A phase transition in block-weighted random maps

Journées Combinatoires de Bordeaux 5 février 2024

Zéphyr Salvy (he/they)

LIGM, Université Gustave Eiffel

Planar maps

Planar map \mathfrak{m} = embedding on the sphere of a connected planar graph, considered up to homeomorphisms

Planar map = planar graph + cyclic order on neighbours

- Rooted planar map = map endowed with a marked oriented edge (represented by an arrow);
- Size | m | = number of edges;
- Corner (does not exist for graphs !) = space between an oriented edge and the next one for the trigonometric order.

Universality results for planar maps

- Enumeration: $\kappa \rho^{-n} n^{-5/2}$ [Tutte 1963];
- Distance between vertices: $n^{1/4}$ [Chassaing, Schaeffer 2004];
- Scaling limit: Brownian sphere for quadrangulations [Le Gall 2013, Miermont 2013] and general maps [Bettinelli, Jacob, Miermont 2014];

Brownian Sphere \mathcal{S}_e

Universality results for planar maps

- Enumeration: $\kappa \rho^{-n} n^{-5/2}$ [Tutte 1963];
- Distance between vertices: $n^{1/4}$ [Chassaing, Schaeffer 2004];
- Scaling limit: Brownian sphere for quadrangulations [Le Gall 2013, Miermont 2013] and general maps [Bettinelli, Jacob, Miermont 2014];

- Universality:
 - Same enumeration [Drmota, Noy, Yu 2020];
 - Same scaling limit, e.g. for triangulations & 2q-angulations [Le Gall 2013], simple quadrangulations [Addario-Berry, Albenque 2017].

Universality results for plane trees

- Enumeration: $\kappa \rho^{-n} n^{-3/2}$;
- Distance between vertices: $n^{1/2}$ [Flajolet, Odlyzko 1982];
- Scaling limit: Brownian tree [Aldous 1993, Le Gall 2006];

Universality results for plane trees

- Enumeration: $\kappa \rho^{-n} n^{-3/2}$;
- Distance between vertices: $n^{1/2}$ [Flajolet, Odlyzko 1982];
- Scaling limit: Brownian tree [Aldous 1993, Le Gall 2006];

- Universality:
 - Same enumeration,
 - Same scaling limit, even for some classes of maps; e.g.
 outerplanar maps [Caraceni 2016], maps with a boundary of size
 > n^{1/2} [Bettinelli 2015].

Models with (very) constrained boundaries

Motivation Inspired by [Bonzom 2016].

Two rich situations with universality results:

2-connected = two vertices must be removed to disconnect.Block = maximal (for inclusion) 2-connected submap.

2-connected = two vertices must be removed to disconnect. Block = maximal (for inclusion) 2-connected submap.

2-connected = two vertices must be removed to disconnect. Block = maximal (for inclusion) 2-connected submap.

Condensation phenomenon: a large block concentrates a macroscopic part of the mass [Banderier, Flajolet, Schaeffer, Soria 2001; Jonsson, Stefánsson 2011].

2-connected = two vertices must be removed to disconnect. Block = maximal (for inclusion) 2-connected submap.

Condensation phenomenon: a large block concentrates a macroscopic part of the mass [Banderier, Flajolet, Schaeffer, Soria 2001; Jonsson, Stefánsson 2011].

Only small blocks.

2-connected = two vertices must be removed to disconnect. Block = maximal (for inclusion) 2-connected submap.

Condensation phenomenon: a large block concentrates a macroscopic part of the mass [Banderier, Flajolet, Schaeffer, Soria 2001; Jonsson, Stefánsson 2011].

Interpolating model using blocks!

Only small blocks.

Outline of the talk

A phase transition in block-weighted random maps

- I. Model
- II. Block tree of a map and its applications *Interlude*. Quadrangulations
- III. Scaling limits
- IV. Extension to other families of maps
- V. Extension to tree-rooted maps -
- VI. Perspectives

with William Fleurat

with Marie

Albenque & Éric

Fusy

I. Model

Model

Inspired by [Bonzom 2016].

