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Introduction: Lattices and lattice problems

1. Building public key encryption from lattices

} independent

2. Algorithms for computing isomorphism of lattices







» L={>"11xbi|Vi,xi € Z}is a lattice
» (b1,...,bs) =: B € GLy(R) is a basis (not unique)

» nis the dimension (or rank)



Shortest basis problem
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Approximate short basis problem
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[ The short basis problem is hard ]




The best known algorithms solving the short basis problem
have complexity ~ exp(n) (for poly(n) approximation factors)
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» can be used to build crypto




The best known algorithms solving the short basis problem
have complexity ~ exp(n) (for poly(n) approximation factors)

Consequences

» can be used to build crypto

» n has to be somewhat large (say 700 for crypto)




['1 £2:O'£1 .

Definition: Two lattices £1 and L5 are isomorphic is there exists
O € Oy(R) such that £, = OL;.

(On(R) = orthonormal transformations = 0" O = I,)




The lattice isomorphism problem (LIP):
given By and B, bases of two isomorphic lattices,
find O € O,(R) such that £(B1) = OL(B>).
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The lattice isomorphism problem (LIP):
given By and B, bases of two isomorphic lattices,
find O € O,(R) such that £(B1) = OL(B>).

£(By) L(B2)

° ° ~

(finding O <
. finding OB1) .




The lattice isomorphism problem (LIP):
given By and B, bases of two isomorphic lattices,
find O € O,(R) such that £(B1) = OL(B>).

L(B2)

This is a hard problem

(best known algorithms have complexity n°(™)

‘\\-.

B>




We have seen:

» lattices

» the short basis problem

} hard algorithmic problems

» the lattice isomorphism problem
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Three algorithms: »  KeyGen() ~~ (pk, sk)

» Enc(m,pk) ~c  » Dec(c,sk)~ m
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message m € {0,1}

Cc

m’ < Dec(c, sk) — ¢ < Enc(m, pk)
(hopefully m" = m)




Three algorithms: »  KeyGen() ~~ (pk, sk)

» Enc(m,pk) ~c  » Dec(c,sk)~ m

Alice Bob

(pk, sk) « KeyGen() 25
message m € {0,1}

Cc

m’ < Dec(c, sk) — ¢ < Enc(m, pk)
(hopefully m" = m)

Correctness: Dec(Enc(m,pk),sk) =m



Public key encryption

KeyGen() ~~ (pk, sk)

Enc(m, pk) ~ ¢ Dec(c, sk) ~» m’

(pk, sk) < KeyGen() LN
message m € {0,1}

m’ + Dec(c, sk) < ¢ < Enc(m, pk)

Dec (Enc(m, pk), sk) =m

an attacker cannot guess m from pk and Enc(m, pk)
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Decoding in a lattice

2 x=37-by—14-bs
[ [ ) [ ) o [ )
find s € L close to x
[ [ ] [ ] [ ] [ ] q
[ ] [ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ] [ ]
[ [ ] (] 9 [ ] q
[ ] [ 5 [ ] [ ] [ ]
[ ] [ ] [ ] [ ] [ ]
[ [ [ [ ] [ ] q
[ ] [ ] [ ] [ ] [ ]
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Decoding in a lattice

2 x=37-by—14-bs
find s € L close to x

round each coordinate
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Decoding in a lattice

2 x=37-by—14-bs
find s € L close to x

round each coordinate

524-b1—1-b2
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Decoding in a lattice

2 x=37-by—14-bs
find s € L close to x

round each coordinate

524-b1—1-b2

Solves approximate decoding: the
smaller the basis, the closer the solution
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Decoding in a lattice

) x=37-by—14-bs
[ ) [ ) [ ) [ ) [ )
find s € L close to x
[} [ J [} [} [ J q
round each coordinate
[ ] [ ] [ ] [ ]
* ° ® ® ® s=4. bl -1 b2
[ J [} (] 9 [} q
Solves approximate decoding: the
[ ) (5 [ ] [ ] [ ] . .
smaller the basis, the closer the solution
[ ] [ ] [ ] [ ] [ ]
[} [} [} [} [} q
= {lel + x2b2 ’ x| < %}
[ ] [ [ ] [ [
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Input: x =3.7-by —1.4-by
Objective: find s € £ close to x

Algo: round each coordinate
(called Babai's round-off algorithm)

Output: s=4-by —1-bs

q
Solves approximate decoding: the
smaller the basis, the closer the solution

) /:{xlbl +X2b2‘|xi|§%}

(fundamental parallelepiped)

03/02/2025  12/27
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[Reg05] Regev. On lattices, learning with errors, random linear codes, and cryptography. STOC.



