Cryptography and isomorphism of lattices and graphs

Alice Pellet-Mary

(based on multiple works by Wessel van Woerden and co-authors)

Journées combinatoires de Bordeaux

February 2025

Plan of the talk

Introduction: Lattices and lattice problems

- 1. Building public key encryption from lattices
- 2. Algorithms for computing isomorphism of lattices

independent

Lattices and lattice problems

Lattices

- $\mathcal{L} = \{\sum_{i=1}^{n} x_i b_i \mid \forall i, x_i \in \mathbb{Z}\}$ is a lattice
- $(b_1, \ldots, b_n) =: B \in \operatorname{GL}_n(\mathbb{R})$ is a basis (not unique)
- ▶ *n* is the dimension (or rank)

Short basis problem

Shortest basis problem

$$\max_{i} \|c_{i}\| \leq \min_{\mathsf{B}' \text{ basis of } \mathcal{L}} \left(\max_{i} \|b'_{i}\| \right)$$

Short basis problem

Approximate short basis problem

$$\max_{i} \|c_{i}\| \leq \gamma \cdot \min_{\mathsf{B'} \text{ basis of } \mathcal{L}} \left(\max_{i} \|b'_{i}\| \right)$$

The short basis problem is hard

The best known algorithms solving the short basis problem have complexity $\approx \exp(n)$ (for poly(n) approximation factors)

The best known algorithms solving the short basis problem have complexity $\approx \exp(n)$ (for poly(n) approximation factors)

Consequences

can be used to build crypto

The best known algorithms solving the short basis problem have complexity $\approx \exp(n)$ (for poly(n) approximation factors)

Consequences

- can be used to build crypto
- ▶ *n* has to be somewhat large (say 700 for crypto)

Isomorphic lattices

Definition: Two lattices \mathcal{L}_1 and \mathcal{L}_2 are isomorphic is there exists $O \in \mathcal{O}_n(\mathbb{R})$ such that $\mathcal{L}_2 = O\mathcal{L}_1$. $(\mathcal{O}_n(\mathbb{R}) = \text{orthonormal transformations} \Rightarrow O^T O = I_n)$

The lattice isomorphism problem (LIP):

given B_1 and B_2 , bases of two isomorphic lattices, find $O \in \mathcal{O}_n(\mathbb{R})$ such that $\mathcal{L}(B_1) = O\mathcal{L}(B_2)$.

The lattice isomorphism problem (LIP):

given B_1 and B_2 , bases of two isomorphic lattices, find $O \in \mathcal{O}_n(\mathbb{R})$ such that $\mathcal{L}(B_1) = O\mathcal{L}(B_2)$.

The lattice isomorphism problem (LIP):

given B_1 and B_2 , bases of two isomorphic lattices, find $O \in \mathcal{O}_n(\mathbb{R})$ such that $\mathcal{L}(B_1) = O\mathcal{L}(B_2)$.

The lattice isomorphism problem (LIP): given B_1 and B_2 , bases of two isomorphic lattices, find $O \in \mathcal{O}_n(\mathbb{R})$ such that $\mathcal{L}(B_1) = O\mathcal{L}(B_2)$.

8/27

Section's conclusion

We have seen:

- lattices
- the short basis problem
- ▶ the lattice isomorphism problem

hard algorithmic problems

Constructing public key encryption

Three algorithms:
$$\blacktriangleright$$
 KeyGen() \rightsquigarrow (pk, sk)
 \blacktriangleright Dec(c, sk) \rightsquigarrow m'

Three algorithms:
$$\blacktriangleright$$
 KeyGen() \leadsto (pk, sk)
$$\blacktriangleright$$
 Enc(m, pk) \leadsto c \blacktriangleright Dec(c, sk) \leadsto m'

Alice Bob
$$(pk, sk) \leftarrow \text{KeyGen}() \xrightarrow{pk}$$

Three algorithms:
$$\blacktriangleright$$
 KeyGen() \leadsto (pk, sk)
 \blacktriangleright Enc(m, pk) \leadsto c \blacktriangleright Dec(c, sk) \leadsto m'

Alice Bob

 $(pk, sk) \leftarrow \text{KeyGen}() \xrightarrow{pk}$
 $message \ m \in \{0, 1\}$
 $m' \leftarrow \text{Dec}(c, sk) \qquad \stackrel{c}{\longleftarrow} \qquad c \leftarrow \text{Enc}(m, pk)$
 $(\text{hopefully } m' = m)$

