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• Rooted planar map = map endowed with a marked oriented edge 
(represented by an arrow); 

• Size  = number of edges; 
• Corner (does not exist for graphs !) = space between an oriented 

edge and the next one for the trigonometric order.

|𝔪 |

2

Planar maps

Planar map = planar graph + 
cyclic order on neighbours 

Planar map  = embedding on the sphere of a connected 
planar graph, considered up to homeomorphisms

𝔪

= ≠
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Brownian Sphere 𝒮e

• Enumeration:  [Tutte 1963]; 

• Distance between vertices:  [Chassaing, Schaeffer 2004]; 

• Scaling limit: Brownian sphere for quadrangulations [Le Gall 
2013, Miermont 2013] and general maps [Bettinelli, Jacob, Miermont 
2014];

κρ−nn−5/2

n1/4

3

Universality results for planar maps
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• Universality: 
• Same enumeration [Drmota, Noy, Yu 2020]; 

• Same scaling limit, e.g. for triangulations & -angulations [Le 

Gall 2013], simple quadrangulations [Addario-Berry, Albenque 2017].

2q

• Enumeration:  [Tutte 1963]; 

• Distance between vertices:  [Chassaing, Schaeffer 2004]; 

• Scaling limit: Brownian sphere for quadrangulations [Le Gall 
2013, Miermont 2013] and general maps [Bettinelli, Jacob, Miermont 
2014];

κρ−nn−5/2

n1/4

3

Universality results for planar maps
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• Enumeration: ; 

• Distance between vertices:  [Flajolet, Odlyzko 1982]; 

• Scaling limit: Brownian tree [Aldous 1993, Le Gall 2006];

κρ−nn−3/2

n1/2

4

Universality results for plane trees
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• Universality: 
• Same enumeration, 
• Same scaling limit, even for some classes of maps; e.g. 

outerplanar maps [Caraceni 2016], maps with a boundary of size 
>>  [Bettinelli 2015].n1/2

• Enumeration: ; 

• Distance between vertices:  [Flajolet, Odlyzko 1982]; 

• Scaling limit: Brownian tree [Aldous 1993, Le Gall 2006];

κρ−nn−3/2

n1/2

4

Universality results for plane trees

Models with (very) constrained boundaries
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Motivation

Interpolating model?

Two rich situations with universality results:
Planar maps Plane trees

Inspired by [Bonzom 2016].
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2-connected = two vertices must be removed to disconnect. 

Block = maximal (for inclusion) 2-connected submap. 

6

Model definition
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Condensation phenomenon: a 
large block concentrates a 
macroscopic part of the mass 
[Banderier, Flajolet, Schaeffer, Soria 2001; 
Jonsson, Stefánsson 2011].

2-connected = two vertices must be removed to disconnect. 

Block = maximal (for inclusion) 2-connected submap. 

6
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Model definition

Only small blocks.
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Interpolating model using blocks!

Condensation phenomenon: a 
large block concentrates a 
macroscopic part of the mass 
[Banderier, Flajolet, Schaeffer, Soria 2001; 
Jonsson, Stefánsson 2011].

2-connected = two vertices must be removed to disconnect. 

Block = maximal (for inclusion) 2-connected submap. 

6

Model definition

Only small blocks.
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I. Model 
II. Block tree of a map and its applications 
Interlude. Quadrangulations 
III. Scaling limits 
IV. Extension to other families of maps 
V. Extension to tree-rooted maps 
VI. Perspectives

7

Outline of the talk
A phase transition in block-weighted random maps

with William 
Fleurat

with Marie 
Albenque & Éric 

Fusy
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I. Model

8
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Model
Goal: parameter that affects the typical number of blocks.

