
Bispecial factors in D0L systems
Journées combinatoires de Bordeaux

Herman Goulet-Ouellet, Karel Klouda and Štěpán Starosta

03.02.2025

Part 1

C

D0L systems

“In spite of the simplicity of the basic definitions, the theory of D0L
systems is at present very rich and challenging. Apart from
providing applications to formal languages and biology, this
theory has also shed new light on the very basic mathematical
notion of an endomorphism defined on a free monoid.”

A. Salomaa and G. Rozenberg
The mathematical theory of L systems, 1980

1

“In spite of the simplicity of the basic definitions, the theory of D0L
systems is at present very rich and challenging. Apart from
providing applications to formal languages and biology, this
theory has also shed new light on the very basic mathematical
notion of an endomorphism defined on a free monoid.”

A. Salomaa and G. Rozenberg
The mathematical theory of L systems, 1980

1

Notation C

ALPHABET Finite set A of symbols (letters).

FREE MONOID Set A∗ of all finite words over A (strings).

LENGTH The length of a word u ∈ A∗ is denoted |u|.
EMPTY WORD The unique word ε ∈ A∗ of length 0.

CONCATENATION Write uv for the concatenation of u, v ∈ A∗.

MORPHISM Map φ : A∗ → B∗ such that φ(uv) = φ(u)φ(v).

2

Notation C

ALPHABET Finite set A of symbols (letters).

FREE MONOID Set A∗ of all finite words over A (strings).

LENGTH The length of a word u ∈ A∗ is denoted |u|.
EMPTY WORD The unique word ε ∈ A∗ of length 0.

CONCATENATION Write uv for the concatenation of u, v ∈ A∗.

MORPHISM Map φ : A∗ → B∗ such that φ(uv) = φ(u)φ(v).

2

Notation C

ALPHABET Finite set A of symbols (letters).

FREE MONOID Set A∗ of all finite words over A (strings).

LENGTH The length of a word u ∈ A∗ is denoted |u|.

EMPTY WORD The unique word ε ∈ A∗ of length 0.

CONCATENATION Write uv for the concatenation of u, v ∈ A∗.

MORPHISM Map φ : A∗ → B∗ such that φ(uv) = φ(u)φ(v).

2

Notation C

ALPHABET Finite set A of symbols (letters).

FREE MONOID Set A∗ of all finite words over A (strings).

LENGTH The length of a word u ∈ A∗ is denoted |u|.
EMPTY WORD The unique word ε ∈ A∗ of length 0.

CONCATENATION Write uv for the concatenation of u, v ∈ A∗.

MORPHISM Map φ : A∗ → B∗ such that φ(uv) = φ(u)φ(v).

2

Notation C

ALPHABET Finite set A of symbols (letters).

FREE MONOID Set A∗ of all finite words over A (strings).

LENGTH The length of a word u ∈ A∗ is denoted |u|.
EMPTY WORD The unique word ε ∈ A∗ of length 0.

CONCATENATION Write uv for the concatenation of u, v ∈ A∗.

MORPHISM Map φ : A∗ → B∗ such that φ(uv) = φ(u)φ(v).

2

Notation C

ALPHABET Finite set A of symbols (letters).

FREE MONOID Set A∗ of all finite words over A (strings).

LENGTH The length of a word u ∈ A∗ is denoted |u|.
EMPTY WORD The unique word ε ∈ A∗ of length 0.

CONCATENATION Write uv for the concatenation of u, v ∈ A∗.

MORPHISM Map φ : A∗ → B∗ such that φ(uv) = φ(u)φ(v).

2

Definition C

D 0 L
DETERMINISTIC CONTEXT-FREE LINDENMAYER1

S = (A, φ : A∗ → A∗, w ∈ A∗)

• A is an alphabet.

• φ : A∗ → A∗ is a morphism.

• w ∈ A∗ is a word (axiom).