° pk = (Bp, x) message: m € {0,1}
o sk = Bs
[ ] L] [ ]
[}
[ ]
[ ) [} [}
[ ]
X @
[ ]
[ ] [ ] [ ] [ ] [ ] [

[Reg05] Regev. On lattices, learning with errors, random linear codes, and cryptography. STOC.



° pk = (Bp, x) message: m € {0,1}
o sk = Bs
Enc(m, pk):
[ ] L] [ ]
» Sample random v € L
[}
[ ]
[ ) [} [}
[ ]
X @
[ ]
[ ] [ ] [ ] [ ] [ ] [

[Reg05] Regev. On lattices, learning with errors, random linear codes, and cryptography. STOC.



pk = (Bp, x) message: m € {0,1}
o sk = Bq
Enc(m, pk):
[ ] [ ]
» Sample random v € L
» ifm=1. v+ v+x
[ ]
[ ) [}
[ ]
[ ] [ ] [ ] [ ] [ ] [

[Reg05] Regev. On lattices, learning with errors, random linear codes, and cryptography. STOC.



Public key encryption from lattices [rez05]

* * * ¢ ? message: m € {0, 1}
[ ] [ ] [} [ ] L]
En,(i 0) Enc(m, pk):
L \ /\ [ ] [ J [ ]
Enc(l) & Sample random v € £
° ° ® d o ifm=1: v v+x
° ° . ° ° Sample small e €
returnc =v +e
[} [ ] [ ] [ ] [}
[ ] A > ] [ ] [ ]
[ ] (Y [} [ ] [ ]
[ ] [ ] [ ] [ ] [ ]
J
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Public key encryption from lattices [rez05]

message: m € {0,1}

Enc(0) Enc(m, pk):

Enc(l) & Sample random v € £
° ° ® d o ifm=1: v v+x
Sample small e €

returnc =v +e

Dec(c, sk):
s « Babaig(c)
° ¢ ° ° ° if [|[s —c]|| small ~ m=0

else ~~m=1

[ J [ ] [ ] [ ] [ J
J
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pk = (Bp, x) message: m € {0,1}
sk = Bs

Correctness:

» fm=1

[Reg05] Regev. On lattices, learning with errors, random linear codes, and cryptography. STOC.



pk = (Bp, x) message: m € {0,1}
sk = Bs

Correctness:
» fm=1Vv

[Reg05] Regev. On lattices, learning with errors, random linear codes, and cryptography. STOC.



pk = (Bp, x) message: m € {0,1}

sk = Bq
[}
Correctness:
» fm=1Vv
» ifm=0

'\
NN
2 1N
)

[Reg05] Regev. On lattices, learning with errors, random linear codes, and cryptography. STOC.



pk = (Bp, x) message: m € {0,1}

sk = Bq
[ ]

Correctness:

» ifm=1V

» if m=0 v (if |e|| < decoding radius)
[}
[

[Reg05] Regev. On lattices, learning with errors, random linear codes, and cryptography. STOC.



pk = (Bp, x) message: m € {0,1}
sk = Bq
[ ]
Correctness:
» iftm=1V
» if m=0 v (if |e|| < decoding radius)
* Security - v if L is well chosen
(under some assumption, see next slide)
[ ]

[Reg05] Regev. On lattices, learning with errors, random linear codes, and cryptography. STOC.