Goal: parameter that affects the typical number of blocks.

We choose:
$$\mathbb{P}_{n,u}(\mathfrak{m}) = \frac{u^{\#blocks(\mathfrak{m})}}{Z_{n,u}}$$
 where $u > 0$,
 $\mathcal{M}_n = \{\text{maps of size } n\},$
 $\mathfrak{m} \in \mathcal{M}_n,$
 $Z_{n,u} = \text{normalisation.}$

- u = 1: uniform distribution on maps of size n;
- $u \rightarrow 0$: minimising the number of blocks (=2-connected maps);
- $u \rightarrow \infty$: maximising the number of blocks (= trees!).

Given *u*, asymptotic behaviour when $n \rightarrow \infty$?

Phase transition

<u>Theorem</u> [Fleurat, S. 23] Model exhibits a phase transition at u = 9/5. When $n \to \infty$:

- Subcritical phase u < 9/5: "general map phase" one huge block;
- Critical phase u = 9/5: a few large blocks;
- Supercritical phase u > 9/5: "tree phase" only small blocks.

We obtain explicit results on enumeration, size of blocks and scaling limits in each case.

→ A phase transition in block-weighted random maps W. Fleurat & Z. S., Electronic Journal of Probability, 2024

Results

For $M_n \hookrightarrow \mathbb{P}_{n,u}$	u < 9/5	<i>u</i> = 9/5	<i>u</i> > 9/5
Enumeration			
Size of - the largest block - the second one			
Scaling limit of M_n			

II. Block tree of a map and its applications

Inspiration from [Tutte 1963]

Inspiration from [Tutte 1963]

Results

For $M_n \hookrightarrow \mathbb{P}_{n,u}$	u < 9/5	u = 9/5	<i>u</i> > 9/5
Enumeration [Bonzom 2016]	$\rho(u)^{-n}n^{-5/2}$	$\rho(u)^{-n}n^{-5/3}$	$\rho(u)^{-n}n^{-3/2}$
Size of - the largest block - the second one			
Scaling limit of M_n			

Decomposition of a map into blocks

Inspiration from [Tutte 1963]

⇒ Underlying block tree structure, made explicit by [Addario-

⇒ Underlying block tree structure, made explicit by [Addario-

⇒ Underlying block tree structure, made explicit by [Addario-

20/72

Properties of the block tree

- **m** is entirely determined by $T_{\mathfrak{m}}$ and $(\mathfrak{b}_v, v \in T_{\mathfrak{m}})$ where \mathfrak{b}_v is the block of **m** represented by v in $T_{\mathfrak{m}}$;
- Internal node (with 2k children) of $T_{\mathfrak{m}} \leftrightarrow$ block of \mathfrak{m} of size k.

T_{M_n} gives the block sizes of a random map M_n .

Galton-Watson trees for map blocks

 μ -Galton-Watson tree : random tree where the number of children of each node is given by μ independently, with μ = probability law on \mathbb{N} .

Galton-Watson trees for map blocks

 μ -Galton-Watson tree : random tree where the number of children of each node is given by μ independently, with μ = probability law on \mathbb{N} .

<u>Theorem</u> [Fleurat, S. 23] If $M_n \hookrightarrow \mathbb{P}_{n,u'}$ then there exists an (explicit) y = y(u) s.t. T_{M_n} has the law of a Galton-Watson tree of reproduction law $\mu^{y,u}$ conditioned to be of size 2n, with $\mu^{y,u}(\{2k\}) = \frac{B_k y^k u^{\mathbf{1}_{k\neq 0}}}{uB(y) + 1 - u}.$

Phase transition

When is $\mu^{y,u}$ critical? (= $\mathbb{E}(\mu) = 1$?)

$$\mathbb{E}(\mu^{y,u}) = 1 \Leftrightarrow u = \frac{1}{2yB'(y) - B(y) + 1}$$

covers [9/5, + ∞) when y covers (0, $\rho_B = 4/27$].

