Parking sur des arbres de Bienaymé—Galton—Watson géométriques surcritiques

#### Alice CONTAT LAGA – Université Sorbonne Paris Nord

avec Linxiao  $\operatorname{CHEN}$ 

Journées de combinatoire de Bordeaux 3 Février 2025























Add a car decoration  $(A_u : u \in t)$  on each vertex, i.i.d. with law  $\mu$ 

Add a car decoration  $(A_u : u \in t)$  on each vertex, i.i.d. with law  $\mu$ 

X = Number of outgoing cars.

Add a car decoration  $(A_u : u \in t)$  on each vertex, i.i.d. with law  $\mu$ 

X = Number of outgoing cars.

Example and motivation: Family of laws ( $\mu^{\alpha} : \alpha > 0$ ) stochastically increasing with  $\mathbb{E}[\mu^{\alpha}] = \alpha$ .

Add a car decoration  $(A_u : u \in t)$  on each vertex, i.i.d. with law  $\mu$ 

X = Number of outgoing cars.

Example and motivation: Family of laws ( $\mu^{\alpha} : \alpha > 0$ ) stochastically increasing with  $\mathbb{E}[\mu^{\alpha}] = \alpha$ .

 $\longrightarrow$  Phase transition





# Subcritical regime



Flux of outgoing cars  $= o_{\mathbb{P}}(n)$ 

# Critical regime



Flux of outgoing cars  $= o_{\mathbb{P}}(n)$ 

# Supercritical regime



Flux of outgoing cars =  $(c + o_{\mathbb{P}}(1))n$ 

If t is a deterministic infinite tree (e.g. line or binary tree)

X = number of outgoing cars.

If t is a deterministic infinite tree (e.g. line or binary tree)

X = number of outgoing cars.

- **Subcritical :**  $X < \infty$  almost surely.
- **Supercritical :**  $X = \infty$  almost surely.

If t is a deterministic infinite tree (e.g. line or binary tree)

X = number of outgoing cars.

- **Subcritical :**  $X < \infty$  almost surely.
- **Supercritical :**  $X = \infty$  almost surely.

We can define a "phase transition" for finite but large trees (see later).

#### Case of the line



#### Case of the line



"Trivial" phase transition: always at  $\alpha = 1$  whatever the distribution.

Fix  $t = T_n$  a Bienaymé–Galton–Watson tree conditioned to have *n* vertices with offspring distribution

$$\nu = \sum_{k=0}^{\infty} \nu_k \delta_k$$
 aperiodic with mean 1 and finite variance  $\Sigma^2$ .

Fix  $t = T_n$  a Bienaymé–Galton–Watson tree conditioned to have *n* vertices with offspring distribution

$$\nu = \sum_{k=0}^{\infty} \nu_k \delta_k$$
 aperiodic with mean 1 and finite variance  $\Sigma^2$ .

- The car arrivals on each vertex are independent.
- The law of the car arrivals only depends on the degree of the vertex.

#### Phase transition on critical random trees

Building on [Curien, Hénard 2019]

#### Theorem (C. 2020)

We observe a phase transition which depends only on

$$\Theta = (1 - \alpha)^2 - \Sigma^2 (\alpha + \alpha^2 - \sigma^2)$$
 or  $\Theta = \Theta(\Sigma^2, ...)$ 

|                                         | subcritical  | critical              | supercritical        |
|-----------------------------------------|--------------|-----------------------|----------------------|
|                                         | $\Theta > 0$ | $\Theta = 0$          | $\Theta < 0$         |
| $arphi(\mathcal{T}_n)$ when $n	o\infty$ | finite       | <i>o</i> ( <i>n</i> ) | $\sim$ cn with c > 0 |
| $\mathbb{E}[arphi(\mathcal{T})]$        |              |                       |                      |
| $ C_{\max}(n) $ when $n \to \infty$     |              |                       |                      |