\What we want: An algorithm KeyGen such that

» KeyGen computes

a random lattice £
a short basis B; of £ (sk)
a long basis B, of £ (pk)

a point x far from L

>
>
>
>




\What we want: An algorithm KeyGen such that

» KeyGen computes

a random lattice £

a short basis B; of £ (sk)
a long basis B, of £ (pk)

a point x far from L

>
>
>
>

» decoding errors in O is easy given Bg (correctness)




\What we want: An algorithm KeyGen such that

» KeyGen computes

a random lattice £
a short basis B; of £ (sk)
a long basis B, of £ (pk)

>
>
>
» a point x far from L

» decoding errors in O is easy given Bg (correctness)

» decoding errors in ) is hard given B, (security)



Keygen:
1. Start with Lo = Z"




Constructing good lattices

N

i rotate
—_—

[ ]

[ ]

[

[ ]

J

Start with Lo = Z"

Compute a random O € O,(R)

Alice Pellet-Mary
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[ ]
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J
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Constructing good lattices

[ ] [ J [ ] [ ] [ ] [ ] [ ] rotate
SR
[ ] [ J [ J [ J [ ] [ ] [ ]
[ ] [ ] [ ] [ ] [ ] [ ] [ ]
[} [ [ ] [ ] [ ] [ ] [ ]
¢ ] [ ] [ ] [ ] [ ] [ ]
Start with Lo = Z"
Compute a random O € O,(R)
Compute a long basis of £
Alice Pellet-Mary Cryptography, and isomorphism of lattices and graphs
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Constructing good lattices

e ° 5
e R Y .’
e o e o o o o rotate ° . °
E— ° 0.
e o o o o o o ) * .
o [ ]
) [
e o e o o o o ° o * .
® q
'Y [ ]
o o o o o o o ] o
o [}
7 0.
e—3 e o o o o L ®* . )

corrects errors ||e|| < 1/2
Start with Lo = Z"
Compute a random O € O,(R)

Compute a long basis of £
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Constructing good lattices

Start with Lo = Z"

Compute a random O € O,(R)

Compute a long basis of £

Alice Pellet-Mary

rotate
—

e ° 5 N
[ ]
[ ] ° PS
° [ ]
o,
[ ] ° °
) [ ]
o [
) [ ]
[ ]
[ ] ° °
® q
[ ]
[,) 4 °
[
[ ] v °
Y [ ]
— e [ ] J

corrects errors ||e|| < 1/2

decoding errors ||e|| < 1/2
in £ given is hard
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Constructing good lattices

) 5 R
r ° b
e o o o o o o rotate ° ° 2 °
—_— ° L/ °
[ ] [ J [ J [ J [ ] [ ] [ ] i °
- [ ]
e o e  Solving lattice isomorphism = breaking assumption ¢ ° .
] o o ( ° [ J
® [ ]
[}
[ ] [ ] [{ ° )

corrects errors ||e|| < 1/2
Start with Lo = Z"

Compute a random O € O,(R) decoding errors ||e|| < 1/2

in £ given is hard

Compute a long basis of £
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We have seen:

» construction of public key encryption

» correct thanks to Babai decoding algorithm
» secure if decoding with a long basis is hard




We have seen:

» construction of public key encryption

» correct thanks to Babai decoding algorithm
» secure if decoding with a long basis is hard

» instantiated with rotations of Z" [DW22,BGPS23]

» recovering isomorphism breaks the encryption scheme

[DW22] Ducas and van Woerden. On the lattice isomorphism problem, quadratic forms, remarkable lattices and cryptography. Eurocrypt

[BGPS23] Bennett, Ganju, Peetathawatchai, Stephens-Davidowitz. Just how hard are rotations of Z"? [...] Eurocrypt



We have seen:

» construction of public key encryption

» correct thanks to Babai decoding algorithm
» secure if decoding with a long basis is hard

» instantiated with rotations of Z" [DW22,BGPS23]

» recovering isomorphism breaks the encryption scheme

How hard is the lattice isomorphism problem?