Three algorithms:
$$\blacktriangleright$$
 KeyGen() \leadsto (pk, sk)
 \blacktriangleright Enc(m, pk) \leadsto c \blacktriangleright Dec(c, sk) \leadsto m'

Alice Bob

 $(pk, sk) \leftarrow \text{KeyGen}()$ \xrightarrow{pk} message $m \in \{0, 1\}$
 $m' \leftarrow \text{Dec}(c, sk)$ \xleftarrow{c} $c \leftarrow \text{Enc}(m, pk)$ (hopefully $m' = m$)

Correctness: Dec(Enc(m, pk), sk) = m

Three algorithms:
$$\blacktriangleright$$
 KeyGen() \leadsto (pk, sk)
 \blacktriangleright Enc(m, pk) \leadsto c \blacktriangleright Dec(c, sk) \leadsto m'

Alice Bob

$$(pk, sk) \leftarrow \text{KeyGen}() \xrightarrow{pk}$$

$$message $m \in \{0, 1\}$$$

$$m' \leftarrow \text{Dec}(c, sk) \qquad \stackrel{c}{\longleftarrow} \qquad c \leftarrow \text{Enc}(m, pk)$$

$$(hopefully $m' = m$)$$

Correctness: Dec(Enc(m, pk), sk) = m

Security: an attacker cannot guess m from pk and Enc(m, pk)

Input:
$$x = 3.7 \cdot b_1 - 1.4 \cdot b_2$$

Objective: find $s \in \mathcal{L}$ close to x

Input:
$$x = 3.7 \cdot b_1 - 1.4 \cdot b_2$$

Objective: find $s \in \mathcal{L}$ close to x

Algo: round each coordinate (called Babai's round-off algorithm)

Input:
$$x = 3.7 \cdot b_1 - 1.4 \cdot b_2$$

Objective: find $s \in \mathcal{L}$ close to x

Algo: round each coordinate (called Babai's round-off algorithm)

Output: $s = 4 \cdot b_1 - 1 \cdot b_2$

Input:
$$x = 3.7 \cdot b_1 - 1.4 \cdot b_2$$

Objective: find $s \in \mathcal{L}$ close to x

Algo: round each coordinate (called Babai's round-off algorithm)

Output: $s = 4 \cdot b_1 - 1 \cdot b_2$

Solves approximate decoding: the smaller the basis, the closer the solution

Input:
$$x = 3.7 \cdot b_1 - 1.4 \cdot b_2$$

Objective: find $s \in \mathcal{L}$ close to x

Algo: round each coordinate (called Babai's round-off algorithm)

Output:
$$s = 4 \cdot b_1 - 1 \cdot b_2$$

Solves approximate decoding: the smaller the basis, the closer the solution

$$= \left\{ x_1 b_1 + x_2 b_2 \, \middle| \, |x_i| \le \frac{1}{2} \right\}$$
 (fundamental parallelepiped)

Input:
$$x = 3.7 \cdot b_1 - 1.4 \cdot b_2$$

Objective: find $s \in \mathcal{L}$ close to x

Algo: round each coordinate (called Babai's round-off algorithm)

Output:
$$s = 4 \cdot b_1 - 1 \cdot b_2$$

Solves approximate decoding: the smaller the basis, the closer the solution

$$= \left\{ x_1 \mathbf{b}_1 + x_2 \mathbf{b}_2 \, \middle| \, |x_i| \le \frac{1}{2} \right\}$$
 (fundamental parallelepiped)

Babai_B(x) = 5 (
$$\in \mathcal{L}$$
, close to x)
$$= \left\{ x_1 b_1 + x_2 b_2 \mid |x_i| \leq \frac{1}{2} \right\}$$
(fundamental parallelepiped)

$$Babai_B(x) = s \ (\in \mathcal{L}, close to x)$$

$$= \left\{ x_1 b_1 + x_2 b_2 \, \middle| \, |x_i| \le \frac{1}{2} \right\}$$
 (fundamental parallelepiped)

○ = largest circle ⊆ // (radius of ○: decoding radius)

$$Babai_B(x) = s \ (\in \mathcal{L}, close to x)$$

$$= \left\{ x_1 b_1 + x_2 b_2 \, \middle| \, |x_i| \le \frac{1}{2} \right\}$$
 (fundamental parallelepiped)

○ = largest circle ⊆ (radius of ○: decoding radius)

