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A numerical semigroup is a subset A of Ny satisfying

@ 0eA

@ A+AcA

@ #(Np \ A) is finite (genus:=g= #(No \ A))

= there exists the Frobenius number := largest gap F

gaps: Ng v A
non-gaps: A
Left elements: L(A) =An|[O0,...,F]
Multiplicity: min(A*)



Generators

The (minimal) generators of A are
AN N (N +AF)

e(/\)= number of minimal generators
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Definition
[Eliahou-Fromentin] A gapset is a finite subset G of Ny satisfying

a,beNy

a+beG }=>ae GorbeG.

G gapset <= Ny \ G numerical semigroup.
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What semitone interval corresponds to each harmonic?

H ={0,12,19,24,28,31,34,36,38, 40,42, 43,45 46,47, 48,49,50, - }.


https://player.vimeo.com/video/194982389#t=2m0s
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Harmonics: a sound example

H={0,12,19,24,28,31,34,36,38,40, 42, 43,45, 46,47, 48,49,50, - }.

0 12 36| 38 |40 43 | 45 |47

12 is the maximum multiplicity under 3 conditions:

@ His fractal
@ His logarithmic (H;; = H; + H))
@ His odd-filterable (Hy, H3, Hs, . .. is closed under + up to...)

B.: Tempered Monoids of Real Numbers, the Golden Fractal Monoid, and the
Well-Tempered Harmonic Semigroup, Semigroup Forum, Springer, 2019.
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Classical problems

Frobenius’ problem
Suppose we have coins of denominations ay, ..., an

What is the largest monetary amount that can not be obtained
using these coins?


https://www.gettyimages.es/detail/foto/piles-of-stacked-coins-close-up-fotograf%C3%ADa-de-stock/200196880-001

Classical problems

Frobenius’ problem
Suppose we have coins of denominations ay, ..., an

What is the largest monetary amount that can not be obtained
using these coins?

Wilf’s conjecture (1978)
c(N) <e(A)-#L(N)


https://www.gettyimages.es/detail/foto/piles-of-stacked-coins-close-up-fotograf%C3%ADa-de-stock/200196880-001

e Counting by genus

Conjecture

Dyck paths and Catalan bounds

Semigroup tree

Infinite chains in the tree

Number of children vs number of siblings and Fibonacci
bounds
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Counting semigroups by genus

Let ny denote the number of numerical semigroups of genus g.

@ ng =1, since the unique numerical semigroup of genus 0 is Ny
@ ny =1, since the unique numerical semigroup of genus 1 is

@ np = 2. Indeed the unique numerical semigroups of genus 2
are

@ n3=4

@ =7

@ ns=12

@ ng =23

@ n; =39

°

n8:67



Counting semigroups by genus

Conjecture
[B. 2008]

Q ng>ng1+ng2
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http://www.singacom.uva.es/oldsite/seminarios/WorkshopSG/workshop2/Bras_SG_2007.pdf

Counting semigroups by genus

Conjecture
[B. 2008]
Q ng>ng1+ng2
Q o limg 2 = o

Ng
. n,
° Ilmg_,fx,ng—f1 =¢

Weaker unsolved conjecture
[B.2007] ng < ng.



http://www.singacom.uva.es/oldsite/seminarios/WorkshopSG/workshop2/Bras_SG_2007.pdf

Counting semigroups by genus

g

0 1

1 1 1

2 2 2 1 2

3 4 3 0.75 2

4 7 6 0.857143 175

5 12 " 0.916667 1.71429
6 23 19 0.826087 1.91667
7 39 35 0.897436 1.69565
8 67 62 0.925373 1.71795
9 18 106 0.898305 1.76119
10 204 185 0.906863 1.72881
" 343 322 0.938776 1.68137
12 592 547 0.923986 1.72595
13 1001 935 0.934066 1.69088
14 1693 1593 0.940933 1.69131
15 2857 2694 0.942947 1.68754
16 4806 4550 0.946733 1.68218
17 8045 7663 0.952517 1.67395
18 13467 12851 0.954259 1.67396
19 22464 21512 0.957621 1.66808
20 37396 35931 0.960825 1.66471
21 62194 59860 0.962472 1.66312
22 103246 99590 0.964589  1.66006
23 170963 165440 0.967695 1.65588
24 282828 274209 0.969526 1.65432
25 467224 453791 0.971249 1.65197
26 770832 750052 0.973042 1.64981
27 1270267 1238056  0.974642 1.64792
28 2091030 2041099 0.976121 1.64613
29 3437839 3361297  0.977735 1.64409
30 5646773 5528869  0.979120 1.64254
31 9266788 9084612  0.980341 1.64108
32 15195070 14913561 0.981474 1.63973
33 24896206 24461858 0.982554 1.63844
34 40761087 40091276 0.983567 1.63724
35 66687201 65657293  0.984556 1.63605
36 109032500 107448288 0.985470 1.63498
37 178158289 175719701 0.986312 1.63399
38 290939807 287190789 0.987114 1.63304
39 474851445 469098096 0.987884 1.63213
40 774614284 765791252 0.988610 1.63128




Counting semigroups by genus

Behavior of -
'g—1

50
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Counting semigroups by genus

What is known

@ All terms up to ns5 = 17924213336425401 ~ 106
Last terms by Delgado, Eliahou, Fromentin, 2023.