We choose:  whereℙn,u(𝔪) =
u#blocks(𝔪)

Zn,u

, 

 = {maps of size }, 

, 

normalisation. 

u > 0
ℳn n
𝔪 ∈ ℳn

Zn,u =

• : uniform distribution on maps of size ; 

• : minimising the number of blocks (=2-connected maps); 

• : maximising the number of blocks (= trees!).

u = 1 n
u → 0
u → ∞

Given , asymptotic behaviour when ?u n → ∞

Inspired by [Bonzom 2016].
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u = 1

n ≈ 55 000
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u = 8/5

n ≈ 55 000
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u = 9/5

n ≈ 80 000
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u = 5/2

n ≈ 75 000
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u = 5

n ≈ 50 000
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Theorem [Fleurat, S. 23] Model exhibits a phase transition 
at . When : 

• Subcritical phase : “general map phase” one 
huge block; 

• Critical phase : a few large blocks; 

• Supercritical phase : “tree phase” only small 
blocks. 

We obtain explicit results on enumeration, size of blocks 
and scaling limits in each case.

u = 9/5 n → ∞
u < 9/5

u = 9/5
u > 9/5

15

Phase transition

→ A phase transition in block-weighted random maps 
W. Fleurat & Z. S., Electronic Journal of Probability, 2024
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Results
u < 9/5 u = 9/5 u > 9/5For Mn ↪ ℙn,u

Enumeration

Size of 
- the largest 

block 
- the second 

one

Scaling limit of 
Mn
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II. Block tree of a map 
and its applications

17
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Inspiration from [Tutte 1963]

18

Decomposition of a map into blocks
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Inspiration from [Tutte 1963]

18

Decomposition of a map into blocks

 With a weight  on blocks: u M(z, u) = uB(zM2(z, u)) + 1 − u

1
2

34

5
6

7

8
9 10

M(z, u) = ∑
𝔪∈ℳ

z|𝔪|u#blocks(𝔪)

GS of 2-connected maps

M(z) = B(zM2(z))
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Results
u < 9/5 u = 9/5 u > 9/5

ρ(u)−nn−5/2 ρ(u)−nn−5/3

For Mn ↪ ℙn,u

ρ(u)−nn−3/2Enumeration
[Bonzom 2016]

Size of 
- the largest 

block 
- the second 

one

Scaling limit of 
Mn
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Properties of the block tree

•  is entirely determined by  and  where  is the 
block of  represented by  in ; 

• Internal node (with  children) of   block of  of size .

𝔪 T𝔪 (𝔟v, v ∈ T𝔪) 𝔟v
𝔪 v T𝔪

2k T𝔪 ↔ 𝔪 k

 gives the block sizes of a random map .TMn
Mn
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-Galton-Watson tree : random tree where the number of 
children of each node is given by  independently, with  
= probability law on .

μ
μ μ

ℕ

22

Galton-Watson trees for map blocks
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-Galton-Watson tree : random tree where the number of 
children of each node is given by  independently, with  
= probability law on .

μ
μ μ

ℕ

22

Galton-Watson trees for map blocks

Theorem [Fleurat, S. 23] 

If , then there exists an (explicit)  s.t. 

 has the law of a Galton-Watson tree of reproduction 

law  conditioned to be of size , with  

.

Mn ↪ ℙn,u y = y(u)
TMn

μy,u 2n

μy,u({2k}) =
Bkyku1k≠0

uB(y) + 1 − u

u > 0
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Phase transition

When is  critical? (= ?) μy,u 𝔼(μ) = 1

covers  when  covers .[9/5, + ∞) y (0,ρB = 4/27]

𝔼(μy,u) = 1 ⇔ u =
1

2yB′ (y) − B(y) + 1
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u

y

“Map regime” “Tree regime”
9/5

4/27

Critical GWSubcritical 
GW

y(u) = 4/27 y(u) = y s.t. 𝔼(μy(u),u) = 1

uC = 9/5

24

Phase transition 
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• Degrees of  give the block sizes of the map ; 

• Largest degrees of a Galton-Waston tree are well-
known [Janson 2012].

