The structure of quasi-transitive graphs avoiding a minor

Clément Legrand-Duchesne
LaBRI, Bordeaux
February 6, 2024

Joint work with Louis Esperet and Ugo Giocanti.

Wang's dominos

Wang's dominos

Wang's tiling problem

Entry: A finite family of tiles \mathcal{T}
Question: Does there exist a tiling of \mathbb{Z}^{2} using tiles of \mathcal{T} ?

Wang's dominos

Wang's tiling problem

Entry: A finite family of tiles \mathcal{T}
Question: Does there exist a tiling of \mathbb{Z}^{2} using tiles of \mathcal{T} ?

Theorem

- Wang's tiling problem is undecidable.
- There exist aperiodic sets of tiles

Generalization of Wang's dominos

What about tiling other spaces ?
On \mathbb{Z}, \exists a tiling $\Leftrightarrow \exists$ a periodic tiling, so the problem is decidable.

Generalization of Wang's dominos

What about tiling other spaces ?
On \mathbb{Z}, \exists a tiling $\Leftrightarrow \exists$ a periodic tiling, so the problem is decidable.

Alternative definition of the problem

Entry: k colors and a finite set of forbidden patterns \mathcal{F}
Question: Is there a coloring of \mathbb{Z}^{2} that avoids \mathcal{F} ?

Generalization of Wang's dominos

What about tiling other spaces ?
On \mathbb{Z}, \exists a tiling $\Leftrightarrow \exists$ a periodic tiling, so the problem is decidable.

Alternative definition of the problem

Entry: k colors and a finite set of forbidden patterns \mathcal{F}
Question: Is there a coloring of \mathbb{Z}^{2} that avoids \mathcal{F} ?

Goal of this talk

Overview and intuition on different objects

- The domino problem
- Infinite graphs with lots of symmetries
- Tree-decompositions, treewidth and minors
- A small bit of group theory

Natural generalization of \mathbb{Z}^{d} : Cayley graphs

Group presentation of $\Gamma=\langle\Sigma \mid R\rangle$

- A finite set of generators and their inverses:
$\Sigma=\left\{a, a^{-1}, b, b^{-1} \ldots\right\}$
- A set of relations $R=\left\{a b a^{-1} b^{-1}\right\}$ finitely presented if R is finite
- The elements are the words on Σ, quotiented by patterns in R

Natural generalization of \mathbb{Z}^{d} : Cayley graphs

Group presentation of $\Gamma=\langle\Sigma \mid R\rangle$

- A finite set of generators and their inverses:
$\Sigma=\left\{a, a^{-1}, b, b^{-1} \ldots\right\}$
- A set of relations $R=\left\{a b a^{-1} b^{-1}\right\}$ finitely presented if R is finite

- The elements are the words on Σ, quotiented by patterns in R

Cayley graphs

Vertices are the elements of the group Edges are labelled by Σ

$$
\left\langle a, b, c, d \mid a b a^{-1} b^{-1} c d c^{-1} d^{-1}\right\rangle
$$

Why Cayley graphs ?

Some examples of Cayley graphs

- \mathbb{Z}^{d}
- The infinite d-valent trees and their blow-ups

Why Cayley graphs ?

Some examples of Cayley graphs

- \mathbb{Z}^{d}
- The infinite d-valent trees and their blow-ups

Strong structural properties of Cayley graphs

- Regular
- Transitive: For all $u, v, \exists \phi \in \operatorname{Aut}(G), u=\phi(v)$
- Strong connections with expanders

Why Cayley graphs ?

Some examples of Cayley graphs

- \mathbb{Z}^{d}
- The infinite d-valent trees and their blow-ups

Strong structural properties of Cayley graphs

- Regular
- Transitive: For all $u, v, \exists \phi \in \operatorname{Aut}(G), u=\phi(v)$
- Strong connections with expanders

Conjecture [Ballier and Stein 2018]
The domino problem is decidable in a group $\Gamma \Leftrightarrow \Gamma$ is virtually-free

Why Cayley graphs ?

Some examples of Cayley graphs

- \mathbb{Z}^{d}
- The infinite d-valent trees and their blow-ups

Strong structural properties of Cayley graphs

- Regular
- Transitive: For all $u, v, \exists \phi \in \operatorname{Aut}(G), u=\phi(v)$
- Strong connections with expanders

Conjecture [Ballier and Stein 2018]
The domino problem is decidable in a group $\Gamma \Leftrightarrow \Gamma$ has a Cayley graph G of bounded treewidth

Crash course on treewidth

Definition

A tree decomposition of G is a tree T whose nodes are bags $X_{i} \subset V(G)$ s. t.

