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Introduction

Mathematically open problem (even in the non-quantum se�ing) :

How and why do many materials order

at “sufficiently low temperature”? (“phase transition”)

(crystalline order, sometimes quasi-crystalline)

Very few results to date !

Toy models : la�ice models (Zd
).

Goal of this talk : A brief overview of this field of research...

... while minimizing the technical aspects. .

Rich interaction between statistical mechanics, ergodic theory,

(multidimensional) symbolic dynamics, and theoretical computer

science.



Thermodynamic formalism :

a (very brief) overview



Finite systems

Ingredients :

Ω : finite set (space of “configurations”).

“state” : probability vector ν = (ν(ω) : ω ∈ Ω).

Entropy of ν : H(ν) = −
∑

ω∈Ω ν(ω) log ν(ω) (∈ [0, log Card(Ω)]).

Energy function u : Ω→ R (supposed to take at least two distinct values).

In state ν, the energy of the system is ν(u) :=
∑

ω∈Ω ν(ω)u(ω).



Gibbs states

For β ≥ 0 (β = 1/T , T=“temperature” ), the Gibbs state µβ for the energy

function u is

µβ(ω) :=
e
−βu(ω)

Z(β)

where

Z(β) =
∑
ω∈Ω

e
−βu(ω)

(normalization/“partition function”).

Remarks :

When β = 0, µβ(ω) = 1/card(Ω) (equidistribution, maximal entropy)

All configurations have a > 0 µβ -probability.

What happens when β → +∞ (that is, when temperature goes to 0) ?



The variational principle

and eqilibrium states

Definition.

A state that minimizes ν 7→ ν(βu)− H(ν) is an equilibrium state for βu.

Proposition

For a state ν, one has

ν(βu)− H(ν) ≥ − log Z(β)

with equality if and only if ν = µβ .

Remark : P(β) := − log Z(β) is the “free energy” for βu.

(Recall that ν(u) =
∫

u dν =
∑

ω∈Ω u(ω)ν(ω).)



Proof

Fix a state ν.

Apply Jensen’s inequality to the convex function θ(x) = x log x,

and since µβ(ω) := e
−βu(ω) /Z(β) :

ν(βu)− H(ν) + log Z(β) =
∑
ω∈Ω

ν(ω) log
ν(ω)

µβ(ω)

=
∑
ω∈Ω

µβ(ω) θ

(
ν(ω)

µβ(ω)

)

≥ θ

(∑
ω∈Ω

µβ(ω)
ν(ω)

µβ(ω)

)
= θ(1) = 0.

θ is strictly convex, hence equality holds if and only if ω 7→ ν(ω)
µβ(ω) is

constant.

�



Minimizing configurations, ground states and

zero-temperature limit (β → +∞)

The set of minimizing configurations for u :

Ωmin =
{
ω : u(ω) = min

Ω
u
}
.

β → +∞ :

µβ(ω)→ µ∞(ω) :=
1{ω∈Ωmin}

card(Ωmin)
(zero-temperature limit),

i.e., equidistribution on Ωmin.

Hence the support of µβ becomes Ωmin ( Ω in the limit β → +∞.

(For every finite β, support(µβ)=Ω.)

Finally

H(µ∞) = log card(Ωmin) (= 0 i� card(Ωmin) = 1).



A state ν is called a “ground state ” for u if for every other state ν ′, we have

ν ′(u) ≥ ν(u) .

However, by the variational principle :

for every β > 0 and for every state ν,

ν(u)− H(ν)

β
≥ µβ(u)−

H(µβ)

β
.

Hence, si β → +∞, on a

ν(u) ≥ µ∞(u) .

Therefore µ∞ is a ground state (for u).

One can check that minν ν(u) = minΩ u = µ∞(u).



Lattice models on Zd
:

a (very) brief overview of Gibbs states and eqilibrium states

Ingredients :

� A finite set S, for instance :

S = {−,+} (“spins”) ;

S = {0, 1} (“empty/occupied” site) ;

S =

{ }
.

� Configurations : ω = (ωi)i∈Zd , ωi ∈ S, i site of the la�ice Zd
;

ω ∈ Ω = SZ
d
.

� Shi� (translation) : (T jω)i = ωi+j , i, j ∈ Zd
.

� Interaction between sites : Φ = (ΦΛ)ΛbZd (potential).



Two examples of potentials

Ising ferromagnetic model with nearest neighbor interaction :

S = {−,+}, ΦΛ(ω) =

{
−ωiωj , if Λ = {i, j}, |i− j|1 = 1

0 otherwise.

A more general model (“long range”) :

ΦΛ(ω) =

{
−J(i− j)ωiωj , if Λ = {i, j},
0 otherwise

where J(0) = 0 et

∑
i∈Zd | J(i)| <∞, for instance J(i− j) = 1

|i−j|α
1

, α > d .

Many more models : Po�s, Blume-Capel, etc.



Interlude : Why consider infinite latttices?

Because non-trivial phenomena of “phase transitions” can occur (while

they are impossible for finite systems).

A possible type of phase transition : non-uniqueness of equilibrium states

for certain temperature regimes (see, e.g., the Ising model).

We will see a di�erent type of phase transition.



Eqilibrium States

Given Φ and β, we seek the states (≡ probability measures on Ω) that are

shi�-invariant and minimize

ν 7→ ν(βϕ)− entropy(ν) ,

where ϕ : Ω→ R is the “energy per site” (derived from Φ).

Comments :

• ϕ =
∑

ΛbZd , 0∈Zd ΦΛ/card(Λ) .

• entropy(ν) : entropy “per unit volume” a�er taking the limit

(“thermodynamic limit”).



