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I. BSTs and permutons

Binary Search Trees

A Binary Search Tree (BST) is a rooted labeled binary tree such that:
for each vertex v , all labels of vertices in its left-subtree are smaller
than that of v (resp. right-subtree, greater).

BST associated with a sequence of distinct numbers

Let y = (y1, . . . , yn) be a sequence of distinct numbers. We can
construct a BST T ⟨y⟩ by successively adding leaves with those labels.

Construction of T ⟨y⟩ with y = (.71, .39, .52, .85, .13):

.71 .71 .71 .71 .71

.39 .39 .39 .39 .85.85

.52 .52 .52.13

3

Rem: same shape as T ⟨σ⟩ with σ = (4, 2, 3, 5, 1).
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I. BSTs and permutons

Goal: Study T ⟨σ⟩ where σ is a random permutation.

Q: What kind of randomness?



I. BSTs and permutons

Permutons
A permuton is a probability measure µ on [0, 1]2 with uniform
marginals:

∀t ∈ [0, 1], µ([0, t]×[0, 1]) = µ([0, 1]×[0, t]) = t.
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I. BSTs and permutons

Permuton samples

Let P = {(x1, y1), . . . , (xn, yn)} ⊂ R2 with no common x- or y-
coordinate.
Define a reordering (x(1), y(1)), . . . , (x(n), y(n)) by x(1) < · · · < x(n).
There exists a unique permutation σ = σ⟨P⟩ such that
(y(1), . . . , y(n)) and (σ(1), . . . , σ(n)) are in the same relative order.

(0.2, 0.3)

(0.3, 0.6)

(0.5, 0.1)

(0.6, 0.8)

(0.8, 0.5)

(0.9, 0.7)

σ⟨P⟩ = (2, 4, 1, 6, 3, 5)

P

(y(1), . . . , y(6)) = (0.3, 0.6, 0.1, 0.8, 0.5, 0.7)

Rem: if µ = Leb[0,1]2 then σnµ is uniformly random.
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Permuton samples

If P is random i.i.d. under a permuton µ, this permutation σnµ is a
permuton sample.
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Motivation:

Continuous deformation of the uniform distribution

Highly non-parametric, wide range of distributions
Insight on the links between random permutations and their
limit permuton
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I. BSTs and permutons

More on permuton theory...

From permutations to permutons

To each permutation σ ∈ Sn we can associate a permuton µσ with:

dµσ
d Leb[0,1]2

= n ·
n∑

i=1

1
[ i−1

n
, i
n ]×

[
σ(i)−1

n
,
σ(i)
n

] .

σ = 4 1 2 5 6 3 −→
1/6

1/6

1/6

1/6

1/6

1/6



I. BSTs and permutons

Convergence of a sequence of permutations

If (σn)n∈N is a sequence of permutations and µ is a permuton, we
say that (σn)n∈N converges towards µ when µσn −→

n→∞
µ weakly.

Identity permutations converge to the diagonal permuton.
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Convergence of a sequence of permutations

If (σn)n∈N is a sequence of permutations and µ is a permuton, we
say that (σn)n∈N converges towards µ when µσn −→

n→∞
µ weakly.
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Uniform permutations converge a.s. to Leb[0,1]2 .



I. BSTs and permutons

Convergence of a sequence of permutations

If (σn)n∈N is a sequence of permutations and µ is a permuton, we
say that (σn)n∈N converges towards µ when µσn −→

n→∞
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Mallows permutations with parameter qn = 1− β
n (cf later) converge

in probability to the Mallows permuton µβ .



I. BSTs and permutons

Convergence of a sequence of permutations

If (σn)n∈N is a sequence of permutations and µ is a permuton, we
say that (σn)n∈N converges towards µ when µσn −→

n→∞
µ weakly.

Hoppen et al ’13

For any permuton µ, the sequence of sampled permutations (σnµ)
converges a.s. to µ.



I. BSTs and permutons

Goal (reminder):

Study T ⟨σnµ⟩ where σnµ is sampled from a permuton µ.