Largest blocks?

- Degrees of T_{M_n} give the block sizes of the map M_n ;
- Largest degrees of a Galton-Waston tree are wellknown [Janson 2012].

Rough intuition

	u < 9/5	u = 9/5	<i>u</i> > 9/5
$\mu^{y(u),u}(\{2k\})$	$\sim c_u k^{-5/2}$		$\sim c_u \pi_u^k k^{-5/2}$
Galton- Watson tree	subcritical	critical	

Dichotomy between situations:

- Subcritical: condensation, cf [Jonsson Stefánsson 2011];
- Supercritical: behaves as maximum of independent variables.

Size $L_{n,k}$ of the k-th largest block

Results

For $M_n \hookrightarrow \mathbb{P}_{n,u}$	u < 9/5	u = 9/5	<i>u</i> > 9/5
Enumeration [Bonzom 2016]	$\rho(u)^{-n}n^{-5/2}$	$\rho(u)^{-n}n^{-5/3}$	$\rho(u)^{-n}n^{-3/2}$
Size of - the largest block - the second one	$\sim (1 - \mathbb{E}(\mu^{4/27,u}))n$ $\Theta(n^{2/3})$ [Stufler 2020]	$\Theta(n^{2/3})$	$\frac{\ln(n)}{2\ln\left(\frac{4}{27y}\right)} - \frac{5\ln(\ln(n))}{4\ln\left(\frac{4}{27y}\right)} + O(1)$
Scaling limit of M_n			

Interlude: quadrangulations

29/72

Quadrangulations

Def: map with all faces of degree 4.

Simple quadrangulation = no multiple edges.

Size |q| = number of faces.

$$V(\mathbf{q}) = |\mathbf{q}| + 2, |E(\mathbf{q})| = 2|\mathbf{q}|.$$

Construction of a quadrangulation from a simple core

Construction of a quadrangulation from a simple core

Construction of a quadrangulation from a simple core

With a weight *u* on blocks: $Q(z, u) = uS(zQ^2(z, u)) + 1 - u$

Remember: $M(z, u) = uB(zM^{2}(z, u)) + 1 - u$

Tutte's bijection

[Tutte 1963]
Tutte's bijection for 2-connected maps

Cut vertex => multiple edge

2-connected maps <=> simple quadrangulations

[Brown 1965]

Implications on results

We choose:
$$\mathbb{P}_{n,u}(\mathbf{q}) = \frac{u^{\#blocks(\mathbf{q})}}{Z_{n,u}}$$
 where $\begin{array}{l} u > 0, \\ \mathcal{Q}_n = \{\text{quadrangulations} \\ \text{of size } n\}, \\ \mathbf{q} \in \mathcal{Q}_n, \\ Z_{n,u} = \text{normalisation.} \end{array}$

Results on the size of (2-connected) blocks can be transferred immediately for quadrangulations and their simple blocks.

Results

For $M_n \hookrightarrow \mathbb{P}_{n,u}$	u < 9/5	u = 9/5	<i>u</i> > 9/5
Enumeration [Bonzom 2016] for 2-c case	$\rho(u)^{-n}n^{-5/2}$	$\rho(u)^{-n}n^{-5/3}$	$\rho(u)^{-n}n^{-3/2}$
Size of - the largest block - the second one	$\sim (1 - \mathbb{E}(\mu^{4/27,u}))n$ $\Theta(n^{2/3})$ [Stufler 2020]	$\Theta(n^{2/3})$	$\frac{\ln(n)}{2\ln\left(\frac{4}{27y}\right)} - \frac{5\ln(\ln(n))}{4\ln\left(\frac{4}{27y}\right)} + O(1)$
Scaling limit of M_n			

III. Scaling limits

Scaling limits

Convergence of the whole object considered as a metric space (with the graph distance), after renormalisation.