Lemma:
$$\forall s \in \mathcal{L} \text{ and } \forall e \in \bigcirc$$

Babai $_B(s+e)=s$

$$Babai_B(x) = s \ (\in \mathcal{L}, close to x)$$

$$= \left\{ x_1 b_1 + x_2 b_2 \, \middle| \, |x_i| \le \frac{1}{2} \right\}$$
 (fundamental parallelepiped)

Lemma:
$$\forall s \in \mathcal{L}$$
 and $\forall e \in \bigcirc$
Babai $_B(s+e)=s$

$$Babai_B(x) = s \ (\in \mathcal{L}, close to x)$$

$$= \left\{ x_1 b_1 + x_2 b_2 \, \middle| \, |x_i| \le \frac{1}{2} \right\}$$
 (fundamental parallelepiped)

○ = largest circle ⊆ // (radius of ○: decoding radius)

Lemma:
$$\forall s \in \mathcal{L}$$
 and $\forall e \in \bigcirc$
Babai $_B(s+e)=s$

Smaller basis \iff larger \bigcirc

Public key encryption from lattices [Reg05]

$$pk = (B_p, x)$$
$$sk = B_s$$

[Reg05] Regev. On lattices, learning with errors, random linear codes, and cryptography. STOC.

Public key encryption from lattices [Reg05]

$$pk = (B_p, x)$$
 $message: m \in \{0, 1\}$
 $sk = B_s$

[Reg05] Regev. On lattices, learning with errors, random linear codes, and cryptography. STOC.

Public key encryption from lattices [Reg05]

$$pk = (B_p, x)$$
 message: $m \in \{0, 1\}$
 $sk = B_s$

Enc(m, pk):

ightharpoonup Sample random $v \in \mathcal{L}$

[Reg05] Regev. On lattices, learning with errors, random linear codes, and cryptography. STOC.

$$pk = (B_p, x)$$
 message: $m \in \{0, 1\}$
 $sk = B_s$

Enc(m, pk):

- ightharpoonup Sample random $v \in \mathcal{L}$
- if m = 1: $v \leftarrow v + x$

$$pk = (B_p, x)$$
 message: $m \in \{0, 1\}$
 $sk = B_s$

Enc(m, pk):

- ightharpoonup Sample random $\mathsf{v} \in \mathcal{L}$
- if m = 1: $v \leftarrow v + x$
- ▶ Sample small $e \in \bigcirc$
- ightharpoonup return c = v + e

$$pk = (B_p, x)$$
 message: $m \in \{0, 1\}$
 $sk = B_s$

Enc(m, pk):

- ▶ Sample random $v \in \mathcal{L}$
- if m = 1: $v \leftarrow v + x$
- ▶ Sample small $e \in \bigcirc$
- ightharpoonup return c = v + e

Dec(c, sk):

- $ightharpoonup s \leftarrow \operatorname{Babai}_{sk}(c)$
- ▶ if $\|\mathbf{s} \mathbf{c}\|$ small $\rightsquigarrow m = 0$
- ightharpoonup else $\rightsquigarrow m=1$

$$pk = (B_p, x)$$
 message: $m \in \{0, 1\}$
 $sk = B_s$

Correctness:

 $\qquad \text{if } m=1$

$$pk = (B_p, x)$$
 message: $m \in \{0, 1\}$
 $sk = B_s$

Correctness:

• if
$$m=1$$
 \checkmark

$$pk = (B_p, x)$$
 message: $m \in \{0, 1\}$
 $sk = B_s$

Correctness:

- ightharpoonup if m=1 \checkmark
- if m = 0

$$pk = (B_p, x)$$
 message: $m \in \{0, 1\}$
 $sk = B_s$

Correctness:

- if m=1 \checkmark
- ▶ if m = 0 ✓ (if $||e|| \le \text{decoding radius}$)

$$pk = (B_p, x)$$
 $message: m \in \{0, 1\}$
 $sk = B_s$

Correctness:

- if m=1 \checkmark
- ▶ if m = 0 ✓ (if $||e|| \le \text{decoding radius}$)

Security: \checkmark if \mathcal{L} is well chosen (under some assumption, see next slide)

Summing up

What we want: An algorithm KeyGen such that

- KeyGen computes
 - ightharpoonup a random lattice \mathcal{L}
 - ▶ a short basis B_s of \mathcal{L} (sk)
 - ightharpoonup a long basis B_p of \mathcal{L} (pk)
 - ▶ a point x far from \mathcal{L}