1Aristid Lindenmayer, 1925–1989, Hungarian biologist.
3

Examples C

Example 1 (Fibonacci)
({a,b}, φ : a 7→ ab,b 7→ a, a)

Example 2 (Thue–Morse)
({a,b}, φ : a 7→ ab,b 7→ ba, a)

Example 3 (Quaternary system)
({a,b, c,d}, φ : a 7→ baa,b 7→ adc, c 7→ cdc,d 7→ ad, c)

Example 4 (Ternary system)
({a,b, c}, φ : a 7→ abaca,b 7→ aba, c 7→ aba, a)

4

Examples C

Example 1 (Fibonacci)
({a,b}, φ : a 7→ ab,b 7→ a, a)

Example 2 (Thue–Morse)
({a,b}, φ : a 7→ ab,b 7→ ba, a)

Example 3 (Quaternary system)
({a,b, c,d}, φ : a 7→ baa,b 7→ adc, c 7→ cdc,d 7→ ad, c)

Example 4 (Ternary system)
({a,b, c}, φ : a 7→ abaca,b 7→ aba, c 7→ aba, a)

4

Examples C

Example 1 (Fibonacci)
({a,b}, φ : a 7→ ab,b 7→ a, a)

Example 2 (Thue–Morse)
({a,b}, φ : a 7→ ab,b 7→ ba, a)

Example 3 (Quaternary system)
({a,b, c,d}, φ : a 7→ baa,b 7→ adc, c 7→ cdc,d 7→ ad, c)

Example 4 (Ternary system)
({a,b, c}, φ : a 7→ abaca,b 7→ aba, c 7→ aba, a)

4

Examples C

Example 1 (Fibonacci)
({a,b}, φ : a 7→ ab,b 7→ a, a)

Example 2 (Thue–Morse)
({a,b}, φ : a 7→ ab,b 7→ ba, a)

Example 3 (Quaternary system)
({a,b, c,d}, φ : a 7→ baa,b 7→ adc, c 7→ cdc,d 7→ ad, c)

Example 4 (Ternary system)
({a,b, c}, φ : a 7→ abaca,b 7→ aba, c 7→ aba, a)

4

Languages C

S = (A, φ : A∗ → A∗, w ∈ A∗)

SEQUENCE (φn(w))n∈N.

LANGUAGE L(S) = {u ∈ A∗ | ∃n ∈ N, ∃w ∈ W,u ≤fac φ
n(w)}.

5

Languages C

S = ({a,b}, φ : a 7→ ab,b 7→ a, a)

SEQUENCE a,ab,aba,abaab,abaababa,abaababaabaab, . . .

LANGUAGE L(S) = {ε,a,b,ab,ba,aa,aab,aba,baa,bab, . . . }

5

Languages C

S = ({a,b, c,d}, φ : a 7→ baa,b 7→ adc, c 7→ cdc,d 7→ ad, c)

SEQUENCE a,baa,adcbaabaa,
baaadcdcadcbaabaaadcbaabaa, . . .

LANGUAGE L(S) = {ε,a,b,aa,ab,ad,ba, ca, cb, cd,dc,
aaa,aab,aad,aba,adc,baa, cad, cba, cdc, . . . }

5

Languages C

S = ({a,b, c,d}, φ : a 7→ baa,b 7→ adc, c 7→ cdc,d 7→ ad, c)

SEQUENCE a,baa,adcbaabaa,
baaadcdcadcbaabaaadcbaabaa, . . .

LANGUAGE L(S) = {ε,a,b,aa,ab,ad,ba, ca, cb, cd,dc,
aaa,aab,aad,aba,adc,baa, cad, cba, cdc, . . . }

• L(S) is computable (proof by SageMath).

5

Natural questions C

S = (A, φ : A∗ → A∗, w ∈ A∗)

• What kinds of infinite words are generated by S (if any)?

• What is the structure of L(S)?

• How many factors of length n are in L(S)?

• Where and how do words occur in L(S)?

• Can words be extended in L(S) in a predictable way?

6

Natural questions C

S = (A, φ : A∗ → A∗, w ∈ A∗)

• What kinds of infinite words are generated by S (if any)?

• What is the structure of L(S)?

• How many factors of length n are in L(S)?

• Where and how do words occur in L(S)?

• Can words be extended in L(S) in a predictable way?

6

Natural questions C

S = (A, φ : A∗ → A∗, w ∈ A∗)

• What kinds of infinite words are generated by S (if any)?

• What is the structure of L(S)?

• How many factors of length n are in L(S)?

• Where and how do words occur in L(S)?

• Can words be extended in L(S) in a predictable way?

6

Natural questions C

S = (A, φ : A∗ → A∗, w ∈ A∗)

• What kinds of infinite words are generated by S (if any)?

• What is the structure of L(S)?

• How many factors of length n are in L(S)?

• Where and how do words occur in L(S)?

• Can words be extended in L(S) in a predictable way?

6

Natural questions C

S = (A, φ : A∗ → A∗, w ∈ A∗)

• What kinds of infinite words are generated by S (if any)?

• What is the structure of L(S)?

• How many factors of length n are in L(S)?