 $M_n \hookrightarrow \mathbb{P}_{n,u}$ (map or quadrangulation) What is the limit of the sequence of metric spaces $((M_n, d/n^?))_{n \in \mathbb{N}}$? (Convergence for Gromov-Hausdorff topology)

<u>Proof</u> Known scaling limits of critical Galton-Watson trees

- with finite variance [Aldous 1993, Le Gall 2006];
- infinite variance and polynomial tails [Duquesne 2003].

$$\begin{array}{l} \underline{\text{Theorem For } M_n \hookrightarrow \mathbb{P}_{n,u'}} \\ \cdot \quad [\text{Stufler 2020] If } u > 9/5, \\ & \frac{c_3(u)}{n^{1/2}} T_{M_n} \to \mathcal{T}_{e'} \\ \cdot \quad [\text{Fleurat, S. 23] If } u = 9/5, \\ & \frac{c_2}{n^{1/3}} T_{M_n} \to \mathcal{T}_{3/2}, \\ \end{array} \begin{array}{l} \frac{C_2(u)}{n^{1/2}} M_n \to \mathcal{T}_{2/2}, \\ & \frac{C_2}{n^{1/3}} M_n \to \mathcal{T}_{3/2}. \end{array}$$

<u>Proof</u> Distances in M_n behave like distances in T_{M_n} !

Supercritical and critical cases

Difficult part = show that distances in M_n behave like distances in T_{M_n} .

Let $\kappa = \mathbb{E}("diameter" bipointed block)$. By a "law of large numbers"-type argument

$$d_{M_n}(e_1, e_2) \simeq \kappa d_{T_{M_n}}(e_1, e_2).$$

Difficult for the critical case => large deviation estimates

Scaling limits of subcritical maps

$$\begin{array}{l} \underline{\text{Theorem}} \ [\text{Fleurat, S. 23}] \ \text{If } u < 9/5, \ \text{for } M_n \hookrightarrow \mathbb{P}_{n,u} \ \text{and} \\ \\ \text{denoting } B(M_n) \ \text{its largest block:} \\ \\ d_{GHP} \left(\frac{C_1(u)}{n^{1/4}} M_n, \frac{1}{n^{1/4}} B(M_n) \right) \to 0. \end{array}$$

Brownian Sphere \mathcal{S}_e

So, if $cn^{-1/4}B_n \to \mathcal{S}_e$, then $\frac{C_1(u)}{cn^{1/4}}M_n \to \mathcal{S}_e.$

See [Addario-Berry, Wen 2019] for a similar result and method.

Scaling limits of subcritical maps

<u>Theorem</u> [Fleurat, S. 23] If u < 9/5, for $Q_n \hookrightarrow \mathbb{P}_{n,u}$ a quadrangulation:

 $\frac{C_1(u)}{n^{1/4}}Q_n \to \mathcal{S}_e.$

Moreover, Q_n and its simple core converge jointly to the same Brownian sphere.

<u>Proof</u>

- Previous theorem;
- Scaling limit of uniform
 simple quad. rescaled by n^{1/4}
 = Brownian sphere [Addario-Berry

Albenque 2017].

Subcritical case

Diameter of a decoration ≤ blocks to cross X max diameter of blocks

$$\leq diam(T_{M_n}) \times (O(n^{2/3}))^{1/4+\delta} = diam(T_{M_n}) \times O(n^{1/6+\delta})$$

$$= O(n^{1/6+2\delta}) = o(n^{1/4}).$$
[Chapuy Fusy Giménez Noy 2015]

Subcritical case

Diameter of a decoration ≤ blocks to cross X max diameter of blocks

Subcritical case

The scaling limit of M_n (rescaled by $n^{1/4}$) is the scaling limit of uniform blocks!