[DW22] Ducas and van Woerden. On the lattice isomorphism problem, quadratic forms, remarkable lattices and cryptography. Eurocrypt

[BGPS23] Bennett, Ganju, Peetathawatchai, Stephens-Davidowitz. Just how hard are rotations of Z"? [...] Eurocrypt
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Objective: given L = 0 -Z", recover O (0« O,(R))
Remark: O is not unique (automorphisms of Z")

/s L=0-7"
. . . . . . . ° * . ¢




Objective: given L =0 -Z", recover O (0« O,(R))
Remark: O is not unique (automorphisms of Z")

Algorithm: 1. Compute the shortest non-zero vectors of £
z" L=0-7"
. . . . . . . ° ° .- ~e °
I. o .
. . . . . . . ~ M * ! . [ .
. . . . . . . ) . \‘.\ --7 * °
L] . . L] . . L] ° ' ° *




Objective: given L =0 -Z", recover O (0« O,(R))
Remark: O is not unique (automorphisms of Z")

Algorithm: 1. Compute the shortest non-zero vectors of £

2. Keep one vector per pair (v, —v) (arbitrary)

/s L=0-7"
v
. . . . . . . . °
. .
. .
. . .
. . . . . . . ° L e
. SON
° RN ‘. °
. 1 1
. . . . ) . . L3
~ ° R 1 . M
) s ¢
o _ .7 .
. . . . . . . . - °
i .
i .
. . ° . . . . ° i




Example: the Z" case

given L = O - Z", recover O

Compute the shortest non-zero vectors of L
Keep one vector per pair (v, —v)
Match these with the e; basis of Z"

Alice Pellet-Mary
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Objective: given L =0 -Z", recover O (0« O,(R))
Remark: O is not unique (automorphisms of Z")

Algorithm: 1. Compute the shortest non-zero vectors of £ , ,
Every arbitrary choice

2. Keep one vector per pair (v, —v) (arbitrary) gives a (different)

3. Match these with the e; basis of Z" (arbitrary) solution

z" L=0-7"




Objective: given L1 and L = O - L1, recover O (0« O,(R))
Remark: O is not unique (automorphisms of £1)

L1 Lo=0" L4

'] L] ¢ ° [ ]
L] L] L] L] °
Y o L ~ ‘ ° .

. . ° °

L] L] * ° L] .




Objective: given L1 and L = O - L1, recover O (0« O,(R))
Remark: O is not unique (automorphisms of £1)

Algorithm: 1. Compute the shortest non-zero vectors of £1 and L5
L1 Lo=0" L4
° ° ¢ . °
L] - @~ L] L] - °
L R . ,. \‘\ . .
. t . \" . ~ ° 'I ° " .
() ‘\ ’ ° - ] . \\ 7
N N .
° -0 ° . -
L] L] ° L] .




Objective: given L1 and L = O - L1, recover O (0« O,(R))
Remark: O is not unique (automorphisms of £1)

Algorithm: 1. Compute the all shortish vectors of £1 and £5
L1 Lo=0"L4
L] ’ ,,’—;5\\\ ’ .," i —s‘\ .
’ \ L4 L4 // ° \
‘ . . < .
. I| . : . ~ . . [
° ° ° ° . J
L] \\ [ ) /I . ° \\ // o
. \\~__—’, . .~-_—”o .




Objective: given L1 and L = O - L1, recover O (0« O,(R))
Remark: O is not unique (automorphisms of £1)

Algorithm: 1. Compute the all shortish vectors of £; and £5

2. Match the vectors in a consistent way
(respecting ||x||2 and (x,y))

L1 Lo=0"L4

A e
/l ° \\ I/ N \\
. . ' .
1 1 ~ : '
\ 1 — |
° . ’
\ 4 §\ L /
N [ ] v . v

~. . -




Objective: given L1 and L = O - L1, recover O (0« O,(R))
Remark: O is not unique (automorphisms of £1)

Algorithm: 1. Compute the all shortish vectors of £; and £5

2. Match the vectors in a consistent way
(respecting ||x||2 and (x,y))

Ly L>=0 L1
/"_\\\\ /,4“\\
4 AY
7 L] \ 4 \
)
. . /! .
I 1 ~ : .
\ 1 — 1
° ° B
\ l ’ *\ o ,
N d ~ 4
\\‘ ’/, .\__—’,