- $U_{i} X_{i}=V(G)$
- $\forall u \in V(G)$ the subgraph of nodes containing u is connected
- $\forall u v \in E(G), \exists X_{i},\{u, v\} \subset X_{i}$

Crash course on treewidth

Definition

A tree decomposition of G is a tree T whose nodes are bags $X_{i} \subset V(G)$ s. t.

- $\bigcup_{i} X_{i}=V(G)$
- $\forall u \in V(G)$ the subgraph of nodes containing u is connected
- $\forall u v \in E(G), \exists X_{i},\{u, v\} \subset X_{i}$

A graph has treewidth at most k if it admits a tree decomposition with bags of size at most $k+1$

Treewidth of infinite graphs

Bounded treewidth

Unbounded treewidth

Unbounded treewidth

Treewidth of infinite graphs

Bounded treewidth

Unbounded treewidth

Unbounded treewidth

Intuition behind the conjecture

Bounded treewidth \Rightarrow tree-like structure with periodic colorings

Treewidth of infinite graphs

Bounded treewidth

Unbounded treewidth

Unbounded treewidth

Intuition behind the conjecture

Bounded treewidth \Rightarrow tree-like structure with periodic colorings
Unbounded treewidth \Rightarrow infinite grid-like workspace

Vocabulary on tree decomposition

Definitions

Let T be a tree decomposition of G, Adhesion set: $X_{i} \cap X_{j}$ for some $i \neq j$ Adhesion: supremum size of an adhesion set

Vocabulary on tree decomposition

Definitions

Let T be a tree decomposition of G, Adhesion set: $X_{i} \cap X_{j}$ for some $i \neq j$
Adhesion: supremum size of an adhesion set
Torso of a bag X_{i} : graph $G \llbracket X_{i} \rrbracket \mathrm{~s}$. t.

- $G\left[X_{i}\right] \subset G \llbracket X_{i} \rrbracket$
- add all edges $u v$ s.t. u, v in an adhesion of X_{i} and connected by a path in $G \backslash E\left[X_{i}\right]$.

Crash course on minors

Definition

H minor of G : H can be obtained from G by contracting edges and by deleting vertices and edges.

Proposition

Having bounded treewidth is a minor closed property

Robertson-Seymour's structure theorem on graph minors

Why is $G H$-minor free ?
Let G be a H-minor-free graph. Then G is piecewise

- too thin to contain H
- almost embeddable on surfaces too simple to contain H as a minor.

Robertson-Seymour's structure theorem on graph minors

Why is G H-minor free?
Let G be a H-minor-free graph. Then G is piecewise

- too thin to contain H
- almost embeddable on surfaces too simple to contain H as a minor.

Robertson, Seymour 2003

Let H be a fixed graph, $\exists k$, s. t. any H-minor free graph G admits a tree-decomposition with :

- adhesion is at most k,
- torsos are "almost" embeddable in a surface in which H does not embed (too low genus)

Diestel, Thomas 1999

The same holds for locally-finite graphs G that exclude some finite minor.

What about graphs with many symmetries ?

Definition

G quasi-transitive: \exists a t-coloring of G, s. t. $\forall u, v$ colored identically, $\exists \phi \in \operatorname{Aut}(G)$ with $u=\phi(v)$
$(V(G)$ has finitely many orbits under the action of $\operatorname{Aut}(G))$

What about graphs with many symmetries ?

Definition

G quasi-transitive: \exists a t-coloring of G, s. t. $\forall u, v$ colored identically, $\exists \phi \in \operatorname{Aut}(G)$ with $u=\phi(v)$
$(V(G)$ has finitely many orbits under the action of $\operatorname{Aut}(G))$

What about graphs with many symmetries ?