@ Upper and lower bounds for ng
Dyck paths and Catalan bounds (w. de Mier), semigroup
tree and Fibonacci bounds, Elizalde’s improvements, and
others

@ limg_ o % =¢
Alex Zhai (2013) with important contributions of Nathan
Kaplan and Yufei Zhao.



Counting semigroups by genus

@ Many efforts to compute nq for large g:

o N. Medeiros, B. (2008), M. Delgado: Brute approach
B. (2009): Need to check only one new generator
@ J. Fromentin - F. Hivert (2016): Decomposition numbers,
parallelization, depth first search (in GitHub)
B. - J. Fernandez-Gonzalez (2018): Seeds
e B. - J. Fernandez-Gonzélez (2020): Right-generators
descendant (in GitHub)
B. (2024): Seeds revisited with nyg, bitwise ops,
parallelization, DFS (in GitHub)

genus | 40 42 44 46 48 50 52 54 56 58 60
FH 1 2 7 19 53 145 372 978 2760 7398 21880
RGD 1 3 6 18 45 121 291 799 2101 5292 13785
Seeds 1 2 4 11 27 73 195 503 1329 3556 9459



https://github.com/hivert/NumericMonoid
https://github.com/mbrasamoros/RGD-algorithm
https://github.com/mbrasamoros/seeds-algorithm
https://oeis.org/A007323
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Limitation! The main limitation of the last implementation is that we can only
compute for genera up to half the maximum size of native integers plus four
(nowadays with 128 bits per integer we can compute up to ngs).
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Counting semigroups by genus

@ Many efforts to compute nq for large g:

o N. Medeiros, B. (2008), M. Delgado: Brute approach
B. (2009): Need to check only one new generator
J. Fromentin - F. Hivert (2016): Decomposition numbers,
parallelization, depth first search (in GitHub)
B. - J. Fernandez-Gonzalez (2018): Seeds
e B. - J. Fernandez-Gonzélez (2020): Right-generators
descendant (in GitHub)
B. (2024): Seeds revisited with nyg, bitwise ops,
parallelization, DFS (in GitHub)

genus | 40 42 44 46 48 50 52 54 56 58 60
FH 1 2 7 19 53 145 372 978 2760 7398 21880
RGD 1 3 6 18 45 121 291 799 2101 5292 13785
Seeds 1 2 4 11 27 73 195 503 1329 3556 9459

Limitation! The main limitation of the last implementation is that we can only
compute for genera up to half the maximum size of native integers plus four
(nowadays with 128 bits per integer we can compute up to ngs).

On-line encyclopedia of integer sequences: A007323


https://github.com/hivert/NumericMonoid
https://github.com/mbrasamoros/RGD-algorithm
https://github.com/mbrasamoros/seeds-algorithm
https://oeis.org/A007323
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Dyck paths

A Dyck path of order nis a staircase walk from (0, 0) to (n, n) that
lies over the diagonal x = y.

Example

(n,n)

K
Y
Y

The number of Dyck paths of order n is given by the Catalan

number 1 o
C, = ( ”).
n+1\n

n



Dyck paths

Definition
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Dyck paths

Definition
The square diagram of a numerical semigroup is the path

. ~ ifieA, .
e(/)-{T itid A, for 1 <i<2g.

Example
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It always goes from (0,0) to (g, 9).



Dyck paths

Example
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Lemma
[B., de Mier, 2007]
The square diagram of a numerical semigroup is a Dyck path.
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Dyck paths

Lemma
[B., de Mier, 2007]
The square diagram of a numerical semigroup is a Dyck path.

Corollary
-1 (29
ng < Co =iz ().

But. .. not all Dyck paths correspond to numerical semigroups.



Dyck paths

Use the augmented Dyck path (from Q)




Dyck paths

Use the augmented Dyck path (from 0) and compute Hook lengths.