Summing up

What we want: An algorithm KeyGen such that

- KeyGen computes
 - ightharpoonup a random lattice \mathcal{L}
 - ightharpoonup a short basis B_s of \mathcal{L} (sk)
 - ightharpoonup a long basis B_p of \mathcal{L} (pk)
 - ightharpoonup a point x far from \mathcal{L}
- ▶ decoding errors in \bigcirc is easy given B_s (correctness)

Summing up

What we want: An algorithm KeyGen such that

- KeyGen computes
 - ightharpoonup a random lattice \mathcal{L}
 - ightharpoonup a short basis B_s of \mathcal{L} (sk)
 - ightharpoonup a long basis B_p of \mathcal{L} (pk)
 - ightharpoonup a point x far from \mathcal{L}
- decoding errors in \bigcirc is easy given B_s (correctness)
- ▶ decoding errors in \bigcirc is hard given B_p (security)

Keygen:

1. Start with $\mathcal{L}_0 = \mathbb{Z}^n$

Keygen:

- 1. Start with $\mathcal{L}_0 = \mathbb{Z}^n$
- 2. Compute a random $O \in \mathcal{O}_n(\mathbb{R})$

$$\mathcal{L} = \mathcal{OL}_0$$

$$ightharpoonup B_s = O \cdot I_n = O$$

rotate (choose O orthogonal matrix)

Keygen:

- 1. Start with $\mathcal{L}_0 = \mathbb{Z}^n$
- 2. Compute a random $O \in \mathcal{O}_n(\mathbb{R})$

$$\blacktriangleright \quad \mathcal{L} = \mathcal{OL}_0$$

$$ightharpoonup B_s = O \cdot I_n = O$$

3. Compute a long basis of $\mathcal{L} \triangleright B_p$

rotate

(choose O
orthogonal matrix)

Keygen:

- 1. Start with $\mathcal{L}_0 = \mathbb{Z}^n$
- 2. Compute a random $O \in \mathcal{O}_n(\mathbb{R})$

$$ightharpoonup \mathcal{L} = \mathcal{OL}_0$$

$$ightharpoonup B_s = O \cdot I_n = O$$

3. Compute a long basis of $\mathcal{L} \triangleright B_p$

Correctness: B_s corrects errors $||e|| \le 1/2$

rotate

(choose O
orthogonal matrix)

Keygen:

- 1. Start with $\mathcal{L}_0 = \mathbb{Z}^n$
- 2. Compute a random $O \in \mathcal{O}_n(\mathbb{R})$

$$\blacktriangleright \quad \mathcal{L} = \mathcal{OL}_0$$

$$B_s = O \cdot I_n = O$$

3. Compute a long basis of $\mathcal{L} \triangleright B_p$

Correctness: B_s corrects errors $||e|| \le 1/2$

Assumption: decoding errors $\|e\| \le 1/2$ in $\mathcal L$ given $\mathcal B_p$ is hard

Keygen:

- 1. Start with $\mathcal{L}_0 = \mathbb{Z}^n$
- 2. Compute a random $O \in \mathcal{O}_n(\mathbb{R})$

$$ightharpoonup \mathcal{L} = \mathcal{OL}_0$$

$$ightharpoonup B_s = O \cdot I_n = O$$

3. Compute a long basis of $\mathcal{L} \triangleright B_p$

Correctness: B_s corrects errors $||e|| \le 1/2$

Assumption: decoding errors $\|e\| \le 1/2$ in $\mathcal L$ given $\mathcal B_p$ is hard

Section's conclusion

We have seen:

- construction of public key encryption
 - ▶ correct thanks to Babai decoding algorithm
 - secure if decoding with a long basis is hard

Section's conclusion

We have seen:

- construction of public key encryption
 - ▶ correct thanks to Babai decoding algorithm
 - secure if decoding with a long basis is hard
- instantiated with rotations of \mathbb{Z}^n [DW22,BGPS23]
 - recovering isomorphism breaks the encryption scheme

[DW22] Ducas and van Woerden. On the lattice isomorphism problem, quadratic forms, remarkable lattices and cryptography. Eurocrypt [BGPS23] Bennett, Ganju, Peetathawatchai, Stephens-Davidowitz. Just how hard are rotations of \mathbb{Z}^n ? [...] Eurocrypt

Section's conclusion

We have seen:

- construction of public key encryption
 - correct thanks to Babai decoding algorithm
 - secure if decoding with a long basis is hard
- ▶ instantiated with rotations of \mathbb{Z}^n [DW22,BGPS23]
 - recovering isomorphism breaks the encryption scheme

How hard is the lattice isomorphism problem?