• Where and how do words occur in L(S)?

• Can words be extended in L(S) in a predictable way?

6

Natural questions C

S = (A, φ : A∗ → A∗, w ∈ A∗)

• What kinds of infinite words are generated by S (if any)?

• What is the structure of L(S)?

• How many factors of length n are in L(S)?

• Where and how do words occur in L(S)?

• Can words be extended in L(S) in a predictable way?

6

Motivations C

7

Part 2

C

Special factors

Definition C

S = (A, φ : A∗ → A∗, w ∈ A∗)

• u ∈ L(S) is left special if #{a ∈ A | au ∈ L(S)} ≥ 2.

• u ∈ L(S) is right special if #{a ∈ A | ua ∈ L(S)} ≥ 2.

• u ∈ L(S) is bispecial if it is both left and right special.

8

Definition C

S = (A, φ : A∗ → A∗, w ∈ A∗)

• u ∈ L(S) is left special if #{a ∈ A | au ∈ L(S)} ≥ 2.

• u ∈ L(S) is right special if #{a ∈ A | ua ∈ L(S)} ≥ 2.

• u ∈ L(S) is bispecial if it is both left and right special.

8

Definition C

S = (A, φ : A∗ → A∗, w ∈ A∗)

• u ∈ L(S) is left special if #{a ∈ A | au ∈ L(S)} ≥ 2.

• u ∈ L(S) is right special if #{a ∈ A | ua ∈ L(S)} ≥ 2.

• u ∈ L(S) is bispecial if it is both left and right special.

8

Example C

FIBONACCI

S = ({a,b}, φ : a 7→ ab,b 7→ a, a)

9

Example C

THUE–MORSE

S = ({a,b}, φ : a 7→ ab,b 7→ ba, a)

9

Example C

QUATERNARY SYSTEM

S = ({a,b, c,d}, φ : a 7→ baa,b 7→ adc, c 7→ cdc,d 7→ ad, c)

9

Factor complexity C

RECURSIVE EXPRESSIONS FOR FACTOR COMPLEXITY

pS(n) = #{u ∈ L(S) : |u| = n}
mS(u) = #(L(S) ∩ AuA)−#(L(S) ∩ uA)−#(L(S) ∩ uA) + 1

(bilateral order)

Theorem (Cassaigne, 1997)
pS(n + 2)− 2pS(n + 1) + pS(n) =

∑
|u|=n

mS(u).

• mS(u) = 0 when u is not bispecial.

10

Factor complexity C

RECURSIVE EXPRESSIONS FOR FACTOR COMPLEXITY

pS(n) = #{u ∈ L(S) : |u| = n}
mS(u) = #(L(S) ∩ AuA)−#(L(S) ∩ uA)−#(L(S) ∩ uA) + 1

(bilateral order)

Theorem (Cassaigne, 1997)
pS(n + 2)− 2pS(n + 1) + pS(n) =

∑
|u|=n

mS(u).

• mS(u) = 0 when u is not bispecial.

10

Factor complexity C

RECURSIVE EXPRESSIONS FOR FACTOR COMPLEXITY

pS(n) = #{u ∈ L(S) : |u| = n}
mS(u) = #(L(S) ∩ AuA)−#(L(S) ∩ uA)−#(L(S) ∩ uA) + 1

(bilateral order)

Theorem (Cassaigne, 1997)
pS(n + 2)− 2pS(n + 1) + pS(n) =

∑
|u|=n

mS(u).

• mS(u) = 0 when u is not bispecial.

10

Thue–Morse system C

S = ({a,b}, φ : a 7→ ab,b 7→ ba, a)

Theorem (Luca & Mione, 1994)
Every bispecial factor u ∈ L(S) of length ≥ 2 is of the form

φn(ab), φn(ba), φn(aba), φn(bab),

Corollary (Brlek, 1989; Cassaigne, 1997)
In the Thue–Morse system the values of pS(n) for n ≥ 3 are

pS(n) =

{
4n − 2 · 2m − 4 if 2 · 2n < n ≤ 3 · 2m

2n + 4 · 2m − 2 if 3 · 2n < n ≤ 4 · 2m

11

Thue–Morse system C

S = ({a,b}, φ : a 7→ ab,b 7→ ba, a)

Theorem (Luca & Mione, 1994)
Every bispecial factor u ∈ L(S) of length ≥ 2 is of the form

φn(ab), φn(ba), φn(aba), φn(bab),

Corollary (Brlek, 1989; Cassaigne, 1997)
In the Thue–Morse system the values of pS(n) for n ≥ 3 are

pS(n) =

{
4n − 2 · 2m − 4 if 2 · 2n < n ≤ 3 · 2m

2n + 4 · 2m − 2 if 3 · 2n < n ≤ 4 · 2m

11

Fibonacci system C

S = ({a,b}, φ : a 7→ ab,b 7→ ba, a)

• Every bispecial factor is of the form φn
B(a) where

φB(u) = φ(u)a.

