Cores and Diophantine equations

Thomas Gerber Université Lyon 1

Journées de Combinatoire de Bordeaux 3-5 Février 2025

- I Core partitions
- II A Pell-type equation
- III Generalisations using root systems

I - Core partitions

Integer partitions

Let $N \in \mathbb{N}$. A *partition* of N is a non-increasing sequence of non-negative integers of sum N:

•
$$\lambda = (\lambda_1, \lambda_2, ...)$$
 avec $\lambda_1 \ge \lambda_2 \ge ...$
• $|\lambda| = \lambda_1 + \lambda_2 + ... = N.$

Denote p(N) the number of partitions of N. For instance, p(4) = 5:

(4) (3,1) (2,2) (2,1,1) (1,1,1,1)
$$\square \square \square$$

Why study partitions?

• **Representation theory** Frobenius 1900:

{partitions of N} \longleftrightarrow {irreducible representations of S_N }

Why study partitions?

• **Representation theory** Frobenius 1900:

{partitions of N} \longleftrightarrow {irreducible representations of S_N }

• Enumeration No known closed formula for p(N), however,

$$\sum_{N\geq 0} p(N) x^N = \prod_{k\geq 1} \frac{1}{1-x^k}$$

Also have: asymptotic expansions, recurrence relations.

Why study partitions?

• Representation theory Frobenius 1900:

{partitions of N} \longleftrightarrow {irreducible representations of S_N }

• Enumeration No known closed formula for p(N), however,

$$\sum_{N\geq 0} p(N) x^N = \prod_{k\geq 1} \frac{1}{1-x^k}$$

Also have: asymptotic expansions, recurrence relations.

• **Partition identities** Euler 1748:

 $|\{\text{part. of } N \text{ into odd parts}\}| = |\{\text{part. of } N \text{ into distinct parts}\}|$

Generalisations: Rogers-Ramanujan 1919, Andrews-Gordon-Bressoud 1961-1980, ...

Let $e \in \mathbb{Z}_{\geq 2}$. A partition is an *e-core* if its Young diagram has no rim-hook of size *e*.

Let $e \in \mathbb{Z}_{\geq 2}$. A partition is an *e-core* if its Young diagram has no rim-hook of size *e*.

Example The partition $(4, 2, 2) = \prod_{i=1}^{n}$ is not a 3-core:

Let $e \in \mathbb{Z}_{\geq 2}$. A partition is an *e-core* if its Young diagram has no rim-hook of size *e*.

Example The partition $(4, 2, 2) = \prod_{i=1}^{n}$ is not a 3-core:

Let $e \in \mathbb{Z}_{\geq 2}$. A partition is an *e-core* if its Young diagram has no rim-hook of size *e*.

Example The partition $(4, 2, 2) = \prod_{i=1}^{n}$ is not a 3-core:

Let $e \in \mathbb{Z}_{\geq 2}$. A partition is an *e-core* if its Young diagram has no rim-hook of size *e*.

Example The partition $(4, 2, 2) = \square$ is not a 3-core:

Let $e \in \mathbb{Z}_{\geq 2}$. A partition is an *e-core* if its Young diagram has no rim-hook of size *e*.

Example The partition $(4, 2, 2) = \square$ is not a 3-core:

Let $e \in \mathbb{Z}_{\geq 2}$. A partition is an *e-core* if its Young diagram has no rim-hook of size *e*.

Example The partition $(4, 2, 2) = \square$ is not a 3-core:

the 3-core of
$$(4, 2, 2)$$

Let $e \in \mathbb{Z}_{\geq 2}$. A partition is an *e-core* if its Young diagram has no rim-hook of size *e*.

Example The partition $(4, 2, 2) = \square$ is not a 3-core:

the 3-core of
$$(4, 2, 2)$$

Denote $c_e(N)$ the number of *e*-core partitions of *N*.

Let $e \in \mathbb{Z}_{\geq 2}$. A partition is an *e-core* if its Young diagram has no rim-hook of size *e*.

Example The partition $(4, 2, 2) = \square$ is not a 3-core:

$$\leftarrow$$
 the 3-core of $(4, 2, 2)$

Denote $c_e(N)$ the number of *e*-core partitions of *N*.

Theorem (Brauer–Robinson 1947) Let e = p be prime. The *p*-cores label the blocks of $\mathbb{F}_p S_N$.

Enumerating *e*-cores

• 2-cores are the "staircase" partitions:

• 3-cores:

Enumerating *e*-cores

• 2-cores are the "staircase" partitions:

• 3-cores:

Theorem (Granville–Ono 1996) Let $e \ge 4$. For all $N \in \mathbb{N}$, $c_e(N) > 0$.