Definition

G quasi-transitive: \exists a t-coloring of G, s. t. $\forall u, v$ colored identically, $\exists \phi \in \operatorname{Aut}(G)$ with $u=\phi(v)$
$(V(G)$ has finitely many orbits under the action of $\operatorname{Aut}(G))$

Preserve the symmetric structure in T

Definition

Canonical tree decomposition: $\forall \phi \in \operatorname{Aut}(G), \phi$ maps bags on other bags $\left(\operatorname{Aut}(G)\right.$ induces an action on T s. t. $\left.\forall \phi, \forall i, \phi\left(X_{i}\right)=X_{i \cdot \phi}\right)$

Preserve the symmetric structure in T

Definition

Canonical tree decomposition: $\forall \phi \in \operatorname{Aut}(G), \phi$ maps bags on other bags $\left(\operatorname{Aut}(G)\right.$ induces an action on T s. t. $\left.\forall \phi, \forall i, \phi\left(X_{i}\right)=X_{i \cdot \phi}\right)$

Esperet, Giocanti, L. 2023
Let G be a quasi-transitive locally finite graph G avoiding the countable clique as a minor. Then G admits a canonical tree decomposition s. t.
Theorem 1 torsos are finite or planar

Preserve the symmetric structure in T

Definition

Canonical tree decomposition: $\forall \phi \in \operatorname{Aut}(G), \phi$ maps bags on other bags $\left(\operatorname{Aut}(G)\right.$ induces an action on T s. t. $\left.\forall \phi, \forall i, \phi\left(X_{i}\right)=X_{i \cdot \phi}\right)$

Esperet, Giocanti, L. 2023
Let G be a quasi-transitive locally finite graph G avoiding the countable clique as a minor. Then G admits a canonical tree decomposition s. t.

Theorem 1 torsos are finite or planar
Theorem 2 - adhesion is at most 3

- torsos are minors of G
- torsos are planar or have bounded treexidth

Hadwiger number

Definition

Hadwiger number of G : supremum of the sizes of its complete minors.

Hadwiger number

Definition

Hadwiger number of G : supremum of the sizes of its complete minors.
Thomassen 1992
Every locally finite quasi-transitive 4-connected graph attains its Hadwiger number.

Hadwiger number

Definition

Hadwiger number of G : supremum of the sizes of its complete minors.
Thomassen 1992
Every locally finite quasi-transitive 4-connected graph attains its Hadwiger number.

```
Esperet, Giocanti, L. 2023
```

Every locally finite quasi-transitive graph attains its Hadwiger number.
" K_{∞} minor free $\Rightarrow K_{t}$ minor free for some t "

Graph ends

Definitions

- Ray: infinite one-way path in G
- Two rays r_{1} and r_{2} are equivalent if \forall finite subgraph C of G, \exists a connected component of $G \backslash C$ intersecting r_{1} an infinite number of time, and r_{2} too
- End of G : equivalence class of rays

Graph ends

Definitions

- Ray: infinite one-way path in G
- Two rays r_{1} and r_{2} are equivalent if \forall finite subgraph C of G, \exists a connected component of $G \backslash C$ intersecting r_{1} an infinite number of time, and r_{2} too
- End of G : equivalence class of rays
- Thickness of an end: supremum in $\mathbb{N} \cup\{\infty\}$ of the number of pairwise disjoint rays living in it

Graph ends

Definitions

- Ray: infinite one-way path in G
- Two rays r_{1} and r_{2} are equivalent if \forall finite subgraph C of G, \exists a connected component of $G \backslash C$ intersecting r_{1} an infinite number of time, and r_{2} too
- End of G : equivalence class of rays
- Thickness of an end: supremum in $\mathbb{N} \cup\{\infty\}$ of the number of pairwise disjoint rays living in it

Hopf 1944 \& Diestel, Jung, Möller 1993

A quasi-transitive graph has $0,1,2$ or an infinite number of ends

Separating the ends

Definitions

- A finite set C separates two ends if they have an infinite number of vertices in distinct components of $G \backslash C$
- A graph G is vertex-accessible if there is a $k<\infty$ s. t. any two ends can be separated by a set of size k.

Separating the ends

Definitions

- A finite set C separates two ends if they have an infinite number of vertices in distinct components of $G \backslash C$
- A graph G is vertex-accessible if there is a $k<\infty$ s. t. any two ends can be separated by a set of size k.

Dunwoody 2007
Planar quasi-transitive graphs are vertex-accessible.

Separating the ends

Definitions

- A finite set C separates two ends if they have an infinite number of vertices in distinct components of $G \backslash C$
- A graph G is vertex-accessible if there is a $k<\infty$ s. t. any two ends can be separated by a set of size k.