• The complexity is pS(n) = n + 1 (Sturmian system).

12

Bispecial factors C

THUE–MORSE FIBONACCI

φB(u) = φ(u) φB(u) = φ(u)a

13

Bispecial factors C

QUATERNARY SYSTEM

S = ({a,b, c,d}, φ : a 7→ baa,b 7→ adc, c 7→ cdc,d 7→ ad, c)

φB(u) = xuφ(u)yu where xu and yu depend on the extensions of u.

14

Klouda’s work C

Klouda, 2012
Under certain key conditions, there exists a finite set of initial
bispecial words and a finitely determined rule from which all other
bispecial factors are obtained.

• These conditions also imply that the set of initial bispecial
words and the rule can both be calculated algorithmically.

15

Klouda’s work C

Klouda, 2012
Under certain key conditions, there exists a finite set of initial
bispecial words and a finitely determined rule from which all other
bispecial factors are obtained.

• These conditions also imply that the set of initial bispecial
words and the rule can both be calculated algorithmically.

15

Key conditions C

S = (A, φ : A∗ → A∗, w ∈ A∗)

PROPAGATING For all a ∈ A, φ(a) 6= ε (non-erasing).

NON-PUSHY There are only finitely many u ∈ L(S) such that
limn→∞ |φn(u)| < ∞.

EXTENDABLE For all u ∈ L(S), there are letters a,b ∈ A such that
aub ∈ L(S).

INJECTIVE φ is injective on L(S).

CIRCULAR More on this later…

16

Key conditions C

S = (A, φ : A∗ → A∗, w ∈ A∗)

PROPAGATING For all a ∈ A, φ(a) 6= ε (non-erasing).

NON-PUSHY There are only finitely many u ∈ L(S) such that
limn→∞ |φn(u)| < ∞.

EXTENDABLE For all u ∈ L(S), there are letters a,b ∈ A such that
aub ∈ L(S).

INJECTIVE φ is injective on L(S).

CIRCULAR More on this later…

16

Key conditions C

S = (A, φ : A∗ → A∗, w ∈ A∗)

PROPAGATING For all a ∈ A, φ(a) 6= ε (non-erasing).

NON-PUSHY There are only finitely many u ∈ L(S) such that
limn→∞ |φn(u)| < ∞.

EXTENDABLE For all u ∈ L(S), there are letters a,b ∈ A such that
aub ∈ L(S).

INJECTIVE φ is injective on L(S).

CIRCULAR More on this later…

16

Key conditions C

S = (A, φ : A∗ → A∗, w ∈ A∗)

PROPAGATING For all a ∈ A, φ(a) 6= ε (non-erasing).

NON-PUSHY There are only finitely many u ∈ L(S) such that
limn→∞ |φn(u)| < ∞.

EXTENDABLE For all u ∈ L(S), there are letters a,b ∈ A such that
aub ∈ L(S).

INJECTIVE φ is injective on L(S).

CIRCULAR More on this later…

16

Key conditions C

S = (A, φ : A∗ → A∗, w ∈ A∗)

PROPAGATING For all a ∈ A, φ(a) 6= ε (non-erasing).

NON-PUSHY There are only finitely many u ∈ L(S) such that
limn→∞ |φn(u)| < ∞.

EXTENDABLE For all u ∈ L(S), there are letters a,b ∈ A such that
aub ∈ L(S).

INJECTIVE φ is injective on L(S). (can be weakened!)

CIRCULAR More on this later…

16

Key conditions C

S = (A, φ : A∗ → A∗, w ∈ A∗)

PROPAGATING For all a ∈ A, φ(a) 6= ε (non-erasing).

NON-PUSHY There are only finitely many u ∈ L(S) such that
limn→∞ |φn(u)| < ∞.

EXTENDABLE For all u ∈ L(S), there are letters a,b ∈ A such that
aub ∈ L(S).

INJECTIVE φ is injective on L(S). (can be weakened!)