Objective: given L1 and L = O - L1, recover O (0« O,(R))
Remark: O is not unique (automorphisms of £1)

Algorithm: 1. Compute the all shortish vectors of £; and £5

2. Match the vectors in a consistent way
(respecting ||x||2 and (x,y))

Ly L>=0 L1
/"_\\\\ /,4“\\
4 AY
7 L] \ 4 \
°
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Objective: given L1 and L = O - L1, recover O (0« O,(R))
Remark: O is not unique (automorphisms of £1)

Algorithm: 1. Compute the all shortish vectors of £; and £5

2. Match the vectors in a consistent way
(respecting ||x||2 and (x,y))

Ly L>=0 L1
/"_\\\\ /,4“\\
4 AY
’ [ \ ’ R
)
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\ 4 \ /
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Objective: given L1 and L = O - L1, recover O (0« O,(R))

Remark: O is not unique (automorphisms of £1)

Algorithm: 1. Compute the all shortish vectors of £; and £5
2. Match the vectors in a consistent way

(respecting ||x||2 and (x,y))

Ly L>=0 L1
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Objective: given L1 and L = O - L1, recover O (0« O,(R))

Remark: O is not unique (automorphisms of £1)

Algorithm: 1. Compute the all shortish vectors of £; and £5
2. Match the vectors in a consistent way

(respecting ||x||2 and (x,y))

Ly L>=0 L1
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Objective: given L1 and L = O - L1, recover O (0« O,(R))

Remark: O is not unique (automorphisms of £1)

Algorithm: 1. Compute the all shortish vectors of £; and £5
2. Match the vectors in a consistent way

(respecting ||x||2 and (x,y))

Ly L>=0 L1
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Objective: given L1 and L = O - L1, recover O (0« O,(R))

Remark: O is not unique (automorphisms of £1)

Algorithm: 1. Compute the all shortish vectors of £; and £5
2. Match the vectors in a consistent way

(respecting ||x||2 and (x,y))

Ly L>=0 L1




Objective: given N vectors in £1 and L3, match them in a consistent way
(respecting ||x||2 and (x,y))

1




given N vectors in £1 and £, match them in a consistent way

Matching vectors

12

J (.

create weighted graph s.t. lattice isomorphism «~ graph isomorphism
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Objective: given N vectors in L1 and L5, match them in a consistent way
(respecting ||x||2 and (x,y))

L]
1

» N vertices (one per lattice vector)
» all edges (complete graph)

» vertex weight: ||x]|2

» edge weight: {(x,y)




Matching vectors

given N vectors in £1 and £, match them in a consistent way

1

J (.

Alice Pellet-Mary
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Summing up and complexity

Compute N short vectors of £1 and L5
Create the complete graphs G; and G, with N vertices

Solve graph isomorphism with (Gi, Gy)
Recover lattice isomorphism from graph isomorphism
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Summing up and complexity

Compute N short vectors of £1 and L5
Create the complete graphs G; and G, with N vertices

Solve graph isomorphism with (Gi, Gy)
Recover lattice isomorphism from graph isomorphism

time complexity 20(") . N
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Summing up and complexity

Compute N short vectors of £1 and L5
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Summing up and complexity

Compute N short vectors of £1 and L5
Create the complete graphs G; and G, with N vertices

Solve graph isomorphism with (Gi, Gy)
Recover lattice isomorphism from graph isomorphism

time complexity 20(") . N

time complexity 2(0g M)
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Algorithm:

Analysis:

Summing up and complexity

Compute N short vectors of £1 and Ly (until they generate the lattices)
Create the complete graphs G; and G, with N vertices

» weight ||x||2 on vertices

» weight (x,y) on edges

Solve graph isomorphism with (G, Gy)

Recover lattice isomorphism from graph isomorphism

time complexity 20(n) . (n dimension of £1 and £>)
» for "most” lattices: N = poly(n)