Extensive use of arithmetical properties of the generating function

$$\sum_{N\geq 0} c_e(N) x^N = \prod_{k\geq 1} \frac{(1-x^{ek})^e}{1-x^k}.$$

II - A Pell-type equation

Our goal

Establish a "correspondence"

solutions of a certain Diophantine equation

$$\{e\text{-cores}\} \xleftarrow{1:1} \{q \in \mathbb{Z}^e \text{ summing to } 0\}$$

$$\{e\text{-cores}\} \stackrel{1:1}{\longleftrightarrow} \{q \in \mathbb{Z}^e \text{ summing to } 0\}$$

$$\{e\text{-cores}\} \stackrel{1:1}{\longleftrightarrow} \{q \in \mathbb{Z}^e \text{ summing to } 0\}$$

$$\{e\text{-cores}\} \stackrel{1:1}{\longleftrightarrow} \{q \in \mathbb{Z}^e \text{ summing to } 0\}$$

$$\{e\text{-cores}\} \stackrel{1:1}{\longleftrightarrow} \{q \in \mathbb{Z}^e \text{ summing to } 0\}$$

$$\{e\text{-cores}\} \stackrel{1:1}{\longleftrightarrow} \{q \in \mathbb{Z}^e \text{ summing to } 0\}$$

$$\{e\text{-cores}\} \stackrel{1:1}{\longleftrightarrow} \{q \in \mathbb{Z}^e \text{ summing to } 0\}$$

$$\{e\text{-cores}\} \stackrel{1:1}{\longleftrightarrow} \{q \in \mathbb{Z}^e \text{ summing to } 0\}$$

$$\{e\text{-cores}\} \stackrel{1:1}{\longleftrightarrow} \{q \in \mathbb{Z}^e \text{ summing to } 0\}$$

$$\{e\text{-cores}\} \stackrel{1:1}{\longleftrightarrow} \{q \in \mathbb{Z}^e \text{ summing to } 0\}$$

$$\{e\text{-cores}\} \stackrel{1:1}{\longleftrightarrow} \{q \in \mathbb{Z}^e \text{ summing to } 0\}$$

$$\{e\text{-cores}\} \stackrel{1:1}{\longleftrightarrow} \{q \in \mathbb{Z}^e \text{ summing to } 0\}$$

$$\{e\text{-cores}\} \stackrel{1:1}{\longleftrightarrow} \{q \in \mathbb{Z}^e \text{ summing to } 0\}$$

$$\{e\text{-cores}\} \stackrel{1:1}{\longleftrightarrow} \{q \in \mathbb{Z}^e \text{ summing to } 0\}$$

$$\{e\text{-cores}\} \stackrel{1:1}{\longleftrightarrow} \{q \in \mathbb{Z}^e \text{ summing to } 0\}$$

$$\{e\text{-cores}\} \stackrel{1:1}{\longleftrightarrow} \{q \in \mathbb{Z}^e \text{ summing to } 0\}$$

$$\{e\text{-cores}\} \stackrel{1:1}{\longleftrightarrow} \{q \in \mathbb{Z}^e \text{ summing to } 0\}$$

$$\{e\text{-cores}\} \stackrel{1:1}{\longleftrightarrow} \{q \in \mathbb{Z}^e \text{ summing to } 0\}$$

$$\{e\text{-cores}\} \stackrel{1:1}{\longleftrightarrow} \{q \in \mathbb{Z}^e \text{ summing to } 0\}$$

$$\{e\text{-cores}\} \stackrel{1:1}{\longleftrightarrow} \{q \in \mathbb{Z}^e \text{ summing to } 0\}$$

$$\{e\text{-cores}\} \stackrel{1:1}{\longleftrightarrow} \{q \in \mathbb{Z}^e \text{ summing to } 0\}$$

$$\{e\text{-cores}\} \stackrel{1:1}{\longleftrightarrow} \{q \in \mathbb{Z}^e \text{ summing to } 0\}$$

$$\{e\text{-cores}\} \stackrel{1:1}{\longleftrightarrow} \{q \in \mathbb{Z}^e \text{ summing to } 0\}$$

Example The partition $\lambda = (3, 1) = \square$ is a 3-core.

We see that λ is encoded by the vector q = (0, -1, 1).

Thomas Gerber

A formula for the size

Theorem (Garvan-Kim-Stanton 1990, Chapelier-G. 2022)

Let λ be an *e*-core of size *N*, and $q = (q_1, \ldots, q_e)$ its coding vector. Then

$$N = \frac{e}{2} \sum_{i=1}^{e} q_i^2 - \sum_{i=1}^{e} (e-i)q_i$$

A formula for the size

Theorem (Garvan-Kim-Stanton 1990, Chapelier-G. 2022)