I. BSTs and permutons

BST of a point process

Let P = {(x1, y1), . . . , (xn, yn)} ⊂ R2 with no common x- or y-
coordinate.
Define a reordering (x(1), y(1)), . . . , (x(n), y(n)) by x(1) < · · · < x(n).
The BST of P is defined as T ⟨P⟩ = T ⟨y(1), . . . , y(n)⟩.
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(0.5, 0.1)

(0.6, 0.8)

(0.8, 0.5)

(0.9, 0.7)

σ〈P〉 = (2, 4, 1, 6, 3, 5)

P

T 〈P〉 =

0.3

0.60.1

0.80.5

0.7

(y(1), . . . , y(6)) = (0.3, 0.6, 0.1, 0.8, 0.5, 0.7)

Rem: T ⟨P⟩ has the same shape as T ⟨σ⟨P⟩⟩.
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Rem: T ⟨P⟩ has the same shape as T ⟨σ⟨P⟩⟩.



II. Universality of the height

The height of a BST determines the complexity of operations such
as lookup, addition or removal of data.

Q: Let σ be a (random) permutation. What is the height of T ⟨σ⟩?

In general:

n ≥ h (T ⟨σ(1), . . . , σ(n)⟩) ≥ log2(n + 1)

Depending on the law of σ, asymptotic results for h (T ⟨σ⟩)?
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II. Universality of the height

Devroye ’86

If σn ∼ Unif (Sn) then, as n → ∞:
h (T ⟨σn⟩)
c∗ log n

−→ 1

in probability and in Lp for all p ≥ 1, where c∗ ≥ 2 solves
c log(2e/c) = 1.
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h (T ⟨σn⟩)
c∗ log n

−→ 1

in probability and in Lp for all p ≥ 1, where c∗ ≥ 2 solves
c log(2e/c) = 1.

Idea:

The root is labeled by σ(1) ∼ Unif ([n]); the left-subtree has size
σ(1)− 1 and the right-subtree has size n − σ(1).

At each node, the split between the left- and right-subtree is uniform
−→ the height is related to products of Ui or 1−Ui , where the Ui ’s
are i.i.d. uniform variables in [0, 1].
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If σn ∼ Unif (Sn) then, as n → ∞:
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c∗ log n
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c log(2e/c) = 1.

Let q ∈ [0, 1]. The Mallows distribution Mn,q is defined by:

∀σ ∈ Sn, Mn,q(σ) ∝ qinv(σ) .

Addario-Berry – Corsini ’21
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II. Universality of the height

Devroye ’86

If σn ∼ Unif (Sn) then, as n → ∞:
h (T ⟨σn⟩)
c∗ log n

−→ 1

in probability and in Lp for all p ≥ 1, where c∗ ≥ 2 solves
c log(2e/c) = 1.

Let θ > 0. The record-biased distribution Rn,θ is defined by:

∀σ ∈ Sn, Rn,θ(σ) ∝ θrec(σ) .

Corsini ’23
If σn ∼ Rn,θ where θ ≤ c∗, then:

h (T ⟨σn⟩)
c∗ log n

−→ 1

in probability and in Lp for all p ≥ 1.



II. Universality of the height

Assumption (A1):

µ has a bounded den-
sity ρ on [0, 1]2, which
is continuous and pos-
itive on a neighbor-
hood of {0} × [0, 1].

Corsini – D. – Féray ’24

Let µ be a permuton satisfying (A1).
Then: h

(
T ⟨σnµ⟩

)
c∗ log n

−→ 1

in probability and in Lp for all p ≥ 1.

positive, continuous density

bounded density
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√
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II. Universality of the height

Assumption (A1):

µ has a bounded den-
sity ρ on [0, 1]2, which
is continuous and pos-
itive on a neighbor-
hood of {0} × [0, 1].

Corsini – D. – Féray ’24

Let µ be a permuton satisfying (A1).
Then: h

(
T ⟨σnµ⟩

)
c∗ log n

−→ 1

in probability and in Lp for all p ≥ 1.

Question: Is there a permuton µ for which lim inf
h(T ⟨σn

µ⟩)
log n < c∗?

β
1− β

Height ∼ cβ log n for some cβ > c∗
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Height ≥ c
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III. Proof ideas

“Top tree” “hanging trees”

positive, continuous density

bounded density

h (Ttop) ≤ h
(
T ⟨σnµ⟩

)
≤ h (Ttop) + 1 +max

k
h
(
T k

hanging

)

Two steps:
1 h (Ttop) ∼ c∗ log n;

2 maxk h
(
T k

hanging

)
= o (log n).
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This is mainly done via coupling techniques and deviation estimates.