[DW22] Ducas and van Woerden. On the lattice isomorphism problem, quadratic forms, remarkable lattices and cryptography. Eurocrypt [BGPS23] Bennett, Ganju, Peetathawatchai, Stephens-Davidowitz. Just how hard are rotations of \mathbb{Z}^n ? [...] Eurocrypt

Solving the lattice isomorphism problem

Objective: given $\mathcal{L} = O \cdot \mathbb{Z}^n$, recover $O \quad (O \in \mathcal{O}_n(\mathbb{R}))$

Remark: O is not unique (automorphisms of \mathbb{Z}^n)

Objective: given $\mathcal{L} = O \cdot \mathbb{Z}^n$, recover $O \quad (O \in \mathcal{O}_n(\mathbb{R}))$

Remark: O is not unique (automorphisms of \mathbb{Z}^n)

Algorithm: 1. Compute the shortest non-zero vectors of \mathcal{L}

Objective: given $\mathcal{L} = O \cdot \mathbb{Z}^n$, recover $O \quad (O \in \mathcal{O}_n(\mathbb{R}))$

Remark: O is not unique (automorphisms of \mathbb{Z}^n)

Algorithm:

- 1. Compute the shortest non-zero vectors of $\mathcal L$
 - 2. Keep one vector per pair (v, -v) (arbitrary)

Objective: given
$$\mathcal{L} = O \cdot \mathbb{Z}^n$$
, recover $O \quad (O \in \mathcal{O}_n(\mathbb{R}))$

Remark: O is not unique (automorphisms of \mathbb{Z}^n)

Algorithm:

- 1. Compute the shortest non-zero vectors of $\mathcal L$
- 2. Keep one vector per pair (v, -v) (arbitrary)
- 3. Match these with the e_i basis of \mathbb{Z}^n (arbitrary)

Objective: given $\mathcal{L} = O \cdot \mathbb{Z}^n$, recover $O \quad (O \in \mathcal{O}_n(\mathbb{R}))$

Remark: O is not unique (automorphisms of \mathbb{Z}^n)

Algorithm:

- 1. Compute the shortest non-zero vectors of ${\mathcal L}$
- 2. Keep one vector per pair (v, -v) (arbitrary)
- 3. Match these with the e_i basis of \mathbb{Z}^n (arbitrary)

Every arbitrary choice gives a (different) solution

Objective: given \mathcal{L}_1 and $\mathcal{L}_2 = O \cdot \mathcal{L}_1$, recover $O \quad (O \in \mathcal{O}_n(\mathbb{R}))$

Remark: O is not unique (automorphisms of \mathcal{L}_1)

Objective: given \mathcal{L}_1 and $\mathcal{L}_2 = O \cdot \mathcal{L}_1$, recover $O \quad (O \in \mathcal{O}_n(\mathbb{R}))$

Remark: O is not unique (automorphisms of \mathcal{L}_1)

Algorithm: 1. Compute the shortest non-zero vectors of \mathcal{L}_1 and \mathcal{L}_2

Objective: given \mathcal{L}_1 and $\mathcal{L}_2 = O \cdot \mathcal{L}_1$, recover $O \quad (O \in \mathcal{O}_n(\mathbb{R}))$

Remark: O is not unique (automorphisms of \mathcal{L}_1)

Algorithm: 1. Compute the all shortish vectors of \mathcal{L}_1 and \mathcal{L}_2

Objective: given \mathcal{L}_1 and $\mathcal{L}_2 = O \cdot \mathcal{L}_1$, recover $O \quad (O \in \mathcal{O}_n(\mathbb{R}))$

Remark: O is not unique (automorphisms of \mathcal{L}_1)

Algorithm:

- 1. Compute the all shortish vectors of \mathcal{L}_1 and \mathcal{L}_2
- 2. Match the vectors in a consistent way

Objective: given \mathcal{L}_1 and $\mathcal{L}_2 = O \cdot \mathcal{L}_1$, recover $O \quad (O \in \mathcal{O}_n(\mathbb{R}))$

Remark: O is not unique (automorphisms of \mathcal{L}_1)

Algorithm:

- 1. Compute the all shortish vectors of \mathcal{L}_1 and \mathcal{L}_2
- 2. Match the vectors in a consistent way