TMn
Mn

25

Largest blocks?
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Rough intuition

u < 9/5 u = 9/5 u > 9/5

∼ cuk−5/2
μy(u),u({2k}) ∼ cuπk

uk−5/2

Galton-
Watson tree

subcritical critical

Dichotomy between situations: 
• Subcritical: condensation, cf [Jonsson Stefánsson 2011]; 
• Supercritical: behaves as maximum of independent 

variables.
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u = 9/5

27

Size  of the -th largest blockLn,k k

u < 9/5 u = 9/5 u > 9/5For Mn ↪ ℙn,u

ln(n)

2 ln ( 4
27y )

−
5 ln(ln(n))

4 ln ( 4
27y )

+ O(1)

∼ (1 − 𝔼(μ4/27,u))n
Θ(n2/3)

Θ(n2/3)Ln,2

Ln,1
[Stufler 2020]

Size of the linear block × n−1

[Stufler 2020]
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Results

ln(n)

2 ln ( 4
27y )

−
5 ln(ln(n))

4 ln ( 4
27y )

+ O(1)

u < 9/5 u = 9/5 u > 9/5

ρ(u)−nn−5/2 ρ(u)−nn−5/3

For Mn ↪ ℙn,u

ρ(u)−nn−3/2Enumeration

Size of 
- the largest 

block 
- the second 

one

∼ (1 − 𝔼(μ4/27,u))n
Θ(n2/3)

Θ(n2/3)
[Stufler 2020]

[Bonzom 2016]

Scaling limit of 
Mn
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Interlude: quadrangulations

29
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Def: map with all faces of degree 4.

30

Quadrangulations

Size  = number of faces. |𝔮 |

, .|V(𝔮) | = |𝔮 | + 2 |E(𝔮) | = 2 |𝔮 |

Simple quadrangulation = no multiple edges.
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Construction of a quadrangulation from a simple core
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Construction of a quadrangulation from a simple core
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Construction of a quadrangulation from a simple core
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Block tree for a quadrangulation

 With a weight  on blocks: u Q(z, u) = uS(zQ2(z, u)) + 1 − u

 Remember: M(z, u) = uB(zM2(z, u)) + 1 − u
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Tutte’s bijection
Map Quadrangulation

[Tutte 1963]
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Tutte’s bijection for 2-connected maps

Cut vertex => multiple edge

2-connected maps <=> simple quadrangulations 

[Brown 1965]
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Block trees under Tutte’s bijection
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Implications on results

We choose:  whereℙn,u(𝔮) =
u#blocks(𝔮)

Zn,u

, 

 = {quadrangulations 
of size }, 

, 

normalisation. 

u > 0
𝒬n

n
𝔮 ∈ 𝒬n

Zn,u =

Results on the size of (2-connected) blocks can be transferred 
immediately for quadrangulations and their simple blocks.
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Results

ln(n)

2 ln ( 4
27y )

−
5 ln(ln(n))

4 ln ( 4
27y )

+ O(1)

u < 9/5 u = 9/5 u > 9/5

ρ(u)−nn−5/2 ρ(u)−nn−5/3

For Mn ↪ ℙn,u

ρ(u)−nn−3/2Enumeration

Size of 
- the largest 

block 
- the second 

one

∼ (1 − 𝔼(μ4/27,u))n
Θ(n2/3)

Θ(n2/3)
[Stufler 2020]

[Bonzom 2016] for 2-c case

Scaling limit of 
Mn



/72

III. Scaling limits

38
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Convergence of the whole object considered as a metric 
space (with the graph distance), after renormalisation.

39

Scaling limits

u

v

d(u, v) = 4

What is the limit of the sequence of metric spaces  ?((Mn, d/n?))n∈ℕ

(Convergence for Gromov-Hausdorff topology)

 (map or quadrangulation)Mn ↪ ℙn,u
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Scaling limit of supercritical and critical maps
Lemma For , 

• If , 

. 

• If , 

.

Mn ↪ ℙn,u

u > 9/5
c3(u)
n1/2

TMn
→ 𝒯e

u = 9/5
c2

n1/3
TMn

→ 𝒯3/2
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Proof Known scaling limits of critical Galton-Watson trees 
• with finite variance [Aldous 1993, Le Gall 2006]; 
• infinite variance and polynomial tails [Duquesne 2003].