Problem: taking out a point might double the height...

height = 4 height = 6
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III. Proof ideas

Definition
A chain in a tree T is a subset C of vertices, which are all on a
common branch of T .

Lemma
Let P− ⊆ P+ be two point sets.
If C ⊆ P+ is a chain in T ⟨P+⟩, then C ∩ P− is a chain in T ⟨P−⟩.
If C is a chain of maximal size in T ⟨P+⟩ then:

h (T ⟨P−⟩) ≥ h (T ⟨P+⟩)− |C ∩ (P+ \ P−)| .

If P− ⊆ P ⊆ P+, we can apply this lemma twice: with P− ⊆ P,
and with P ⊆ P+. Thus:

h (T ⟨P+⟩)−|C+∩(P+\P)|
negligible?

≤ h (T ⟨P⟩) ≤ h (T ⟨P−⟩)+|C∩(P\P−)|
negligible?
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A chain in a tree T is a subset C of vertices, which are all on a
common branch of T .

Lemma
Let P− ⊆ P+ be two point sets.
If C ⊆ P+ is a chain in T ⟨P+⟩, then C ∩ P− is a chain in T ⟨P−⟩.
If C is a chain of maximal size in T ⟨P+⟩ then:
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III. Proof ideas

Hyp: µ has a density ρ, bounded above and below on [0, β]× [0, 1].

Goal: height of the top tree.

1 “Poissonization”: easier to work with a Poisson point process P
with intensity nρ;

2 “Thinning”: there exist homogeneous Poisson point processes
such that P− ⊆ P ⊆ P+

−→ estimate on h (T ⟨P⟩);
3 “dePoissonization” techniques.
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III. Proof ideas

Hyp: µ has a density ρ, bounded above and below on [0, β]× [0, 1].

Goal: height of the top tree.

1 “Poissonization”: easier to work with a Poisson point process P
with intensity nρ;

2 “Thinning”: there exist homogeneous Poisson point processes
such that P− ⊆ P ⊆ P+

−→ (good?) estimate on h (T ⟨P⟩);
3 “dePoissonization” techniques.



III. Proof ideas

Using Devroye’s result:

If ρ(x , y) = 1, then σnρ is uniform and h
(
T ⟨σnρ⟩

)
∼ c∗ log n.

−→ if ρ on [0, β]× [0, 1] is close to a function that only depends on
y , then the top tree is close to the BST of a uniform permutation.

Top tree:
height ∼ c∗ log n

“Top tree”

positive, continuous density

bounded density
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III. Proof ideas

Using Devroye’s result:

If ρ(x, y) = f(x) · g(y), then σnρ is uniform and h
(
T ⟨σnρ⟩

)
∼ c∗ log n.

−→ if ρ on [0, β]× [0, 1] is close to a function that only depends on
y , then the top tree is close to the BST of a uniform permutation.

Top tree:
height ∼ c∗ log n

Hanging trees:
height ≪ log n?

“Top tree” “hanging trees”

positive, continuous density

bounded density



III. Proof ideas

Lemma
Let {Yi , 1 ≤ i ≤ n} be i.i.d. random variables with law µ0 on [0, 1],
such that µ0 has a positive density. Let Y(1) < · · · < Y(n) be their
increasing reordering, and ζk := Y(k+1) − Y(k) be the k-th spacing.
Then:

max
k
ζk = OP

(
log n

n

)
.

Hanging trees: the largest vertical gap of the points on the left is
O (log(n)/n), so the maximum number of points in a hanging tree
is O (log n).

A typical hanging tree should have height O (log log n). Can we
argue that they all have height o (log n)?

−→ comparison arguments along with deviation estimates.
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III. Proof ideas

Comparison with monotone subsequences

h (T ⟨σ⟩) ≤ LIS (σ) + LDS (σ) .

Extreme deviations for monotone subsequences

If σn is a uniformly random permutation of [n] then:

P
[
LIS (σn) ≥ n

log n

]
≤ exp (−n + o(n)) .