» in bad cases: N ~ 2"

time complexity 2(log Ny (quasi-polynomial)  [Bab16]

. o
[ Overall complexity: 27 @ (and 2°" in “most" cases) ]

[Bab16] Babai. Graph isomorphism in quasipolynomial time. STOC
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Main strategy:
1. Compute N short vectors of £; and L»

2. Try to match the short vectors in a consistent way (that respects inner products)




Main strategy:
1. Compute N short vectors of £1 and £,

2. Try to match the short vectors in a consistent way (that respects inner products)

How to match the vectors:

75097 backtracking algorithm

» good in practice, but bad provable complexity

[PS97] Plesken, Souvignier. Computing isometries of lattices. Journal of Symbolic Computation.



Main strategy:
1. Compute N short vectors of £1 and £,

2. Try to match the short vectors in a consistent way (that respects inner products)

How to match the vectors:

75097 backtracking algorithm

» good in practice, but bad provable complexity

[H214] use dual lattice vectors to canonically order the N short vectors

O(n)

» provable n complexity (best known so far)

[HR14] Haviv, Regev. On the lattice isomorphism problem. SODA.



Main strategy:
1. Compute N short vectors of £1 and £,

2. Try to match the short vectors in a consistent way (that respects inner products)

How to match the vectors:

75097 backtracking algorithm
» good in practice, but bad provable complexity

[H214] use dual lattice vectors to canonically order the N short vectors

O(n)

» provable n complexity (best known so far)

SHVW20! graph isomorphism (this talk)

[SHVW20] Sikiri¢, Haensch, Voight, van Woerden. A canonical form for positive definite matrices. Open book series.









canonical graph




canonical graph canonical lattice Lcan ~ £
(4 canonical basis)




canonical graph canonical lattice Lcan ~ £
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canonical graph canonical lattice Lcan ~ £
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canonical graph canonical lattice Lcan ~ £

i

(4 canonical basis)




canonical graph canonical lattice Lcan ~ L
(+ canonical basis)

Useful for: enumerating lattices up to isomorphism
(e.g., enumerating all perfect lattices of dimension 9 [Woe25])

[Woe25] Wessel van Woerden, on going.




Algorithms for solving the lattice isomorphism problem

» try to match short vectors in a consistent way

» some variant rely on graph isomorphism

» allows to construct a canonical lattice per isomorphism class

» complexity between 29(") (average case) and n@(M (worst case)

» no efficient algorithm when n is large (e.g., n = 700)
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\What happens if: we replace integers by polynomials?

[ Z < Z[X]/P(X) (P irreducible) ]

Example: lattice basis of dim 2 x 2 over Z[X]/(X®? 4 1)
(dimension 1024 over Z)

| used beamer theme begles (https://framagit.org/squirrrr/beamerthemebegles)

Thanks to Wessel van Woerden for sharing his slides and answering my questions.
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\What happens if: we replace integers by polynomials?

[ Z < Z[X]/P(X) (P irreducible) ]

Example: lattice basis of dim 2 x 2 over Z[X]/(X®? 4 1)
(dimension 1024 over Z)
Crypto constructions:

» more efficient in time and space
» is security still ok?
» in some cases it is not! [MPPW24, APW25]

[MPPW24] Mureau, Pellet-Mary, Pliatsok, Wallet. Cryptanalysis of rank-2 module-LIP in Totally Real Number Fields. Eurocrypt.
[APW25] Allombert, Pellet-Mary, van Woerden. Cryptanalysis of rank-2 module-LIP: a single real embedding is all it takes. Eurocrypt.



\What happens if: we replace integers by polynomials?

[ Z < Z[X]/P(X) (P irreducible) ]

Example: lattice basis of dim 2 x 2 over Z[X]/(X®? 4 1)
(dimension 1024 over Z)
Crypto constructions:

» more efficient in time and space
» is security still ok?
» in some cases it is not! [MPPW24, APW25]

Thank you

| used beamer theme begles (https://framagit.org/squirrrr/beamerthemebegles)

Thanks to Wessel van Woerden for sharing his slides and answering my questions.
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