Gibbs states

Gibbs state for Φ at temperature β−1
:

we want to construct measures on Ω

(=SZ
d
) such that

Proba

(
ω in Λ

∣∣η in Λc)
∝ exp

(
− βUΦ

Λ (ωΛηΛc )
)

(family of conditional probabilities)

for every Λ b Z2
and for (almost) every “boundary condition” η.



Some Facts (Theorems)

Fix a potential Φ and an inverse temperature β > 0.

There can exist multiple Gibbs states.
At least one must be shi�-invariant, but not necessarily all.

There can exist multiple equilibrium states (all of which are by
definition shi�-invariant).

Some of them may not be Gibbs states.

For “absolutely summable” potentials (
?
) :

{ shi�-invariant Gibbs states } = { equilibrium states}.

(Recall : for a finite system, there is a unique Gibbs state, which is also the unique

equilibrium state.)

(
?
) :

∑
ΛbZd, 0∈Λ ‖ΦΛ‖∞ < +∞.



Models of quasicrystals :

aperiodic tilings



An example of “qasi-crystal” (d = 2) :

Kari-Culik tiling

Take

S =

{ }
.

All possible configurations :

Place a copy of one of these 1× 1 squares centered at (i, j) ∈ Z2
, without

rotating them.

This gives the set

{ }Z2

.

Now, let’s select only the configurations satisfying the constraint :

the colors of the edges that touch must match.



A portion of a Kari-Culik tiling.

(The spaces are only there to improve visualization.)



Facts About Kari-Culik Tilings

The set of all Kari-Culik tilings is a subset of

{ }Z2

,

which is closed and invariant under the shi� action.

Using the Kari-Culik tiles and following the color-matching rules,

one can tile (entirely) the plane.

The set of Kari-Culik tilings is uncountable and contains no periodic
configurations.

Remarks :

There are other examples of aperiodic tilings, constructed using other methods (Ammann,

Jeandel-Rao, Labbé, etc.), which are also Wang tilings (dominoes).

All of this can be translated into the language of multidimensional subshi�s of finite type

(symbolic dynamics).



Let d ≥ 2.

We can ask the following (very natural) question :

Given a set of tiles, can we decide whether or not it can tile the plane?

By “decide”, we mean “find an algorithm”.

Theorem (Berger, 1964) : This is, in general, undecidable.

(Idea of the proof : encode Turing machines into sets of tiles ; this trans-

forms the problem into the halting problem, which is undecidable.)

Remark. For d = 1, the problem is decidable.



Thermodynamic formalism

&

aperiodic tilings



Aperiodic Tilings as Minimizing Configurations

Let’s return to our la�ice models.

Take your favorite potential Φ.

In simple terms, the configurations whose energy can only increase
when modified at a finite number of sites are the minimizing confi-

gurations for Φ.

The shi�-invariant states supported by these fundamental configurations

are the ground states for Φ.



Consider again the set of Kari-Culik tiles

S =

{ }
and the corresponding Kari-Culik tilings.

A possible potential : assign an “energy” of 0 when adjacent colors match,

and +1 for each “error” (mismatch).

This is a nearest-neighbor potential.

Thus, the Kari-Culik tilings minimize the energy by construction, meaning

they are minimizing configurations, all aperiodic and forming an uncoun-

table set.



A portion of a Kari-Culik tiling with three “errors.”



What Happens at Positive (Finite) Temperature?

Having “quasicrystals” as minimizing configurations is thus easy and pos-

sible with nearest-neighbor potentials.

But this corresponds to the situation of zero temperature.

What happens if the temperature is > 0 ?

Thermal fluctuations can lead to “errors.”

�estion : Can we maintain a “quasicrystal” at temperature > 0

(without any “errors”) ?



Freezing Phase Transition

Is it possible that the equilibrium states or Gibbs states “see” all
possible configurations for every β < βc (“disordered phase”),
but they only “see” the configurations of a given “quasicrystal” for
every β > βc ?

By “seeing a given configuration” ω, we mean that, for every Λ b Zd
, the proba-

bility of the event “all configurations η such that η|Λ = ω|Λ” is > 0.

For the Kari-Culik example :

we would see all possible configurations belonging to

S =
{ }Z2

for β < βc ,

we would only see configurations corresponding exactly to the

Kari-Culik tilings for β > βc .



Theorem (J.-R. C., Tamara Kucherenko, Anthony �as, 2025)

� For every d ≥ 1, and for every “crystal” or “quasi-crystal,” one can

construct (explicitly) a potential with a freezing phase transition.

� This potential must have a “su�iciently” long range.

� A potential decaying in a “summable” manner cannot have a

freezing phase transition.

Some comments :

The “true” theorem is actually much more precise !

The nearest-neighbor potential presented for the Kari-Culik example

therefore cannot have a freezing phase transition.

Below the critical temperature (i.e., when β > βc), the equilibrium states

coincide with the measures of maximal entropy for the given

quasi-crystal. These states cannot be Gibbs states.
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Supplements

If you insist...

Minimizing configurations :

Ωmin(Φ) =
{
ω ∈ Ω : UΦ

Λ (ω) ≤ UΦ
Λ (ω′ΛωZd\Λ), ∀ω′ ∈ Ω, ∀Λ b Zd

}
,

where UΦ
Λ =

∑
∆∩Λ 6=∅Φ∆ (“energy in the volume Λ”).

By definition, a minimizing state µ for Φ (or ϕ) is a shi�-invariant state

such that

ν(ϕ) ≥ µ(ϕ), for every shi�-invariant state ν.

(Theorem : Ωmin(Φ) is a subshi� of Ω ; every shi�-invariant state with

support ⊆ Ωmin(Φ) is a ground state, and every minimizing state has its

support ⊆ Ωmin(Φ) [Garibaldi-Thieullen, 2015].)