Results

For $M_n \hookrightarrow \mathbb{P}_{n,u}$	<i>u</i> < 9/5	u = 9/5	<i>u</i> > 9/5	
Enumeration [Bonzom 2016]	$\rho(u)^{-n}n^{-5/2}$	$\rho(u)^{-n}n^{-5/3}$	$\rho(u)^{-n}n^{-3/2}$	
 Size of the largest block the second one 	$\sim (1 - \mathbb{E}(\mu^{4/27,u}))n$ $\Theta(n^{2/3})$ [Stufler 2020]	$\Theta(n^{2/3})$	$\frac{\ln(n)}{2\ln\left(\frac{4}{27y}\right)} - \frac{5\ln(\ln(n))}{4\ln\left(\frac{4}{27y}\right)} + O(1)$	
<section-header><text></text></section-header>	$\frac{C_1(u)}{n^{1/4}}M_n \to \mathcal{S}_e$	$\frac{C_2}{n^{1/3}}M_n \to \mathcal{T}_{3/2}$	$\frac{C_3(u)}{n^{1/2}} M_n \to \mathcal{T}_e$ [Stufler 2020]	
			AND A	
	Assuming the convergence of 2- connected maps towards the Brownian sphere	51/72		

IV. Extension to other families of maps

Extension to other models

[Banderier, Flajolet, Schaeffer, Soria 2001]:

TABLE 3. Composition schemas, of the form $\mathcal{M} = \mathcal{C} \circ \mathcal{H} + \mathcal{D}$, except the last one where $\mathcal{M} = (1 + \mathcal{M}) \times (\mathcal{C} \circ \mathcal{H})$.

maps, $M(z)$	cores, $C(z)$	submaps, $H(z)$	coreless, $D(z)$
all, $M_1(z)$	bridgeless, or loopless $M_2(z)$	$z/(1-z(1+M))^2$	$z(1+M)^{2}$
loopless $M_2(z)$	simple $M_3(z)$	z(1+M)	_
all, $M_1(z)$	nonsep., $M_4(z)$	$z(1+M)^{2}$	—
nonsep. $M_4(z) - z$	nonsep. simple $M_5(z)$	z(1+M)	_
nonsep. $M_4(z)/z - 2$	3-connected $M_6(z)$	M	$z + 2M^2/(1+M)$
bipartite, $B_1(z)$	bip. simple, $B_2(z)$	z(1+M)	_
bipartite, $B_1(z)$	bip. bridgeless, $B_3(z)$	$z/(1-z(1+M))^2$	$z(1+M)^{2}$
bipartite, $B_1(z)$	bip. nonsep., $B_4(z)$	$z(1+M)^{2}$	—
bip. nonsep., $B_4(z)$	bip. ns. smpl, $B_5(z)$	z(1+M)	—
singular tri., $T_1(z)$	triang., $z + zT_2(z)$	$z(1+M)^{3}$	
${ m triangulations}, T_2(z)$	irreducible tri., $T_3(z)$	$z(1+M)^{2}$	—

Extension to other models

[Banderier, Flajolet, Schaeffer, Soria 2001]:

TABLE 3. Composition schemas, of the form $\mathcal{M} = \mathcal{C} \circ \mathcal{H} + \mathcal{D}$, except the last one where $\mathcal{M} = (1 + \mathcal{M}) \times (\mathcal{C} \circ \mathcal{H})$.

maps, $M(z)$	cores, $C(z)$	submaps, $H(z)$	coreless, $D(z)$	u _C
all, $M_1(z)$	bridgeless, or loopless $M_2(z)$	$z/(1-z(1+M))^2$	$z(1+M)^{2}$	
loopless $M_2(z)$	simple $M_3(z)$	z(1+M)	_	81/17
all, $M_1(z)$	nonsep., $M_4(z)$	$z(1+M)^{2}$	—	9/5
nonsep. $M_4(z) - z$	nonsep. simple $M_5(z)$	z(1+M)	_	135/7
nonsep. $M_4(z)/z - 2$	3-connected $M_6(z)$	M	$z + 2M^2/(1+M)$	
bipartite, $B_1(z)$	bip. simple, $B_2(z)$	z(1+M)	_	36/11
bipartite, $B_1(z)$	bip. bridgeless, $B_3(z)$	$z/(1 - z(1 + M))^2$	$z(1+M)^{2}$	
bipartite, $B_1(z)$	bip. nonsep., $B_4(z)$	$z(1+M)^2$	_	52/27
bip. nonsep., $B_4(z)$	bip. ns. smpl, $B_5(z)$	z(1+M)	_	68/3
singular tri., $T_1(z)$	triang., $z + zT_2(z)$	$z(1+M)^{3}$	—	16/7
$triangulations, T_2(z)$	irreducible tri., $T_3(z)$	$z(1+M)^{2}$	—	64/37