Let λ be an *e*-core of size *N*, and $q = (q_1, \ldots, q_e)$ its coding vector. Then

$$N = \frac{e}{2} \sum_{i=1}^{e} q_i^2 - \sum_{i=1}^{e} (e-i)q_i$$

Example For e = 3 we obtain

$$N = 3(q_1^2 + q_2^2 + q_1q_2) - 2q_1 - q_2.$$

A Diophantine equation for e = 3

We can perform a Gaussian reduction and obtain the equivalent identity

$$(3q_1 + 6q_2 - 1)^2 + 3(3q_1 - 1)^2 = 12N + 4.$$

A Diophantine equation for e = 3

We can perform a Gaussian reduction and obtain the equivalent identity

$$(3q_1 + 6q_2 - 1)^2 + 3(3q_1 - 1)^2 = 12N + 4.$$

Therefore, each 3-core of size N yields an integer solution of

$$x^2 + 3y^2 = 12N + 4$$
 (E

A Diophantine equation for e = 3

We can perform a Gaussian reduction and obtain the equivalent identity

$$(3q_1 + 6q_2 - 1)^2 + 3(3q_1 - 1)^2 = 12N + 4.$$

Therefore, each 3-core of size N yields an integer solution of

$$x^2 + 3y^2 = 12N + 4 (E$$

... Actually, we have a much stronger result.

Theorem (Brunat-Nath 2022) {3-cores of N} × $\mathbb{Z}/6\mathbb{Z}$ $\stackrel{1:1}{\longleftrightarrow}$ {integer solutions of (E)}.

G-set structure of the solution set

More precisely, the group

$$G = \left\langle rac{1}{2} \begin{pmatrix} 1 & -3 \\ 1 & 1 \end{pmatrix}
ight
angle \simeq \mathbb{Z}/6\mathbb{Z}$$

acts freely on the solutions, and each orbit has a unique representative of the form $\varphi(q) = (3q_1 + 6q_2 - 1, 3q_1 - 1)$.

G-set structure of the solution set

More precisely, the group

$$G = \left\langle rac{1}{2} egin{pmatrix} 1 & -3 \ 1 & 1 \end{pmatrix}
ight
angle \simeq \mathbb{Z}/6\mathbb{Z}$$

acts freely on the solutions, and each orbit has a unique representative of the form $\varphi(q) = (3q_1 + 6q_2 - 1, 3q_1 - 1)$.

Example Let N = 4. There are two 3-cores λ of size 4:

III - Generalisations using root systems

 s_i = reflection through these hyperplanes

 $W = \langle s_0, s_1, \ldots, s_{e-1} \rangle = \langle s_1, \ldots, s_{e-1} \rangle \ltimes T(\mathbb{Z}\alpha_1 + \ldots + \mathbb{Z}\alpha_{e-1}).$

The fundamental chamber

$$M$$
 lattice in \mathbb{R}^d
 $1:1$
 $(d+1)$ -cores

Affine Weyl group
of type
$$A_d^{(1)}$$
 \leftrightarrow { alcoves }
 $W = W_0 \ltimes T(M)$
 \downarrow
Affine Grassmannian
 $W/W_0 \simeq M$
 M lattice in \mathbb{R}^d \leftrightarrow { alcoves in the
fundamental chamber }
 $1:1$
 $(d + 1)$ -cores

Affine Weyl group $\stackrel{1:1}{\longleftrightarrow} \{ alcoves \}$ of rank d (Dynkin classification) $W = W_0 \ltimes T(M)$ Affine Grassmannian $\stackrel{1:1}{\longleftrightarrow} \left\{ \begin{array}{l} \text{alcoves in the} \\ \text{fundamental chamber} \end{array} \right\}$ $W/W_0 \simeq M$ M lattice in \mathbb{R}^d 1:1partition model?

Some new results

Focus on rank 2 Dynkin types.

Theorem (Brunat–Chapelier–G. 2024)

Type
$$C_2^{(1)}$$
 $\begin{cases} \text{self-conjugate} \\ 4\text{-cores of } N \end{cases} \times D_8$ $\stackrel{1:1}{\longleftrightarrow}$ $\begin{cases} \text{integer solutions of} \\ x^2 + y^2 = 8N + 5 \end{cases}$ Type $D_3^{(2)}$ $\mathscr{D}_6(N)$ \times D_8 $\stackrel{1:1}{\longleftrightarrow}$ $\begin{cases} \text{integer solutions of} \\ x^2 + y^2 = 12N + 5 \end{cases}$ Type $D_4^{(3)}$ $\mathscr{D}_4^{\flat}(N)$ $\times (\mathbb{Z}/2\mathbb{Z})^2$ $\stackrel{1:1}{\longleftrightarrow}$ $\begin{cases} \text{integer solutions of} \\ x^2 + 3y^2 = 12N + 7 \end{cases}$

Here, $\mathscr{D}_{2d+2}(N)$ and $\mathscr{D}_{2d}^{\flat}(N)$ are partition models realised in terms of 2d + 2 cores (Lecouvey–Wahiche 2024).

Example Type $C_2^{(1)}$ Let N = 40.

Type
$$D_4^{(3)}$$
 Let $N = 7$.