Objective: given \mathcal{L}_1 and $\mathcal{L}_2 = O \cdot \mathcal{L}_1$, recover $O \quad (O \in \mathcal{O}_n(\mathbb{R}))$

Remark: O is not unique (automorphisms of \mathcal{L}_1)

Algorithm:

- 1. Compute the all shortish vectors of \mathcal{L}_1 and \mathcal{L}_2
- 2. Match the vectors in a consistent way

Objective: given \mathcal{L}_1 and $\mathcal{L}_2 = O \cdot \mathcal{L}_1$, recover $O \quad (O \in \mathcal{O}_n(\mathbb{R}))$

Remark: O is not unique (automorphisms of \mathcal{L}_1)

Algorithm:

- 1. Compute the all shortish vectors of \mathcal{L}_1 and \mathcal{L}_2
- 2. Match the vectors in a consistent way

Objective: given \mathcal{L}_1 and $\mathcal{L}_2 = O \cdot \mathcal{L}_1$, recover $O \quad (O \in \mathcal{O}_n(\mathbb{R}))$

Remark: O is not unique (automorphisms of \mathcal{L}_1)

Algorithm:

- 1. Compute the all shortish vectors of \mathcal{L}_1 and \mathcal{L}_2
- 2. Match the vectors in a consistent way

Objective: given \mathcal{L}_1 and $\mathcal{L}_2 = O \cdot \mathcal{L}_1$, recover $O \quad (O \in \mathcal{O}_n(\mathbb{R}))$

Remark: O is not unique (automorphisms of \mathcal{L}_1)

Algorithm:

- 1. Compute the all shortish vectors of \mathcal{L}_1 and \mathcal{L}_2
- 2. Match the vectors in a consistent way

Objective: given \mathcal{L}_1 and $\mathcal{L}_2 = O \cdot \mathcal{L}_1$, recover $O \quad (O \in \mathcal{O}_n(\mathbb{R}))$

Remark: O is not unique (automorphisms of \mathcal{L}_1)

Algorithm:

- 1. Compute the all shortish vectors of \mathcal{L}_1 and \mathcal{L}_2
- 2. Match the vectors in a consistent way

General case

Objective: given \mathcal{L}_1 and $\mathcal{L}_2 = O \cdot \mathcal{L}_1$, recover $O \quad (O \in \mathcal{O}_n(\mathbb{R}))$

Remark: O is not unique (automorphisms of \mathcal{L}_1)

Algorithm:

- 1. Compute the all shortish vectors of \mathcal{L}_1 and \mathcal{L}_2
- 2. Match the vectors in a consistent way

(respecting $||x||_2$ and $\langle x, y \rangle$)

General case

Objective: given \mathcal{L}_1 and $\mathcal{L}_2 = O \cdot \mathcal{L}_1$, recover $O \quad (O \in \mathcal{O}_n(\mathbb{R}))$

Remark: O is not unique (automorphisms of \mathcal{L}_1)

Algorithm:

- 1. Compute the all shortish vectors of \mathcal{L}_1 and \mathcal{L}_2
- 2. Match the vectors in a consistent way

(respecting $||x||_2$ and $\langle x, y \rangle$)

General case

Objective: given \mathcal{L}_1 and $\mathcal{L}_2 = O \cdot \mathcal{L}_1$, recover $O \quad (O \in \mathcal{O}_n(\mathbb{R}))$

Remark: O is not unique (automorphisms of \mathcal{L}_1)

Algorithm:

- 1. Compute the all shortish vectors of \mathcal{L}_1 and \mathcal{L}_2
- 2. Match the vectors in a consistent way

(respecting $||x||_2$ and $\langle x, y \rangle$)

Objective: given N vectors in \mathcal{L}_1 and \mathcal{L}_2 , match them in a consistent way (respecting $||x||_2$ and $\langle x, y \rangle$)

Objective: given N vectors in \mathcal{L}_1 and \mathcal{L}_2 , match them in a consistent way (respecting $||x||_2$ and $\langle x, y \rangle$)

 \simeq

Idea: create weighted graph s.t. lattice isomorphism « graph isomorphism

Objective: given N vectors in \mathcal{L}_1 and \mathcal{L}_2 , match them in a consistent way (respecting $||x||_2$ and $\langle x, y \rangle$)

Idea: create weighted graph s.t. lattice isomorphism \leftrightarrow graph isomorphism

- ▶ N vertices (one per lattice vector)
- ▶ all edges (complete graph)
- ightharpoonup vertex weight: $||x||_2$
- ▶ edge weight: $\langle x, y \rangle$