#### Phase transition on critical random trees

Building on [Curien, Hénard 2019]

#### Theorem (C. 2020)

We observe a phase transition which depends only on

$$\Theta = (1 - \alpha)^2 - \Sigma^2 (\alpha + \alpha^2 - \sigma^2)$$
 or  $\Theta = \Theta(\Sigma^2, ...)$ 

|                                                 | subcritical  | critical     | supercritical          |
|-------------------------------------------------|--------------|--------------|------------------------|
|                                                 | $\Theta > 0$ | $\Theta = 0$ | $\Theta < 0$           |
| $arphi(\mathcal{T}_n)$ when $n ightarrow\infty$ | finite       | o(n)         | $\sim$ cn with c $>$ 0 |
| $\mathbb{E}[arphi(\mathcal{T})]$                | $<\infty$    | $=\infty$    | $=\infty$              |
| $ C_{\max}(n) $ when $n \to \infty$             |              |              |                        |

#### Phase transition on critical random trees

Building on [Curien, Hénard 2019]

#### Theorem (C. 2020)

We observe a phase transition which depends only on

$$\Theta = (1 - \alpha)^2 - \Sigma^2 (\alpha + \alpha^2 - \sigma^2)$$
 or  $\Theta = \Theta(\Sigma^2, ...)$ 

|                                           | subcritical      | critical              | supercritical        |
|-------------------------------------------|------------------|-----------------------|----------------------|
|                                           | $\Theta > 0$     | $\Theta = 0$          | $\Theta < 0$         |
| $arphi(\mathcal{T}_n)$ when $n 	o \infty$ | finite           | <i>o</i> ( <i>n</i> ) | $\sim$ cn with c > 0 |
| $\mathbb{E}[arphi(\mathcal{T})]$          | $<\infty$        | $=\infty$             | $=\infty$            |
| $ C_{\max}(n) $ when $n \to \infty$       | $\leq A \log(n)$ | ?                     | $\sim$ Cn avec C > 0 |

# And for SUPERCRITICAL trees?

#### Location of the transition in the binary case



Take t the infinite binary tree. Let G be the generating function of the law  $\mu$  of the car arrivals.

#### Theorem (Aldous, C., Curien, Hénard, 2022)

Suppose there exists

$$t_c = \min \{t \ge 0, \ 2(G(t) - tG'(t))^2 = t^2 G(t)G''(t)\}$$

Take t the infinite binary tree. Let G be the generating function of the law  $\mu$  of the car arrivals.

#### Theorem (Aldous, C., Curien, Hénard, 2022)

Suppose there exists

$$t_c = \min \{t \ge 0, 2(G(t) - tG'(t))^2 = t^2 G(t)G''(t)\}$$

The parking process is subcritical if and only if

$$(t_c-2)G(t_c)\geq t_c(t_c-1)G'(t_c).$$

Take t the infinite binary tree. Let G be the generating function of the law  $\mu$  of the car arrivals.

#### Theorem (Aldous, C., Curien, Hénard, 2022)

Suppose there exists

$$t_c = \min \{t \ge 0, 2(G(t) - tG'(t))^2 = t^2 G(t)G''(t)\}$$

The parking process is subcritical if and only if

$$(t_c-2)G(t_c)\geq t_c(t_c-1)G'(t_c).$$

In the generic situation, the time  $t_c$  exists.