CIRCULAR More on this later…

16

Part 3

C

Core ideas

Bispecial production rule C

S = ({a,b, c,d}, φ : a 7→ baa,b 7→ adc, c 7→ cdc,d 7→ ad, c)

17

Bispecial production rule C

S = ({a,b, c,d}, φ : a 7→ baa,b 7→ adc, c 7→ cdc,d 7→ ad, c)

17

Bispecial production rule C

S = ({a,b, c,d}, φ : a 7→ baa,b 7→ adc, c 7→ cdc,d 7→ ad, c)

17

Bispecial production rule C

S = ({a,b, c,d}, φ : a 7→ baa,b 7→ adc, c 7→ cdc,d 7→ ad, c)

17

Forky graphs C

S = ({a,b, c,d}, φ : a 7→ baa,b 7→ adc, c 7→ cdc,d 7→ ad, c)

φB(u) depends on admissible left and right extensions of u in S.

18

Forky graphs C

S = ({a,b, c,d}, φ : a 7→ baa,b 7→ adc, c 7→ cdc,d 7→ ad, c)

φB(u) depends on admissible left and right extensions of u in S.

18

Forky graphs C

S = ({a,b, c,d}, φ : a 7→ baa,b 7→ adc, c 7→ cdc,d 7→ ad, c)

φB(u) depends on admissible left and right extensions of u in S.

18

Existence of forky graphs C

Theorem (Klouda, 2012)
Under the key conditions2:

1. S has forky graphs which can be effectively computed.

2. There is a computable constant N such that any bispecial
factor longer than N is the image by φB of a shorter one.

• Main difficulty: make sure the extension process terminates.

2Propagating, non-pushy, extendable, injective, circular
19

Existence of forky graphs C

Theorem (Klouda, 2012)
Under the key conditions2:

1. S has forky graphs which can be effectively computed.

2. There is a computable constant N such that any bispecial
factor longer than N is the image by φB of a shorter one.

• Main difficulty: make sure the extension process terminates.

2Propagating, non-pushy, extendable, injective, circular
19

Circularity C

INTERPRETATION

CIRCULAR Interpretations synchronize after a bounded delay.

20

Circularity C

SYNCHRONIZED INTERPRETATIONS

CIRCULAR Interpretations synchronize after a bounded delay.

20

Circularity C

SYNCHRONIZED INTERPRETATIONS

CIRCULAR Interpretations synchronize after a bounded delay3.

3using definition of Klouda & Starosta, 2019
20

Examples C

FIBONACCI

S = ({a,b}, φ : a 7→ ab,b 7→ a, a)

Synchronization delay is 0.

21

Examples C

THUE–MORSE

S = ({a,b}, φ : a 7→ ab,b 7→ ba, a)

Synchronization delay is 1.

21

Examples C

TERNARY SYSTEM

S = ({a,b, c}, φ : a 7→ abaca,b 7→ aba, c 7→ aba, a)

Synchronization delay is 9.
21

Beyond injectivity C

S = ({a,b, c}, φ : a 7→ abaca,b 7→ aba, c 7→ aba, a)

This is a non-injective systems which has computable forky
graphs if we ignore the bispecial factor a (of length 1).

22

Beyond injectivity C

S = ({a,b, c}, φ : a 7→ acabaca,b 7→ aba, c 7→ aba, a)

This is a non-injective systems which does not have computable
forky graphs. It satisfies all key conditions except for injectivity.

22

Structure of the algorithm C

1. Decide the key conditions algorithmically.

1.1 Propagating: trivial.
1.2 Non-pushy: Ehrenfeucht & Rozenberg, 1983.
1.3 Extendable: simple.
1.4 Injective: unclear, use Sardinas–Paterson as proxy.
1.5 Circular: Klouda & Starosta, 2019.

2. Calculate the minimal delay for circularity.

3. Calculate reasonable forky graphs.

4. Calculate an initial set of bispecial factors.

23

Structure of the algorithm C

1. Decide the key conditions algorithmically.
1.1 Propagating: trivial.

1.2 Non-pushy: Ehrenfeucht & Rozenberg, 1983.
1.3 Extendable: simple.
1.4 Injective: unclear, use Sardinas–Paterson as proxy.
1.5 Circular: Klouda & Starosta, 2019.