40

Scaling limit of supercritical and critical maps
Lemma For , 

• If , 

. 

• If , 

.

Mn ↪ ℙn,u

u > 9/5
c3(u)
n1/2

TMn
→ 𝒯e

u = 9/5
c2

n1/3
TMn

→ 𝒯3/2
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Scaling limit of supercritical and critical maps
Theorem For , 

• [Stufler 2020] If , 

,            . 

• [Fleurat, S. 23] If , 

,            .

Mn ↪ ℙn,u

u > 9/5
c3(u)
n1/2

TMn
→ 𝒯e

C3(u)
n1/2

Mn → 𝒯e

u = 9/5
c2

n1/3
TMn

→ 𝒯3/2
C2

n1/3
Mn → 𝒯3/2
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Proof Distances in  behave like distances in !Mn TMn

41

Scaling limit of supercritical and critical maps
Theorem For , 

• [Stufler 2020] If , 

,            . 

• [Fleurat, S. 23] If , 

,            .

Mn ↪ ℙn,u

u > 9/5
c3(u)
n1/2

TMn
→ 𝒯e

C3(u)
n1/2

Mn → 𝒯e

u = 9/5
c2

n1/3
TMn

→ 𝒯3/2
C2

n1/3
Mn → 𝒯3/2
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Difficult part = show that distances in  behave like 

distances in . 

Mn
TMn

42

Supercritical and critical cases

e1

e2

Let . By a “law of large 
numbers”-type argument

κ = 𝔼("diameter" bipointed block)

dMn
(e1, e2) ≃ κdTMn

(e1, e2) .
Difficult for the 

critical case => large 
deviation estimates
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u = 9/5

n ≈ 80 000
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u = 5/2

n ≈ 75 000
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u = 5

n ≈ 50 000
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Brownian Sphere 𝒮e

Theorem [Fleurat, S. 23] If , for  and 

denoting  its largest block: 

.

u < 9/5 Mn ↪ ℙn,u

B(Mn)

dGHP ( C1(u)
n1/4

Mn,
1

n1/4
B(Mn)) → 0

46

Scaling limits of subcritical maps

See [Addario-Berry, Wen 2019] for a similar result and method.

So, if , then 

. 

cn−1/4Bn → 𝒮e

C1(u)
cn1/4

Mn → 𝒮e
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Theorem [Fleurat, S. 23] If , for  a 
quadrangulation: 

. 

Moreover,  and its simple core converge jointly to the 
same Brownian sphere.

u < 9/5 Qn ↪ ℙn,u

C1(u)
n1/4

Qn → 𝒮e

Qn

47

Scaling limits of subcritical maps

Proof 
• Previous theorem; 
• Scaling limit of uniform 

simple quad. rescaled by  
= Brownian sphere [Addario-Berry 

Albenque 2017]. 

n1/4
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Subcritical case

Large block of size 
Θ(n)

Decorations = groups of smaller blocks

Diameter of a decoration ≤ blocks to cross  max diameter of blocks ×
≤ diam(TMn

) × (O(n2/3))1/4+δ = diam(TMn
) × O(n1/6+δ)

 is a subcritical 
Galton-Watson tree
TMn = O(n1/6+2δ) = o(n1/4) .

[Chapuy Fusy Giménez Noy 2015]
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Subcritical case

Diameters of decorations = .o(n1/4)

Large block of size 
Θ(n)

Decorations = groups of smaller blocks

Diameter of a decoration ≤ blocks to cross  max diameter of blocks ×
≤ diam(TMn

) × (O(n2/3))1/4+δ = diam(TMn
) × O(n1/6+δ)

 is a subcritical 
Galton-Watson tree
TMn = O(n1/6+2δ) = o(n1/4) .

[Chapuy Fusy Giménez Noy 2015]
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Subcritical case

Diameters of decorations = .o(n1/4)

Large block of size 
Θ(n)

Decorations = groups of smaller blocks

The scaling limit of  (rescaled by ) is the scaling limit of 
uniform blocks!

