[n] x"

n>0



computing with species

Definition.
(F+G)[U] = F[U]+G[U] sum
(F-G)[U]= > F[V]IxG[W] product
V+W=U
(FoG)[U]= > F[x]x]]GI[B] composition
mePar[U] Berm
Definition.

F(o = LIFIS

n>0

F(x) = > #isomorphism types of F[n] x"

n>0
Proposition.
(F+G)(x)=F(x)+G(x), (F-G)(x)=F(x)G(x), (FoG)(x):F(G(x))
(F+G)(x)=F(x)+G(x), (F-G)(x)=F(x)G(x), (FoG)(x)+F(G(x))



computing with species

g
Definition. Zg(x1,x2,...) = Z > fixFlo]x)'x5? ...,
n>0 N '066,,
where

fix F[o] = #fixed points of F[o],
ok = #k-cycles of o,

is the cycle index series or Frobenius character of F.

1
—, Zp=exp Xn

Example. E(x) = exp(x), E(x) = .
-X n>0 1



computing with species

g
Definition. Zg(x1,x2,...) = Z > fixFlo]x)'x5? ...,
n>0 N '066,,
where

fix F[o] = #fixed points of F[o],
ok = #k-cycles of o,

is the cycle index series or Frobenius character of F.

1
—, Zp=exp Xn

Example. E(x) = exp(x), E(x) = .
-X n>0 1

Fact. F(x) = Zr(x,0,...), F(x)=2Ze(x,x2,...)

Theorem. Fo G(x) = Zr(G(x), G(x?),...)



molecular decompositions and virtual species
Definition. F is molecular if it is not a non-trivial sum.

Fact. F is molecular if any two F structures are isomorphic.
F - G is molecular if F and G are molecular.
The molecular decomposition is unique.

G=1+X+2E+ (2E3+2XEp)
+ (264 + 23 + 2XE3 + 2P4 + 2X2Ey + E5(X?)) + ...



molecular decompositions and virtual species
Definition. F is molecular if it is not a non-trivial sum.

Fact. F is molecular if any two F structures are isomorphic.
F - G is molecular if F and G are molecular.
The molecular decomposition is unique.

G=1+X+2E+ (2E3+2XEp)
+ (264 + 23 + 2XE3 + 2P4 + 2X2Ey + E5(X?)) + ...

Definition. A virtual species is a formal sum of molecular species.

Fact. F has a compositional inverse if Fp =0 and F; 0.

ESY = X+ (—E2) + (~E3 + XEy) + (—Eg + Py + XE3 - X2Ep) + ...



Read’s idea

» G ...graphs
» M ...co-mating graphs

Theorem (Read 1989). Mo Ey; =G.
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Read’s idea

» G ...graphs
» M ...co-mating graphs

Theorem (Read 1989). Mo Ey; =G.

Proof. (FoG)[U]= > F[r]x]]G[B]
mePar[ U] Berm

© =({{1},{2},{3,4}}, ({1).(2).13.4)))

€ Par[1,2,3,4] e M[{1},{2},{3,4}]

€G[1,2,3,4]
U

Corollary (Read 1989). M =Go Ez(il).



Gessel & Li's idea: a tuft decomposition

» X+ 7T :=X-E(Y) ...asingleton vertex or a tuft
» G.o(X,Y) ...graphs with leaves Y

Theorem (Gessel & Li 2011).  Gea(X, X+ Y) =G(X+T)- XY - E.



Gessel & Li's idea: a tuft decomposition

» X+ 7T :=X-E(Y) ...asingleton vertex or a tuft
» G.o(X,Y) ...graphs with leaves Y

Theorem (Gessel & Li 2011).

Proof.

G (X, X+Y)=G(X+T)-XY - E.

// \\
/ \
\Y Y!




new idea: a patch decomposition
» P(X,Y,Z):=(1+X +Ex(Z))-(EoT)-1...a patch
» G.o(X,Y,Z) ... graphs with leaves Y, siblings Z

Theorem (Fiirnsinn & Gangl & R. 2024).
Go(X,X+Y,Z)=MoP XY - Ex(2).



new idea: a patch decomposition

» P(X,Y,Z):=(1+X +Ex(Z))-(EoT)-1...a patch
.5(X,Y,Z) ... graphs with leaves Y, siblings Z

Theorem (Fiirnsinn & Gangl & R. 2024).
Go(X,X+Y,Z)=MoP XY - Ex(2).

Proof.
Y v
//’;\\ — \\\ ///
Yoy Y X
AR / / _ ' | ||‘ v
’Y\ X/ XXX X
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new idea: a patch decomposition

> ’PS(X7 Y7Z) = (1+X+E2g-<2+s(z))'(EOT)_l .

>>(X,Y,Z) ...graphs with leaves Y, siblings Z,
sibling number <'s

Theorem (Fiirnsinn & Gangl & R. 2024).
(X, X+Y,Z) = MoP*—XY —[s>0]Ex(2).

Proof.

Y v
PN < \\\ ///
Y v Y X
SN/ L
’Y\ X/ XXX X
o /' \ \\ I 1 1 ]

7\ /7\ Q(/ Q—g—o—o
/\ \ <7/Z/ VAN

X

7
/

l

I

\ / v [

oy \Yovs

X X Y‘ X X-Y

.a patch



harvest

Lemma. Let
Vo= (1+ X + Bocacors(Z)) - E(X - Eqe(Y)E(-X) - 1)) - 1.

Then G5'(X,Y,Z) = Mo VSt + X2 - [t > 0]XY - [s > 0]Ex(2).

Proof.
Y := Y — X in the patch decomposition, and similar tricks. L]



harvest

Lemma. Let
Vo= (1+ X + Bocacors(Z)) - E(X - Eqe(Y)E(-X) - 1)) - 1.

Then G5'(X,Y,Z) = Mo VSt + X2 - [t > 0]XY - [s > 0]Ex(2).
Proof.
Y := Y — X in the patch decomposition, and similar tricks. L]

Lemma. V5t(x) := V5E(x, x,x) = % 1

Corollary. G5f(x,x,x) is symmetric in s and t.

Proof.

Mo YPsit = ZM(]’}_?E(X)’W(X2), .. )



new idea: a refined patch decomposition

Definition. The reduction of a graph other than K is obtained by
repeatedly removing leaves and contracting each group of siblings
to a single vertex.
> fz’S(X, Y,Z) ...graphs with leaves Y, siblings Z, sibling
number < s, that reduce to R
» MR ... co-mating graphs that reduce to R



new idea: a refined patch decomposition

Definition. The reduction of a graph other than K is obtained by
repeatedly removing leaves and contracting each group of siblings
to a single vertex.
> fz’S(X, Y,Z) ...graphs with leaves Y, siblings Z, sibling
number < s, that reduce to R
» MR ... co-mating graphs that reduce to R

Theorem (Fiirnsinn & Gangl & R. 2024).

° S XY - E>x(Z R=
G (x.x+v.2)- {7 s> 00B(2) k=2
M7 o P* otherwise.

Theorem (Fiirnsinn & Gangl & R. 2024). On the set of graphs that
reduce to R,

(s,t) ~(t,s)



questions

> find a bijection!
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> find any bijection!



questions

> find a bijection!
> find any bijection!

» do tropical species exist?