→ Unified study of the phase transition for block-weighted random planar maps Z. Salvy (Eurocomb'23)

Statement of the results

<u>Theorem</u> [S. 23] Model of the preceding table without coreless maps exhibits a phase transition at some explicit u_C .

When $n \to \infty$:

- Subcritical phase u < u_C: "general map phase" one huge block;
- Critical phase $u = u_C$: a few large blocks;
- Supercritical phase $u > u_C$: "tree phase" only small blocks.

We obtain explicit results on enumeration and size of blocks in each case.

V. Extension to treerooted maps

Decorated maps are interesting

From a theoretical physics point of view:

- Before: "pure gravity" case (nothing happens on the surface);
- Now: decorated map (things happen! new behaviours! excitement!).

Tree-rooted maps

= (rooted planar) maps endowed with a spanning tree.

We want to study block-weighted tree-rooted maps.

Block decomposition of tree-rooted maps

The decomposition of maps into blocks extends into a decomposition of tree-rooted maps into tree-rooted blocks.

$$M(z) = \sum_{n \ge 0} \operatorname{Cat}_n \operatorname{Cat}_{n+1} z^n \operatorname{so}$$

$$M(z) = \sum_{n \ge 0} \operatorname{Cat}_n \operatorname{Cat}_{n+1} z^n \operatorname{so}$$

•
$$[z^n]M(z) \sim \frac{4}{\pi} \times 16^n \times n^{-3};$$

$$M(z) = \sum_{n \ge 0} \operatorname{Cat}_n \operatorname{Cat}_{n+1} z^n \text{ so}$$

• $[z^n]M(z) \sim \frac{4}{\pi} \times 16^n \times n^{-3}; \quad \rho_M = \frac{1}{16};$

$$M(z) = \sum_{n \ge 0} \operatorname{Cat}_{n} \operatorname{Cat}_{n+1} z^{n} \text{ so}$$

• $[z^{n}]M(z) \sim \frac{4}{\pi} \times 16^{n} \times n^{-3}; \quad \rho_{M} = \frac{1}{16};$

$$M(\rho_M) = 8 - \frac{64}{3\pi} \simeq 1.2 \text{ so } M \text{ is not algebraic...}$$

$$P\left(z,M(z)\right)=0$$

$$M(z) = \sum_{n \ge 0} \operatorname{Cat}_n \operatorname{Cat}_{n+1} z^n \text{ so}$$

$$. [z^n] M(z) \sim \frac{4}{\pi} \times 16^n \times n^{-3}; \quad \rho_M = \frac{1}{16};$$

$$Algebraic \\ M, B$$

$$. M(\rho_M) = 8 - \frac{64}{3\pi} \simeq 1.2 \text{ so } M \text{ is not algebraic...}$$

$$P(z, M(z)) = 0$$

$$M(z) = \sum_{n \ge 0} \operatorname{Cat}_n \operatorname{Cat}_{n+1} z^n \text{ so}$$

$$[z^n]M(z) \sim \frac{4}{\pi} \times 16^n \times n^{-3}; \quad \rho_M = \frac{1}{16};$$

$$M(\rho_M) = 8 - \frac{64}{3\pi} \simeq 1.2 \text{ so } M \text{ is not algebraic...}$$

$$P(z, M(z)) = 0$$

$$P_0(z)\frac{\partial^2 M}{\partial z^2}(z) + P_1(z)\frac{\partial M}{\partial z}(z) + P_2(z)M(z) + P_3(z) = 0.$$
2-connected tree-rooted maps are naughty