Dunwoody 2007
Planar quasi-transitive graphs are vertex-accessible.

Esperet, Giocanti, L. 2023

Quasi-transitive graphs K_{∞}-minor free graphs are vertex-accessible.

Decomposing and presenting groups

Stallings 1972

Γ a finitely generated group. Γ has more than one end $\Leftrightarrow \Gamma$ can be decomposed as a product of two groups (amalgamated free-product or HNN-extension over a finite group)

Definition

「 accessible: Stallings' inductive decomposition terminates

Decomposing and presenting groups

Stallings 1972

Γ a finitely generated group. Γ has more than one end $\Leftrightarrow \Gamma$ can be decomposed as a product of two groups (amalgamated free-product or HNN-extension over a finite group)

Definition

「 accessible: Stallings' inductive decomposition terminates
Thomassen, Woess 1993 A group is accessible \Leftrightarrow one of its Cayley graphs is vertex-accessible

Decomposing and presenting groups

Stallings 1972

Γ a finitely generated group. Γ has more than one end $\Leftrightarrow \Gamma$ can be decomposed as a product of two groups (amalgamated free-product or HNN-extension over a finite group)

Definition

「 accessible: Stallings' inductive decomposition terminates
Thomassen, Woess 1993 A group is accessible \Leftrightarrow one of its Cayley graphs is vertex-accessible $\Gamma=\langle\Sigma \mid R\rangle$ finitely presented: R finite
Droms 2006 Finitely generated planar groups are finitely presented

Decomposing and presenting groups

Stallings 1972

Γ a finitely generated group. Γ has more than one end $\Leftrightarrow \Gamma$ can be decomposed as a product of two groups (amalgamated free-product or HNN-extension over a finite group)

Definition

「 accessible: Stallings' inductive decomposition terminates
Thomassen, Woess 1993 A group is accessible \Leftrightarrow one of its Cayley graphs is vertex-accessible
$\Gamma=\langle\Sigma \mid R\rangle$ finitely presented: R finite
Droms 2006 Finitely generated planar groups are finitely presented Dunwoody 1985 Finitely presented groups are accessible

Decomposing and presenting groups

Stallings 1972

Γ a finitely generated group. Γ has more than one end $\Leftrightarrow \Gamma$ can be decomposed as a product of two groups (amalgamated free-product or HNN-extension over a finite group)

Definition

「 accessible: Stallings' inductive decomposition terminates
Thomassen, Woess 1993 A group is accessible \Leftrightarrow one of its Cayley graphs is vertex-accessible
$\Gamma=\langle\Sigma \mid R\rangle$ finitely presented: R finite
Droms 2006 Finitely generated planar groups are finitely presented
Dunwoody 1985 Finitely presented groups are accessible
Esperet, Giocanti, L. 2023 Finitely generated K_{∞} minor free groups are accessible and finitely presented

Domino conjecture on groups avoiding a minor

Aubrun, Barbieri, Moutot 2019

For any $g \geq 1$, the fundamental group of the closed orientable surface of genus g has undecidable domino problem

Domino conjecture on groups avoiding a minor

Aubrun, Barbieri, Moutot 2019

For any $g \geq 1$, the fundamental group of the closed orientable surface of genus g has undecidable domino problem

Bungaard, Nielsen 46 \& Fox 52

One-ended planar groups contain the fundamental group of a closed orientable surface as a subgroup of finite index

Domino conjecture on groups avoiding a minor

Aubrun, Barbieri, Moutot 2019

For any $g \geq 1$, the fundamental group of the closed orientable surface of genus g has undecidable domino problem

Bungaard, Nielsen 46 \& Fox 52

One-ended planar groups contain the fundamental group of a closed orientable surface as a subgroup of finite index

Esperet, Giocanti, L. 2023
The domino conjecture holds in groups with no K_{∞}-minor

Key ideas to take away

- Among quasi-transitive graphs, planar graphs and graphs excluding a minor are much alike
- For a quasi-transitive graph, K_{∞}-minor free $\Rightarrow K_{t}$ minor free for some t

Key ideas to take away

- Among quasi-transitive graphs, planar graphs and graphs excluding a minor are much alike
- For a quasi-transitive graph, K_{∞}-minor free $\Rightarrow K_{t}$ minor free for some t

Thanks!