Objective: given N vectors in \mathcal{L}_1 and \mathcal{L}_2 , match them in a consistent way (respecting $\|x\|_2$ and $\langle x, y \rangle$)

 \simeq

Idea: create weighted graph s.t. lattice isomorphism « graph isomorphism

 \simeq

- Algorithm: 1. Compute N short vectors of \mathcal{L}_1 and \mathcal{L}_2 (until they generate the lattices)
 - 2. Create the complete graphs G_1 and G_2 with N vertices
 - \blacktriangleright weight $||x||_2$ on vertices
 - \blacktriangleright weight $\langle x, y \rangle$ on edges
 - 3. Solve graph isomorphism with (G_1, G_2)
 - 4. Recover lattice isomorphism from graph isomorphism

- Algorithm: 1. Compute N short vectors of \mathcal{L}_1 and \mathcal{L}_2 (until they generate the lattices)
 - 2. Create the complete graphs G_1 and G_2 with N vertices
 - ▶ weight $||x||_2$ on vertices
 - ightharpoonup weight $\langle x, y \rangle$ on edges
 - 3. Solve graph isomorphism with (G_1, G_2)
 - 4. Recover lattice isomorphism from graph isomorphism

Analysis: Step 1. time complexity $2^{O(n)} \cdot N$ (n dimension of \mathcal{L}_1 and \mathcal{L}_2)

- Algorithm: 1. Compute N short vectors of \mathcal{L}_1 and \mathcal{L}_2 (until they generate the lattices)
 - 2. Create the complete graphs G_1 and G_2 with N vertices
 - \blacktriangleright weight $||x||_2$ on vertices
 - \blacktriangleright weight $\langle x, y \rangle$ on edges
 - 3. Solve graph isomorphism with (G_1, G_2)
 - 4. Recover lattice isomorphism from graph isomorphism

Analysis:

```
Step 1. time complexity 2^{O(n)} \cdot N (n dimension of \mathcal{L}_1 and \mathcal{L}_2)
```

- ▶ for "most" lattices: N = poly(n)
- ▶ in bad cases: $N \approx 2^n$

- Algorithm: 1. Compute N short vectors of \mathcal{L}_1 and \mathcal{L}_2 (until they generate the lattices)
 - 2. Create the complete graphs G_1 and G_2 with N vertices
 - \blacktriangleright weight $||x||_2$ on vertices
 - \blacktriangleright weight $\langle x, y \rangle$ on edges
 - 3. Solve graph isomorphism with (G_1, G_2)
 - 4. Recover lattice isomorphism from graph isomorphism

Analysis:

```
Step 1. time complexity 2^{O(n)} \cdot N (n dimension of \mathcal{L}_1 and \mathcal{L}_2)
```

- ▶ for "most" lattices: N = poly(n)
- ▶ in bad cases: $N \approx 2^n$

Step 3. time complexity $2^{(\log N)^{O(1)}}$ (quasi-polynomial) [Bab16]

- Algorithm: 1. Compute N short vectors of \mathcal{L}_1 and \mathcal{L}_2 (until they generate the lattices)
 - 2. Create the complete graphs G_1 and G_2 with N vertices
 - \blacktriangleright weight $||x||_2$ on vertices
 - \blacktriangleright weight $\langle x, y \rangle$ on edges
 - 3. Solve graph isomorphism with (G_1, G_2)
 - 4. Recover lattice isomorphism from graph isomorphism

Analysis:

```
Step 1. time complexity 2^{O(n)} \cdot N (n dimension of \mathcal{L}_1 and \mathcal{L}_2)
```

- ▶ for "most" lattices: N = poly(n)
- ▶ in bad cases: $N \approx 2^n$

Step 3. time complexity $2^{(\log N)^{O(1)}}$ (quasi-polynomial) [Bab16]

```
Overall complexity: 2^{n^{O(1)}} (and 2^{O(n)} in "most" cases)
```

Main strategy:

- 1. Compute N short vectors of \mathcal{L}_1 and \mathcal{L}_2
- 2. Try to match the short vectors in a consistent way (that respects inner products)

Main strategy:

- 1. Compute N short vectors of \mathcal{L}_1 and \mathcal{L}_2
- 2. Try to match the short vectors in a consistent way (that respects inner products)

How to match the vectors:

[PS97] backtracking algorithm

good in practice, but bad provable complexity

Main strategy:

- 1. Compute N short vectors of \mathcal{L}_1 and \mathcal{L}_2
- 2. Try to match the short vectors in a consistent way (that respects inner products)

How to match the vectors:

- [PS97] backtracking algorithm
 - ▶ good in practice, but bad provable complexity
- [HR14] use dual lattice vectors to canonically order the N short vectors
 - ightharpoonup provable $n^{O(n)}$ complexity (best known so far)

Main strategy:

- 1. Compute N short vectors of \mathcal{L}_1 and \mathcal{L}_2
- 2. Try to match the short vectors in a consistent way (that respects inner products)

How to match the vectors:

- [PS97] backtracking algorithm
 - ▶ good in practice, but bad provable complexity
- [HR14] use dual lattice vectors to canonically order the N short vectors
 - ▶ provable $n^{O(n)}$ complexity (best known so far)

[SHVW20] graph isomorphism (this talk)

canonical graph

Useful for: enumerating lattices up to isomorphism

(e.g., enumerating all perfect lattices of dimension 9 [Woe25])

[Woe25] Wessel van Woerden, on going.

Section's conclusion

Algorithms for solving the lattice isomorphism problem

- try to match short vectors in a consistent way
- some variant rely on graph isomorphism
 - ▶ allows to construct a canonical lattice per isomorphism class
- **complexity between** $2^{O(n)}$ (average case) and $n^{O(n)}$ (worst case)
 - \blacktriangleright no efficient algorithm when n is large (e.g., n = 700)

What happens if: we replace integers by polynomials?

$$\mathbb{Z} \longleftrightarrow \mathbb{Z}[X]/P(X)$$
 (*P* irreducible)

Example: lattice basis of dim 2×2 over $\mathbb{Z}[X]/(X^{512}+1)$ (dimension 1024 over \mathbb{Z})

I used beamer theme begles (https://framagit.org/squirrrr/beamerthemebegles)

Thanks to Wessel van Woerden for sharing his slides and answering my questions.

What happens if: we replace integers by polynomials?

$$\mathbb{Z} \longleftrightarrow \mathbb{Z}[X]/P(X)$$
 (*P* irreducible)

Example: lattice basis of dim 2×2 over $\mathbb{Z}[X]/(X^{512} + 1)$ (dimension 1024 over \mathbb{Z})

Crypto constructions:

more efficient in time and space

I used beamer theme begles (https://framagit.org/squirrrr/beamerthemebegles)

Thanks to Wessel van Woerden for sharing his slides and answering my questions.

What happens if: we replace integers by polynomials?

$$\mathbb{Z} \longleftrightarrow \mathbb{Z}[X]/P(X)$$
 (*P* irreducible)

Example: lattice basis of dim 2×2 over $\mathbb{Z}[X]/(X^{512} + 1)$ (dimension 1024 over \mathbb{Z})

Crypto constructions:

- more efficient in time and space
- is security still ok?

I used beamer theme begles (https://framagit.org/squirrrr/beamerthemebegles)

Thanks to Wessel van Woerden for sharing his slides and answering my questions.

What happens if: we replace integers by polynomials?

$$\mathbb{Z} \longleftrightarrow \mathbb{Z}[X]/P(X)$$
 (*P* irreducible)

Example: lattice basis of dim 2×2 over $\mathbb{Z}[X]/(X^{512}+1)$ (dimension 1024 over \mathbb{Z})

Crypto constructions:

- more efficient in time and space
- is security still ok?
 - in some cases it is not! [MPPW24,APW25]

[MPPW24] Mureau, Pellet-Mary, Pliatsok, Wallet. Cryptanalysis of rank-2 module-LIP in Totally Real Number Fields. Eurocrypt. [APW25] Allombert, Pellet-Mary, van Woerden. Cryptanalysis of rank-2 module-LIP: a single real embedding is all it takes. Eurocrypt.

What happens if: we replace integers by polynomials?

$$\mathbb{Z} \longleftrightarrow \mathbb{Z}[X]/P(X)$$
 (P irreducible)

Example: lattice basis of dim 2×2 over $\mathbb{Z}[X]/(X^{512}+1)$ (dimension 1024 over \mathbb{Z})

Crypto constructions:

- more efficient in time and space
- is security still ok?
 - in some cases it is not! [MPPW24,APW25]

Thank you

I used beamer theme begles (https://framagit.org/squirrrr/beamerthemebegles)

Thanks to Wessel van Woerden for sharing his slides and answering my questions.