INR)

XX X X X[ X[ x| ™

JANNNN




Dyck paths
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Dyck paths

13
X[ XX
X A
X A
x| & ™ Hook length=
x|}  Fgapsinfa+1,b]

x4 + # nongaps in [a, b-1]
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Dyck paths

L All Hook lengths
H(D)={b-a:bagap,aanongap},
>>§ Hook length=
X # gapsin[a+1.b]

i t1# nongaps in [a,b - 1]
X =b-a
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Dyck paths

L All Hook lengths

H(D)={b-a:bagap,aanongap},

Hook length=
fgaﬁjn'g”aﬁfsﬂ &, 4, Hook lengths of first column

7ba

XXX x[x

h(D)={b:bagap }.
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Dyck paths

L All Hook lengths
H(D)={b-a:bagap,aanongap},
i Hook length=
fiaﬁjn'g”aﬁfsﬂ &, 4, Hook lengths of first column
bS 7b a
EEE h(D)={b:bagap }.

By the gapset definition, an (augmented)
Dyck path corresponds to a numerical
semigroup if and only if

(ANNRNRNERE

H(D) c h(D)

[Constantin, Houston-Edwards, Kaplan]
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Tree T of numerical semigroups

Let Ny= { semigroups of genus g }.

f:Ng — Ng—1
Ao AU

POEOEE- ~ OG-

Not injective

0900900
©OOR@E).- OO®@®) -



Tree T of numerical semigroups

f~': Take out one by one all generators of A larger than F(A).
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Tree T of numerical semigroups
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The parent of Ais f(A).

The children of A is the set children(A) = =" (A).
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Tree T of numerical semigroups

If children(A) + @ for all A, then ng < ng.,1 would follow immediately.

Observe:

OOOO@®OO@E(@(O2G9... has 0 descendants
0OOOO@®OO@()EG23G9... has 1 descendants
0OOOO@®O@@(0)G)23G9... has 2 descendants
0O@0O®OEOE®@G)2(3G9... has co descendants

Questions:

@ characterize infinite chains in the tree,

@ number of children of a node in terms of the number of
siblings
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Theorem (B., Bulygin, 2009)

Let d = gcd(L(N)). Then,
@ A has o descendants < d + 1.
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Theorem (B., Bulygin, 2009)

Let d = gcd(L(N)). Then,
@ A has o descendants < d + 1.

@ Ifd + 1 then A lies in infinitely many infinite chains if and only
if d is not prime.
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Theorem (B., Rosas, 2024)

. #{Ne Ny : A e infinite chain }
lim =0
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Theorem (B., Rosas, 2024)
. #{N e Ng: e infinite chain }
lim =0
g—oo Ny

/ D ——
\>/:///

Most numerical semigroups have a finite number of descendants.




Tree T of numerical semigroups

Tools in the proof:

@ most numerical semigroups have multiplicity (min(A*))

5+v/5
m~=5-9

@ most numerical semigroups have F ~2m.

(Kaplan, Ye, 2013, Singhal, 2022)
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Tree T of numerical semigroups

A numerical semigroup is ordinary if all its gaps are consecutive.

@OOOOOOEDEN)901231 9087890

Lemma

= its children have 0,1,..., k-3, k- 1,k +1

A ordinary, }
children, respectively.

#children(A) = k,

A non-ordinary, } = its children have

#children(A) = k,
@ atleast 0,...,k -1 children, respectively,

@ atmost 1,...,k children, respectively



Lower bound for the number of descendants of semigroups of genus g
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Lemma
For g > 3,
2Fg<ng



Supertree

Upper bound for the number of descendants of semigroups of genus g
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Bounds using descending rules

Lemma
For g > 3,
2Fy<ng<1+3.2978



Q Other trees
@ Ordinarization transform and ordinarization tree
@ Quasi-ordinarization transform and quasi-ordinarization
forest
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0 Other trees
@ Ordinarization transform and ordinarization tree
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nongap.
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Ordinary numerical semigroups

The multiplicity of a numerical semigroup is its smallest non-zero
nongap.

Ordinarization transform of a semigroup:

- Remove the multiplicity
- Add the Frobenius number

09990080800 DSCEOEOTDIDOR
@OOOOEOOEE9N2(3(4(5)6(17)18(19120)...
@OOOOOOT(E0N 2190488718910 .

@ The result is another numerical semigroup.
@ The genus is kept constant in all the transforms.

@ Repeating several times (:= ordinarization number) we obtain
an ordinary semigroup.



