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Integer partitions

Let N ∈ N. A partition of N is a non-increasing sequence of non-negative
integers of sum N :

λ = (λ1, λ2, . . .) avec λ1 ≥ λ2 ≥ . . .

|λ| = λ1 + λ2 + . . . = N.

Denote p(N) the number of partitions of N. For instance, p(4) = 5 :

(4) (3, 1) (2, 2) (2, 1, 1) (1, 1, 1, 1)
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Why study partitions?

Representation theory Frobenius 1900:

{partitions of N} 1:1←→ {irreducible representations of SN}

Enumeration No known closed formula for p(N), however,

∑
N≥0

p(N)xN =
∏
k≥1

1

1− xk
.

Also have: asymptotic expansions, recurrence relations.

Partition identities Euler 1748:

|{part. of N into odd parts}| = |{part. of N into distinct parts}|

Generalisations: Rogers-Ramanujan 1919, Andrews-Gordon-Bressoud
1961-1980, ...
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Core partitions

Let e ∈ Z≥2. A partition is an e-core if its Young diagram has no
rim-hook of size e.

Example The partition (4, 2, 2) = is not a 3-core:Example The partition (4, 2, 2) = is not a 3-core:Example The partition (4, 2, 2) = is not a 3-core:Example The partition (4, 2, 2) = is not a 3-core:Example The partition (4, 2, 2) = is not a 3-core:

←− the 3-core of (4, 2, 2)

Denote ce(N) the number of e-core partitions of N.

Theorem (Brauer–Robinson 1947)

Let e = p be prime. The p-cores label the blocks of FpSN .
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Enumerating e-cores

2-cores are the ”staircase” partitions:

- , , , , . . .

3-cores:
- , , , , , , . . .

Theorem (Granville–Ono 1996)

Let e ≥ 4. For all N ∈ N, ce(N) > 0.

Extensive use of arithmetical properties of the generating function

∑
N≥0

ce(N)xN =
∏
k≥1

(1− xek)e

1− xk
.
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II - A Pell-type equation
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Our goal

Establish a “correspondence”

e-cores of Nxy
solutions of a certain Diophantine equation
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The abacus of an e-core

{e-cores} 1:1←→ {q ∈ Ze summing to 0}

Example The partition λ = (3, 1) = is a 3-core.

0

00

We see that λ is encoded by the vector q = (0,−1, 1).
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A formula for the size

Theorem (Garvan–Kim–Stanton 1990, Chapelier–G. 2022)

Let λ be an e-core of size N, and q = (q1, . . . , qe) its coding vector. Then

N =
e

2

e∑
i=1

q2i −
e∑

i=1

(e − i)qi

Example For e = 3 we obtain

N = 3(q21 + q22 + q1q2)− 2q1 − q2.
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A Diophantine equation for e = 3

We can perform a Gaussian reduction and obtain the equivalent identity

(3q1 + 6q2 − 1)2 + 3(3q1 − 1)2 = 12N + 4.

Therefore, each 3-core of size N yields an integer solution of

x2 + 3y2 = 12N + 4 (E)

... Actually, we have a much stronger result.

Theorem (Brunat-Nath 2022)

{3-cores of N} × Z/6Z 1:1←→ {integer solutions of (E)} .
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G -set structure of the solution set

More precisely, the group

G =

〈
1

2

(
1 −3
1 1

)〉
≃ Z/6Z

acts freely on the solutions, and each orbit has a unique representative of
the form φ(q) = (3q1 + 6q2 − 1, 3q1 − 1).

Example Let N = 4. There are two 3-cores λ of size 4:

λ

q (0,−1, 1) (−1, 1, 0)

φ(q) (−7,−1) (2,−4)

G .φ(q)

{
(−7,−1), (−2,−4), (5,−3),

(7, 1), (2, 4), (−5, 3)

} {
(2,−4), (7,−1), (5, 3),

(−2, 4), (−7, 1), (−5,−3)

}
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III - Generalisations using root systems
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Cores and root systems

Root system of type A
(1)
e−1. Example for e = 3:

α1

α2

α1 + α2

hyp. of s0hyp. of s1

hyp. of s2

•

si = reflection through these hyperplanesW = ⟨s0, s1, . . . , se−1⟩ = ⟨s1, . . . , se−1⟩⋉ T (Zα1 + . . .+ Zαe−1).The fundamental chamber
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Cores and root systems

Affine Weyl group

of type A
(1)
d

W = W0 ⋉ T (M)

1:1←→
{

alcoves
}

y
Affine Grassmannian

W /W0 ≃ M

M lattice in Rd

1:1←→
{

alcoves in the
fundamental chamber

}

xy1:1
(d + 1)-cores

Affine Weyl group
of rank d

(Dynkin classification)
W = W0 ⋉ T (M)

1:1←→
{

alcoves
}

y
Affine Grassmannian

W /W0 ≃ M
M lattice in Rd

1:1←→
{

alcoves in the
fundamental chamber

}
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partition model?
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Some new results

Focus on rank 2 Dynkin types.

Theorem (Brunat–Chapelier–G. 2024)

Type C
(1)
2

 self-conjugate

4-cores of N

 × D8
1:1←→

 integer solutions of

x2 + y 2 = 8N + 5


Type D

(2)
3 D6(N) × D8

1:1←→

 integer solutions of

x2 + y 2 = 12N + 5


Type D

(3)
4 D♭

4 (N) × (Z/2Z)2 1:1←→

 integer solutions of

x2 + 3y 2 = 12N + 7


Here, D2d+2(N) and D ♭

2d(N) are partition models realised in terms of
2d + 2 cores (Lecouvey–Wahiche 2024).
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Example
Type C

(1)
2 Let N = 40.

s.c. 4-cores

q (−2, 4) (2,−4) (−4, 0)

solution (−10, 15) (6,−17) (−18,−1)

orbit

{
(±10,±15)

(±15,±10)

} {
(±6,±17)

(±17,±6)

} {
(±18,±1)

(±1,±18)

}

Type D
(3)
4 Let N = 7.

D♭
4 (N)

q (−1, 1) (0, 1)

solution (−4,−5) (8,−3)

orbit

{
(−4,−5), (−4, 5)

(4,−5), (4, 5)

} {
(−8,−3), (−8, 3)

(8,−3), (8, 3)

}
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