Mn n1/4
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u = 1

n ≈ 55 000
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u = 8/5

n ≈ 55 000
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Results

C2

n1/3
Mn → 𝒯3/2

C3(u)
n1/2

Mn → 𝒯e
C1(u)
n1/4

Mn → 𝒮e

ln(n)

2 ln ( 4
27y )

−
5 ln(ln(n))

4 ln ( 4
27y )

+ O(1)

Assuming the convergence of 2-
connected maps towards the 

Brownian sphere

u < 9/5 u = 9/5 u > 9/5

ρ(u)−nn−5/2 ρ(u)−nn−5/3

For Mn ↪ ℙn,u

ρ(u)−nn−3/2Enumeration

Size of 
- the largest 

block 
- the second 

one

Θ(n2/3)
Θ(n2/3)

Scaling limit of 
Mn

[Stufler 2020]

[Stufler 2020]

[Bonzom 2016]

∼ (1 − 𝔼(μ4/27,u))n
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IV. Extension to other 
families of maps

52
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Extension to other models
[Banderier, Flajolet, Schaeffer, Soria 2001]:
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Extension to other models
[Banderier, Flajolet, Schaeffer, Soria 2001]:

→ Unified study of the phase transition for block-weighted 
random planar maps Z. Salvy (Eurocomb’23) 

uC

81/17
9/5

135/7

36/11

52/27
68/3
16/7
64/37
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Theorem [S. 23] Model of the preceding table without coreless 
maps exhibits a phase transition at some explicit . 

When : 

• Subcritical phase : “general map phase” one huge 
block; 

• Critical phase : a few large blocks; 

• Supercritical phase : “tree phase” only small blocks. 

We obtain explicit results on enumeration and size of blocks in 
each case.

uC

n → ∞
u < uC

u = uC

u > uC

54

Statement of the results
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V. Extension to tree-
rooted maps

55
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From a theoretical physics point of view: 
• Before: “pure gravity” case (nothing happens on the 

surface); 
• Now: decorated map (things happen! new behaviours! 

excitement!).

56

Decorated maps are interesting
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Tree-rooted maps
 = (rooted planar) maps endowed with a spanning tree.

M(z) = ∑
n≥0

CatnCatn+1zn [Mullin 67]

We want to study block-weighted tree-rooted maps.
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Block decomposition of tree-rooted maps
The decomposition of maps into blocks extends into a 
decomposition of tree-rooted maps into tree-rooted blocks.

M(z) = B(zM2(z))
GS of 2-connected tree-rooted maps
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Tree-rooted maps are not so nice

M(z) = ∑
n≥0

CatnCatn+1zn so

• Fortunately, it is still -finiteD

• ;[zn]M(z) ∼
4
π

× 16n × n−3 • ;ρM =
1
16

•  so  is not algebraic… M(ρM) = 8 −
64
3π

≃ 1.2 M

-finiteD

Algebraic

M

M, B

P0(z)
∂2M
∂z2

(z) + P1(z)
∂M
∂z

(z) + P2(z)M(z) + P3(z) = 0.

P (z, M(z)) = 0



/7260

2-connected tree-rooted maps are naughty

Using  and the properties of , we showM(z) = B(zM2(z)) M
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2-connected tree-rooted maps are naughty

-algebraicD

-finiteD

Algebraic
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B

M, B

•  

is not algebraic so  is not -finite

ρB = ρMM2(ρM) =
4(3π − 8)2

9π2
≈ 0.091

B D
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2-connected tree-rooted maps are naughty

•  is -algebraicB D

-algebraicD

-finiteD

Algebraic

M

B

M, B

•  

is not algebraic so  is not -finite

ρB = ρMM2(ρM) =
4(3π − 8)2

9π2
≈ 0.091

B D

P ( ∂2B
∂y2

(y),
∂B
∂y

(y), B(y), y) = 0.

Using  and the properties of , we showM(z) = B(zM2(z)) M
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Enumeration of 2-connected tree-rooted maps

Theorem [Albenque, Fusy, S. 24+] 

[yn]B(y) ∼
4(3π − 8)3

27π(4 − π)3
× ρ−n

B × n−3 .