Tree T, of numerical semigroups of genus g

@ nodes correspond to semigroups of genus g
@ edges connect each semigroup to its ordinarization
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Tree T, of numerical semigroups of genus g

@ nodes correspond to semigroups of genus g
@ edges connect each semigroup to its ordinarization

0000000000000
—@O0ECOECEEOR0D

(0000000600 COCe]
0 00000CeCE L]
(00000000000 CCOMO. 00000 COCE]

(000000800 TCVEET) © 0000000
© 0000V COL)

(0000000000 CICCORY

@O00CECOCHARRA
(0000000000 CTCEL]

OGX
GOCOECORORCHECARRE  —EOROEOROERCAOAOA

(000000008000 Cre) <

@ COTR0R00

Peeeeeceect oece)

GOCCOCEECEeeEEd
@OCOCEEOCO0EEd

EO00CECOCEEEER

Jgq is a tree rooted at the unique ordinary semigroup of genus g.



Tree T, of numerical semigroups of genus g

@ nodes correspond to semigroups of genus g
@ edges connect each semigroup to its ordinarization
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Jgq is a tree rooted at the unique ordinary semigroup of genus g.

Contrary to 7, T4 has only a finite number of nodes (indeed, ny).



Conjecture

Ng,r: number of semigroups of genus g and ordinarization number r.

Conjecture
@ Ngr < Ngiir
@ Equivalently, the number of semigroups in T at a given depth
is at most the number of semigroups in 7.4 at the same
depth.
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Conjecture

Ng,r: number of semigroups of genus g and ordinarization number r.

Conjecture
@ Ngr < Ngiir
@ Equivalently, the number of semigroups in T at a given depth
is at most the number of semigroups in 7.4 at the same
depth.

This conjecture would prove ng < ng.1.
This result is proved for the lowest and largest depths.

The proof uses Freiman’s theorem.



0 Basic notions

e Classical problems

9 Counting by genus

0 Other trees

@ Quasi-ordinarization transform and quasi-ordinarization
forest



Quasi-ordinary numerical semigroups

A non-ordinary semigroup A is a quasi-ordinary semigroup if Au F
is ordinary.

@OOOOOODEXIC31(908708) 9.



Quasi-ordinarization of semigroups

Quasi-ordinarization transform of a non-ordinary semigroup:

- Remove the multiplicity
- Add the second largest gap
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@ The result is another numerical semigroup.
@ The genus is kept constant in all the transforms.

@ Repeating several times (:= quasi-ordinarization number) we
obtain a quasi-ordinary semigroup.



Quasi-ordinarization of semigroups

Quasi-ordinarization transform of a non-ordinary semigroup:

- Remove the multiplicity
- Add the second largest gap

09990089800 0eLOTOOIDOOR
09998080000 EOTOOIDEDON
0999800000 0SEOTOOI DTN

@ The result is another numerical semigroup.
@ The genus is kept constant in all the transforms.

@ Repeating several times (:= quasi-ordinarization number) we
obtain a quasi-ordinary semigroup.

Quasi-ordinarization transform of an ordinary semigroup is defined
to be itself.



Forest J, of numerical semigroups of genu

@ nodes correspond to semigroups of genus g
@ edges connect each semigroup to its quasi-ordinarization
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Forest J, of numerical semigroups of genus g

@ nodes correspond to semigroups of genus g
@ edges connect each semigroup to its quasi-ordinarization
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Jg is a forest with roots at the ordinary and quasi-ordinary semigroups



Forest J, of numerical semigroups of genus g

@ nodes correspond to semigroups of genus g
@ edges connect each semigroup to its quasi-ordinarization
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Jg is a forest with roots at the ordinary and quasi-ordinary semigroups

Contrary to Ty, Fy is a forest.



Conjecture

ng.q: # of semigroups of genus g and quasi-ordinarization number g.

Conjecture
@ Ng.q < Ng+iq
@ Equivalently, the number of semigroups in J, at a given depth
is at most the number of semigroups in ¥4, at the same
depth.



Conjecture

ng.q: # of semigroups of genus g and quasi-ordinarization number g.

Conjecture
@ Ng.q < Ng+iq
@ Equivalently, the number of semigroups in J, at a given depth
is at most the number of semigroups in ¥4, at the same
depth.

This conjecture would prove ng < ng.1.



Recommended websites

Combinatorial Object Server++ Maintained by Torsten Mitze.

e ca O & combosaorg B W © o8 =

CcOos  The Combinatorial Object Server
+F

Generate | semigroups



http://combos.org/sgroup.html

Recommended websites

Drawsgtree Maintained at Universitat Rovira i Virgili.

€« Cc @ O 8 hitp: ses-deim.urv.cat/~mbras/drawsgtree,

Draw:
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http://crises-deim.urv.cat/~mbras/drawsgtree
http://crises-deim.urv.cat/~mbras/drawsgtree
http://crises-deim.urv.cat/~mbras/drawsgtree

Thanks!
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