Using $M(z) = B(zM^2(z))$ and the properties of M, we show

2-connected tree-rooted maps are naughty

Using $M(z) = B(zM^2(z))$ and the properties of M, we show

•
$$\rho_B = \rho_M M^2 (\rho_M) = \frac{4(3\pi - 8)^2}{9\pi^2} \approx 0.091$$

is not algebraic so B is not D-finite

2-connected tree-rooted maps are naughty

Using $M(z) = B(zM^2(z))$ and the properties of M, we show

•
$$\rho_B = \rho_M M^2 (\rho_M) = \frac{4(3\pi - 8)^2}{9\pi^2} \approx 0.091$$

is not algebraic so B is not D-finite

• *B* is *D*-algebraic

$$P\left(\frac{\partial^2 \mathbf{B}}{\partial y^2}(y), \frac{\partial \mathbf{B}}{\partial y}(y), \mathbf{B}(y), y\right) = 0.$$

Enumeration of 2-connected tree-rooted maps

Using $M(z) = B(zM^2(z))$ and the properties of M, we show

Theorem [Albenque, Fusy, S. 24+]

$$[y^{n}]B(y) \sim \frac{4(3\pi - 8)^{3}}{27\pi(4 - \pi)^{3}} \times \rho_{B}^{-n} \times n^{-3}.$$

Block decomposition of tree-rooted maps

The decomposition of maps into blocks extends into a decomposition of tree-rooted maps into tree-rooted blocks.

Block decomposition of tree-rooted maps

The decomposition of maps into blocks extends into a decomposition of tree-rooted maps into tree-rooted blocks.

Phase transition

<u>Theorem</u> [Albenque, Fusy, S. 24+] Model exhibits a phase $9\pi(4-\pi)$ transition at $u_C = \frac{9\pi(4-\pi)}{420\pi - 81\pi^2 - 512} \simeq 3.02$.

When $n \to \infty$:

- Subcritical phase u < u_C: "general tree-rooted map phase" one huge block;
- Critical phase $u = u_C$: a few large blocks;
- Supercritical phase $u > u_C$: "tree phase" only small blocks.

We obtain results on enumeration, size of blocks and scaling limits in each case.

For $M_n \hookrightarrow \mathbb{P}_{n,u}$	$u < u_C$	$u = u_C$	$u > u_C$
Enumeration			
Size of - the largest block - the second one			
Scaling limit of M_n			

For $M_n \hookrightarrow \mathbb{P}_{n,u}$	$u < u_C$	$u = u_C$	$u > u_C$
Enumeration	$\rho(u)^{-n}n^{-3}$	$\rho(u)^{-n}n^{-3/2}\ln(n)^{-1/2}$	$\rho(u)^{-n}n^{-3/2}$
Size of - the largest block - the second one			
Scaling limit of \mathcal{M}_n			

For $M_n \hookrightarrow \mathbb{P}_{n,u}$	$u < u_C$	$u = u_C$	$u > u_C$
Enumeration	$\rho(u)^{-n}n^{-3}$	$\rho(u)^{-n}n^{-3/2}\ln(n)^{-1/2}$	$\rho(u)^{-n}n^{-3/2}$
Size of - the largest block - the second one	$\sim (1 - \mathbb{E}(\mu^{\rho_{B},u}))n$ $\Theta(n^{1/2})$	$\Theta(n^{1/2})$	$\frac{\ln(n)}{\ln\left(\frac{\rho_B}{y(u)}\right)} - \frac{3\ln(\ln(n))}{\ln\left(\frac{\rho_B}{y(u)}\right)} + O(1)$
<section-header><text></text></section-header>			