2. Calculate the minimal delay for circularity.

3. Calculate reasonable forky graphs.

4. Calculate an initial set of bispecial factors.

23

Structure of the algorithm C

1. Decide the key conditions algorithmically.
1.1 Propagating: trivial.
1.2 Non-pushy: Ehrenfeucht & Rozenberg, 1983.

1.3 Extendable: simple.
1.4 Injective: unclear, use Sardinas–Paterson as proxy.
1.5 Circular: Klouda & Starosta, 2019.

2. Calculate the minimal delay for circularity.

3. Calculate reasonable forky graphs.

4. Calculate an initial set of bispecial factors.

23

Structure of the algorithm C

1. Decide the key conditions algorithmically.
1.1 Propagating: trivial.
1.2 Non-pushy: Ehrenfeucht & Rozenberg, 1983.
1.3 Extendable: simple.

1.4 Injective: unclear, use Sardinas–Paterson as proxy.
1.5 Circular: Klouda & Starosta, 2019.

2. Calculate the minimal delay for circularity.

3. Calculate reasonable forky graphs.

4. Calculate an initial set of bispecial factors.

23

Structure of the algorithm C

1. Decide the key conditions algorithmically.
1.1 Propagating: trivial.
1.2 Non-pushy: Ehrenfeucht & Rozenberg, 1983.
1.3 Extendable: simple.
1.4 Injective: unclear, use Sardinas–Paterson as proxy.

1.5 Circular: Klouda & Starosta, 2019.

2. Calculate the minimal delay for circularity.

3. Calculate reasonable forky graphs.

4. Calculate an initial set of bispecial factors.

23

Structure of the algorithm C

1. Decide the key conditions algorithmically.
1.1 Propagating: trivial.
1.2 Non-pushy: Ehrenfeucht & Rozenberg, 1983.
1.3 Extendable: simple.
1.4 Injective: unclear, use Sardinas–Paterson as proxy.
1.5 Circular: Klouda & Starosta, 2019.

2. Calculate the minimal delay for circularity.

3. Calculate reasonable forky graphs.

4. Calculate an initial set of bispecial factors.

23

Structure of the algorithm C

1. Decide the key conditions algorithmically.
1.1 Propagating: trivial.
1.2 Non-pushy: Ehrenfeucht & Rozenberg, 1983.
1.3 Extendable: simple.
1.4 Injective: unclear, use Sardinas–Paterson as proxy.
1.5 Circular: Klouda & Starosta, 2019.

2. Calculate the minimal delay for circularity.

3. Calculate reasonable forky graphs.

4. Calculate an initial set of bispecial factors.

23

Structure of the algorithm C

1. Decide the key conditions algorithmically.
1.1 Propagating: trivial.
1.2 Non-pushy: Ehrenfeucht & Rozenberg, 1983.
1.3 Extendable: simple.
1.4 Injective: unclear, use Sardinas–Paterson as proxy.
1.5 Circular: Klouda & Starosta, 2019.

2. Calculate the minimal delay for circularity.

3. Calculate reasonable forky graphs.

4. Calculate an initial set of bispecial factors.

23

Structure of the algorithm C

1. Decide the key conditions algorithmically.
1.1 Propagating: trivial.
1.2 Non-pushy: Ehrenfeucht & Rozenberg, 1983.
1.3 Extendable: simple.
1.4 Injective: unclear, use Sardinas–Paterson as proxy.
1.5 Circular: Klouda & Starosta, 2019.

2. Calculate the minimal delay for circularity.

3. Calculate reasonable forky graphs.

4. Calculate an initial set of bispecial factors.

23

Conclusion C

1. Package in a new SageMath class DF0L.

2. Web server for easy access.

3. Decide (eventual) injectivity on the language.

4. Beyond injective, extendable, non-erasing.

5. Finer structure of bispecial factors.

24

Conclusion C

1. Package in a new SageMath class DF0L.

2. Web server for easy access.

3. Decide (eventual) injectivity on the language.

4. Beyond injective, extendable, non-erasing.

5. Finer structure of bispecial factors.

24

Conclusion C

1. Package in a new SageMath class DF0L.

2. Web server for easy access.

3. Decide (eventual) injectivity on the language.

4. Beyond injective, extendable, non-erasing.

5. Finer structure of bispecial factors.

24

Conclusion C

1. Package in a new SageMath class DF0L.

2. Web server for easy access.

3. Decide (eventual) injectivity on the language.

4. Beyond injective, extendable, non-erasing.

5. Finer structure of bispecial factors.

24

Conclusion C

1. Package in a new SageMath class DF0L.

2. Web server for easy access.

3. Decide (eventual) injectivity on the language.

4. Beyond injective, extendable, non-erasing.

5. Finer structure of bispecial factors.

24

25

	D0L systems
	Special factors
	Core ideas