| Car arrivals                                                               | Critical value $\alpha_c$ |
|----------------------------------------------------------------------------|---------------------------|
| Binary 0/2                                                                 |                           |
| $\mu^{\alpha} = (1 - \frac{\alpha}{2})\delta_0 + \frac{\alpha}{2}\delta_2$ |                           |
| Binary 0/k                                                                 |                           |
| $\mu^{lpha} = (1 - rac{lpha}{k})\delta_0 + rac{lpha}{k}\delta_k$         |                           |
| Poisson                                                                    |                           |
| $G_{\alpha}(t) = \exp(t(\alpha - 1))$                                      |                           |
| Geometric                                                                  |                           |
| $G_{\alpha}(t) = rac{1}{1+lpha-lpha t}$                                   |                           |

| Car arrivals                                                               | Critical value $\alpha_c$ |
|----------------------------------------------------------------------------|---------------------------|
| Binary 0/2                                                                 | 1                         |
| $\mu^{\alpha} = (1 - \frac{\alpha}{2})\delta_0 + \frac{\alpha}{2}\delta_2$ | 14                        |
| Binary 0/k                                                                 |                           |
| $\mu^{\alpha} = (1 - \frac{\alpha}{k})\delta_0 + \frac{\alpha}{k}\delta_k$ |                           |
| Poisson                                                                    |                           |
| $G_{\alpha}(t) = \exp(t(\alpha - 1))$                                      |                           |
| Geometric                                                                  |                           |
| $G_{lpha}(t) = rac{1}{1+lpha-lpha t}$                                     |                           |

| Car arrivals                                                               | Critical value $\alpha_c$      |
|----------------------------------------------------------------------------|--------------------------------|
| Binary 0/2                                                                 | 1                              |
| $\mu^{\alpha} = (1 - \frac{\alpha}{2})\delta_0 + \frac{\alpha}{2}\delta_2$ | 14                             |
| Binary 0/k                                                                 | $\sim Cste$                    |
| $\mu^{\alpha} = (1 - \frac{\alpha}{k})\delta_0 + \frac{\alpha}{k}\delta_k$ | 2 <sup><i>k</i></sup> <i>k</i> |
| Poisson                                                                    |                                |
| $G_{\alpha}(t) = \exp(t(\alpha - 1))$                                      |                                |
| Geometric                                                                  |                                |
| $G_{lpha}(t) = rac{1}{1+lpha-lpha t}$                                     |                                |

| Car arrivals                                                               | Critical value $\alpha_c$ |
|----------------------------------------------------------------------------|---------------------------|
| Binary 0/2                                                                 | 1                         |
| $\mu^{\alpha} = (1 - \frac{\alpha}{2})\delta_0 + \frac{\alpha}{2}\delta_2$ | 14                        |
| Binary 0/k                                                                 | $\sim Cste$               |
| $\mu^{\alpha} = (1 - \frac{\alpha}{k})\delta_0 + \frac{\alpha}{k}\delta_k$ | 2 <sup>k</sup> k          |
| Poisson                                                                    | $3 - 2\sqrt{2}$           |
| $G_{\alpha}(t) = \exp(t(\alpha - 1))$                                      |                           |
| Geometric                                                                  |                           |
| $G_{\alpha}(t) = rac{1}{1+lpha-lpha t}$                                   |                           |

| Car arrivals                                                               | Critical value $\alpha_c$      |
|----------------------------------------------------------------------------|--------------------------------|
| Binary 0/2                                                                 | 1                              |
| $\mu^{\alpha} = (1 - \frac{\alpha}{2})\delta_0 + \frac{\alpha}{2}\delta_2$ | 14                             |
| Binary 0/k                                                                 | $\sim \frac{Cste}{L}$          |
| $\mu^{\alpha} = (1 - \frac{\alpha}{k})\delta_0 + \frac{\alpha}{k}\delta_k$ | 2 <sup><i>k</i></sup> <i>k</i> |
| Poisson                                                                    | $3 - 2\sqrt{2}$                |
| $G_{\alpha}(t) = \exp(t(\alpha - 1))$                                      |                                |
| Geometric                                                                  | $\frac{1}{2}$                  |
| $G_{lpha}(t) = rac{1}{1+lpha-lpha t}$                                     | 8                              |

And for supercritical RANDOM trees?