For $M_n \hookrightarrow \mathbb{P}_{n,u}$	$u < u_C$	$u = u_C$	$u > u_C$
Enumeration	$\rho(u)^{-n}n^{-3}$	$\rho(u)^{-n}n^{-3/2}\ln(n)^{-1/2}$	$\rho(u)^{-n}n^{-3/2}$
Size of - the largest block - the second one	$\sim (1 - \mathbb{E}(\mu^{\rho_{B},u}))n$ $\Theta(n^{1/2})$	$\Theta(n^{1/2})$	$\frac{\ln(n)}{\ln\left(\frac{\rho_B}{y(u)}\right)} - \frac{3\ln(\ln(n))}{\ln\left(\frac{\rho_B}{y(u)}\right)} + O(1)$
Scaling limit of M _n	?	$\frac{C_2}{n^{1/2}\ln(n)^{1/2}}M_n \to \mathcal{T}_e$	$\frac{C_3(u)}{n^{1/2}}M_n \to \mathcal{T}_e$
		67/72	

Interlude: tree-rooted quadrangulations

CANCELLED Interlude: tree-rooted quadrangulations

M(z) = Q(z) does not hold!

VI. Perspectives

Extension to more involved decompositions

 For maps : maps into loopless blocks, 2-connected maps into 3-connected blocks;

Extension to more involved decompositions

 For maps : maps into loopless blocks, 2-connected maps into 3-connected blocks;

TABLE 3. Composition schemas, of the form $\mathcal{M} = \mathcal{C} \circ \mathcal{H} + \mathcal{D}$, except the last one where $\mathcal{M} = (1 + \mathcal{M}) \times (\mathcal{C} \circ \mathcal{H})$.

maps, $M(z)$	cores, $C(z)$	submaps, $H(z)$	coreless, $D(z)$
all, $M_1(z)$	bridgeless, $M_2(z)$ or loopless	$z/(1-z(1+M))^2$	$z(1+M)^2$
loopless $M_2(z)$	simple $M_3(z)$	z(1+M)	_
all, $M_1(z)$	nonsep., $M_4(z)$	$z(1+M)^{2}$	—
nonsep. $M_4(z) - z$	nonsep. simple $M_5(z)$	z(1+M)	_
nonsep. $M_4(z)/z - 2$	3-connected $M_6(z)$	M	$z + 2M^2/(1+M)$
bipartite, $B_1(z)$	bip. simple, $B_2(z)$	z(1+M)	_
bipartite, $B_1(z)$	bip. bridgeless, $B_3(z)$	$z/(1-z(1+M))^2$	$z(1+M)^2$
bipartite, $B_1(z)$	bip. nonsep., $B_4(z)$	$z(1 + M)^{2}$	_
bip. nonsep., $B_4(z)$	bip. ns. smpl, $B_5(z)$	z(1+M)	_
singular tri., $T_1(z)$	triang., $z + zT_2(z)$	$z(1+M)^{3}$	_
$triangulations, T_2(z)$	irreducible tri., $T_3(z)$	$z(1+M)^2$	_

Extension to more involved decompositions

- For maps : maps into loopless blocks, 2-connected maps into 3-connected blocks;
- For decorated maps : tree-rooted quadrangulations into simple blocks, Schnyder woods / 3-orientations / 2-orientations into irreducible blocks.

Critical window?

Phase transition very sharp => what if $u = 9/5 \pm \varepsilon(n)$?

- Block size results still hold if $u_n = 9/5 \varepsilon(n)$, $\varepsilon^3 n \to \infty$;
- For $u_n = 9/5 + \varepsilon(n)$, this is the case as well: when $\varepsilon^3 n \to \infty$

$$L_{n,1} \sim 2.7648 \,\varepsilon^{-2} \ln(\varepsilon^3 n)$$

(analogous to [Bollobás 1984]'s result for Erdős-Rényi graphs!);

• Results exist for scaling limits in ER graphs [Addario-Berry, Broutin, Goldschmidt 2010], open question in our case.

Is there a critical window? If so, what is its width?

Thank you!