−→ Since ρ ≤ M, we can write P ⊆ P+ (homogeneous PPP)
−→ Deviation inequality for LIS

(
Pk

hanging

)
≤ LIS

(
Pk
+

)
on each

horizontal band
−→ All hanging trees have height ≪ log n.
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III. Proof ideas

Assumption (A1):

µ has a bounded den-
sity ρ on [0, 1]2, which
is continuous and pos-
itive on a neighbor-
hood of {0} × [0, 1].

Corsini – D. – Féray ’24

Let µ be a permuton satisfying (A1).
Then: h

(
T ⟨σnµ⟩

)
c∗ log n

−→ 1

in probability and in Lp for all p ≥ 1.

“Top tree” “hanging trees”

positive, continuous density

bounded density



IV. Subtree sizes

Even when the height is the same, can we detect the difference
between two permuton BSTs?

Subtree sizes
Let T be a finite rooted tree. If v ∈ T , we let t(T , v) be the
proportion of nodes that are descendants of v (including itself).
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IV. Subtree sizes

Subtree size convergence [Grübel ’23]

Let (Tn) be a sequence of binary trees. We say that it converges for
the subtree size topology if t(Tn, v) converges for all fixed v . The
decoration of the infinite binary tree with these limits is the subtree
size limit.

1

7/15 7/15

3/15 3/15

1/15 1/15 1/15 1/15 1/15 1/15 1/15 1/15

3/153/15

sst

→ ∞height

1
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1/8 1/8 1/8 1/8 1/8 1/8 1/8

1/41/4

1/8

Rem: The limit object can be thought of as a probability measure
on infinite paths.
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IV. Subtree sizes

Subtree size limit sampled by a measure

Let m be a probability measure on [0, 1] with no atom. Let
(Y1,Y2, . . . ) be i.i.d. under m, and let T ⟨Y ⟩ be their infinite BST.
For each node v , let ψm(v) be the difference between the labels of
the leftmost ancestor to the right of v , and the rightmost ancestor
to the left of v . Thus: ψm is a random subtree size limit.

Ex: say m = 2xdx and Y = (0.73, 0.33, 0.75, 0.35, 0.68, 0.28, . . . ).
BST T ⟨Y ⟩
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Subtree size limit sampled by a measure

Let m be a probability measure on [0, 1] with no atom. Let
(Y1,Y2, . . . ) be i.i.d. under m, and let T ⟨Y ⟩ be their infinite BST.
For each node v , let ψm(v) be the difference between the labels of
the leftmost ancestor to the right of v , and the rightmost ancestor
to the left of v . Thus: ψm is a random subtree size limit.

Ex: say m = 2xdx and Y = (0.73, 0.33, 0.75, 0.35, 0.68, 0.28, . . . ).
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vv

ψm(v) = .73− .33 = .4

BST T ⟨Y ⟩
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IV. Subtree sizes

Assumption (A2):

There exists a measure µ0 on [0, 1] with no atoms such that

1
x
µ([0, x ]× ·) −→

x→0+
µ0 . (1)

(A2) is weaker than (A1).

Corsini – D. – Féray ’24

If µ satisfies (A2) then, in distribution:

T ⟨Pn
µ⟩

ssc−→ ψµ0 .

If T ⟨Pn
µ⟩ converges in distribution for the subtree size

topology then (1) is satisfied, but µ0 may have atoms.
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µ ≈ Leb[0,β] ⊗ µ0

β small
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K large



IV. Subtree sizes

µ ≈ Leb[0,β] ⊗ µ0

β small

} ≈ (1/4− 1/8) · n points

1/2

11/16

1/8 3/4

15/161/16 1/4

7/16 7/8

First K generations,

K large



(0.2, 0.3)

(0.3, 0.6)

(0.5, 0.1)

(0.6, 0.8)

(0.8, 0.5)

(0.9, 0.7)

σ⟨P⟩ = (2, 4, 1, 6, 3, 5)

P

T ⟨P⟩ =

0.3

0.60.1

0.80.5

0.7

(y(1), . . . , y(6)) = (0.3, 0.6, 0.1, 0.8, 0.5, 0.7)

90◦

Thank you for your attention!

“Top tree” “hanging trees”

positive, continuous density

bounded density