• Consider a Bienaymé—Galton—Watson tree  $\mathcal{T}$  with geometric offspring distribution

$$\nu_q = \sum_{k=0}^{+\infty} q^k (1-q) \delta_k$$

with q > 1/2.

• Again, we denote by *X* the number of outgoing cars.

- **Subcritical** : *X* is almost surely finite.
- **Supercritical :** *X* is infinite as soon an  $\mathcal{T}$  is infinite.

#### Decomposition of the final configuration into clusters of parked cars

- Decomposition of the final configuration into clusters of parked cars
- Prerequisite: Enumeration of Fully parked trees.

- Decomposition of the final configuration into clusters of parked cars
- Prerequisite: Enumeration of Fully parked trees.

We denote by

 $p_{\circ} = \mathbb{P}(\text{the root is empty}), \text{ and}$  $p_{\bullet} = \mathbb{P}(X = 0 \text{ and the root is parked}).$ 

$$F(x, y) = \sum_{n \ge 0} \sum_{p \ge 0} \sum_{\mathbf{t} \in \text{FPT}_n^p} w(\mathbf{t}) x^n y^p$$





$$p_{\bullet} = \frac{(1-q)G(0)}{1-q(p_{\bullet}+p_{\bullet})}$$



$$p_{\bullet} = \frac{(1-q)G(0)}{1-q(p_{\bullet}+p_{\bullet})}$$

$$\forall k \ge 0, \quad \mathbb{P}\left(X = k+1\right) = \frac{1 - qp_{\circ}}{q} [y^k] F\left(\frac{q(1-q)}{(1-qp_{\circ})^2}, y\right)$$





$$p_{\bullet} = \frac{(1-q)G(0)}{1-q(p_{\bullet}+p_{\bullet})}$$

$$p_{\bullet} = \frac{1 - qp_{\bullet}}{q} F\left(\frac{q(1 - q)}{(1 - qp_{\bullet})^2}, 0\right)$$



$$p_{\circ} = \frac{(1-q)G(0)}{1-q(p_{\circ}+p_{\bullet})}$$

$$p_{\bullet} = \frac{1 - qp_{\bullet}}{q} F\left(\frac{q(1 - q)}{(1 - qp_{\bullet})^2}, 0\right)$$

$$p_{\circ} = \frac{(1-q)G(0)}{1-q\left(p_{\circ} + \frac{1-qp_{\circ}}{q}F\left(\frac{q(1-q)}{(1-qp_{\circ})^{2}},0\right)\right)}$$

• Good News : Linxiao has already enumerated the fully parked trees ! (Expression for the function F)

- Good News : Linxiao has already enumerated the fully parked trees ! (Expression for the function F)
- Bad news: the previous equation does not characterize the subcritical regime

- Good News : Linxiao has already enumerated the fully parked trees ! (Expression for the function F)
- Bad news: the previous equation does not characterize the subcritical regime
- Solution: in the subcritical regime, we have  $\mathbb{P}(X < \infty) = 1$

- Good News : Linxiao has already enumerated the fully parked trees ! (Expression for the function F)
- Bad news: the previous equation does not characterize the subcritical regime
- Solution: in the subcritical regime, we have  $\mathbb{P}(X < \infty) = 1$

The parking process is subcritical if and only if there exists a positive solution  $p_{\circ}$  to the equation

$$\frac{1-qp}{q} \cdot F\left(\frac{q(1-q)}{(1-qp)^2},1\right) + p = 1$$

#### Theorem (Chen, C., 2024)

Suppose that there exists t<sub>c</sub> such that

$$t_c := \inf\{t > 0, (G(t) - tG'(t))^2 = 2t^2G(t)G''(t)\}.$$

Then the parking process is subcritical if and only if

$$t_c > 1$$
 and  $rac{t_c G(t_c)}{arphi(t_c)^2} \leq q(1-q),$ 

where  $\varphi(y) = (y+1)G(y) - y(y-1)G'(y)$ .

# Thank you for your attention !