Using  and the properties of , we showM(z) = B(zM2(z)) M
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Block decomposition of tree-rooted maps
The decomposition of maps into blocks extends into a 
decomposition of tree-rooted maps into tree-rooted blocks.

M(z) = B(zM2(z))
GS of 2-connected tree-rooted maps
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Block decomposition of tree-rooted maps
The decomposition of maps into blocks extends into a 
decomposition of tree-rooted maps into tree-rooted blocks.

M(z, u) = uB(zM2(z, u)) + 1 − u
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Phase transition
Theorem [Albenque, Fusy, S. 24+] Model exhibits a phase 

transition at . 

When : 

• Subcritical phase : “general tree-rooted map 
phase” one huge block; 

• Critical phase : a few large blocks; 

• Supercritical phase : “tree phase” only small 
blocks. 

We obtain results on enumeration, size of blocks and 
scaling limits in each case.

uC =
9π(4 − π)

420π − 81π2 − 512
≃ 3.02

n → ∞

u < uC

u = uC

u > uC
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Results
u < uC u = uC u > uCFor Mn ↪ ℙn,u

Enumeration

Size of 
- the largest 

block 
- the second 

one

Scaling limit of 
Mn
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Results
u < uC u = uC u > uCFor Mn ↪ ℙn,u

Enumeration

Size of 
- the largest 

block 
- the second 

one

Scaling limit of 
Mn

ρ(u)−nn−3 ρ(u)−nn−3/2 ln(n)−1/2 ρ(u)−nn−3/2
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Results
u < uC u = uC u > uCFor Mn ↪ ℙn,u

Enumeration

Size of 
- the largest 

block 
- the second 

one

Scaling limit of 
Mn

ρ(u)−nn−3 ρ(u)−nn−3/2 ln(n)−1/2 ρ(u)−nn−3/2

ln(n)

ln ( ρB

y(u) )
−

3 ln(ln(n))

ln ( ρB

y(u) )
+ O(1)Θ(n1/2)

Θ(n1/2)

∼ (1 − 𝔼(μρB,u))n



/7267

Results
u < uC u = uC u > uCFor Mn ↪ ℙn,u

Enumeration

Size of 
- the largest 

block 
- the second 

one

Scaling limit of 
Mn

ρ(u)−nn−3 ρ(u)−nn−3/2 ln(n)−1/2 ρ(u)−nn−3/2

ln(n)

ln ( ρB

y(u) )
−

3 ln(ln(n))

ln ( ρB

y(u) )
+ O(1)Θ(n1/2)

Θ(n1/2)

∼ (1 − 𝔼(μρB,u))n

C3(u)
n1/2

Mn → 𝒯e
C2

n1/2 ln(n)1/2
Mn → 𝒯e

?
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Interlude: tree-rooted 
quadrangulations
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Interlude: tree-rooted 
quadrangulations

68

 does not hold!M(z) = Q(z)

CANCELLED
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VI. Perspectives

69
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Extension to more involved 
decompositions 

• For maps : maps into loopless blocks, 2-connected 
maps into 3-connected blocks;
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Extension to more involved 
decompositions 

• For maps : maps into loopless blocks, 2-connected 
maps into 3-connected blocks;

• For decorated maps : tree-rooted quadrangulations 
into simple blocks, Schnyder woods / 3-orientations / 
2-orientations into irreducible blocks.
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Critical window?

Is there a critical window? If so, what is its width?

• Block size results still hold if , ; 

• For , this is the case as well: when 

 

 

(analogous to [Bollobás 1984]’s result for Erdős-Rényi graphs!); 

• Results exist for scaling limits in ER graphs [Addario-Berry, 

Broutin, Goldschmidt 2010], open question in our case.

un = 9/5 − ε(n) ε3n → ∞

un = 9/5 + ε(n)
ε3n → ∞

Ln,1 ∼ 2.7648 ε−2 ln(ε3n)

Phase transition very sharp => what if ?u = 9/5 ± ε(n)
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Thank you!

72


