The structure of quasi-transitive graphs avoiding a minor

Clément Legrand-Duchesne

LaBRI, Bordeaux

February 6, 2024

Joint work with Louis Esperet and Ugo Giocanti.
Wang’s dominos

Entry:
A finite family of tiles T

Question:
Does there exist a tiling of \mathbb{Z}^2 using tiles of T?

Theorem
• Wang’s tiling problem is undecidable.
• There exist aperiodic sets of tiles.
Wang’s dominoes

Wang’s tiling problem

Entry: A finite family of tiles \mathcal{T}

Question: Does there exist a tiling of \mathbb{Z}^2 using tiles of \mathcal{T}?
Wang’s dominoes

Wang’s tiling problem

Entry: A finite family of tiles \mathcal{T}

Question: Does there exist a tiling of \mathbb{Z}^2 using tiles of \mathcal{T}?

Theorem

- Wang’s tiling problem is undecidable.
- There exist aperiodic sets of tiles
Generalization of Wang’s dominoes

What about tiling other spaces?

On \mathbb{Z}, \exists a tiling $\iff \exists$ a periodic tiling, so the problem is decidable.
Generalization of Wang’s dominos

What about tiling other spaces?

On \(\mathbb{Z} \), \(\exists \) a tiling \(\Leftrightarrow \exists \) a periodic tiling, so the problem is decidable.

Alternative definition of the problem

\textbf{Entry:} \(k \) colors and a finite set of forbidden patterns \(\mathcal{F} \)

\textbf{Question:} Is there a coloring of \(\mathbb{Z}^2 \) that avoids \(\mathcal{F} \)?

\[\mathcal{F} = \{ \text{patterns from images} \} \]
Generalization of Wang’s dominos

What about tiling other spaces?
On \mathbb{Z}, \exists a tiling $\iff \exists$ a periodic tiling, so the problem is decidable.

Alternative definition of the problem

Entry: k colors and a finite set of forbidden patterns \mathcal{F}

Question: Is there a coloring of \mathbb{Z}^2 that avoids \mathcal{F}?

\[
\mathcal{F} = \begin{Bmatrix}
\begin{array}{ccc}
1 & 2 \\
3 & 2 & 3
\end{array}, \\
\begin{array}{ccc}
3 & 2 \\
2 & 3 & 1
\end{array}, \\
\begin{array}{ccc}
2 & 3 \\
3 & 1 & 2
\end{array}
\end{Bmatrix}
\]
Goal of this talk

Overview and intuition on different objects

• The domino problem
• Infinite graphs with lots of symmetries
• Tree-decompositions, treewidth and minors
• A small bit of group theory
Natural generalization of \mathbb{Z}^d: Cayley graphs

Group presentation of $\Gamma = \langle \Sigma | R \rangle$

- A finite set of generators and their inverses:
 $\Sigma = \{a, a^{-1}, b, b^{-1}, \ldots\}$
- A set of relations $R = \{aba^{-1}b^{-1}\}$
 finitely presented if R is finite
- The elements are the words on Σ, quotiented by patterns in R
Natural generalization of \mathbb{Z}^d: Cayley graphs

Group presentation of $\Gamma = \langle \Sigma | R \rangle$

- A finite set of generators and their inverses:
 $\Sigma = \{a, a^{-1}, b, b^{-1}, \ldots\}$

- A set of relations $R = \{aba^{-1}b^{-1}\}$
 finitely presented if R is finite

- The elements are the words on Σ, quotiented by patterns in R

Cayley graphs

Vertices are the elements of the group
Edges are labelled by Σ

Motivation: The domino problem
Why Cayley graphs?

Some examples of Cayley graphs

- \mathbb{Z}^d
- The infinite d-valent trees and their blow-ups
Why Cayley graphs?

Some examples of Cayley graphs
- \(\mathbb{Z}^d \)
- The infinite \(d \)-valent trees and their blow-ups

Strong structural properties of Cayley graphs
- Regular
- Transitive: For all \(u, v \), \(\exists \phi \in Aut(G), u = \phi(v) \)
- Strong connections with expanders
Why Cayley graphs?

Some examples of Cayley graphs

- \mathbb{Z}^d
- The infinite d-valent trees and their blow-ups

Strong structural properties of Cayley graphs

- Regular
- Transitive: For all u, v, $\exists \phi \in Aut(G), u = \phi(v)$
- Strong connections with expanders

Conjecture [Ballier and Stein 2018]
The domino problem is decidable in a group Γ \iff Γ is virtually-free
Why Cayley graphs?

Some examples of Cayley graphs

- \mathbb{Z}^d
- The infinite d-valent trees and their blow-ups

Strong structural properties of Cayley graphs

- Regular
- Transitive: For all u,v, $\exists \phi \in Aut(G), u = \phi(v)$
- Strong connections with expanders

Conjecture [Ballier and Stein 2018]
The domino problem is decidable in a group $\Gamma \Leftrightarrow \Gamma$ has a Cayley graph G of bounded treewidth
Crash course on treewidth

Definition

A tree decomposition of G is a tree T whose nodes are bags $X_i \subset V(G)$ s. t.

- $\bigcup_i X_i = V(G)$
- $\forall u \in V(G)$ the subgraph of nodes containing u is connected
- $\forall uv \in E(G)$, $\exists X_i, \{u, v\} \subset X_i$
Definition

A tree decomposition of G is a tree T whose nodes are bags $X_i \subseteq V(G)$ s. t.

- $\bigcup_i X_i = V(G)$
- $\forall u \in V(G)$ the subgraph of nodes containing u is connected
- $\forall uv \in E(G)$, $\exists X_i, \{u, v\} \subseteq X_i$

A graph has treewidth at most k if it admits a tree decomposition with bags of size at most $k + 1$
Treewidth of infinite graphs

Bounded treewidth

Unbounded treewidth

Unbounded treewidth

Intuition behind the conjecture

Bounded treewidth \implies tree-like structure with periodic colorings

Unbounded treewidth \implies infinite grid-like workspace
Treewidth of infinite graphs

Bounded treewidth

Unbounded treewidth

Motivation: The domino problem

Intuition behind the conjecture

Bounded treewidth ⇒ tree-like structure with periodic colorings ✓
Treewidth of infinite graphs

Intuition behind the conjecture

Bounded treewidth ⇒ tree-like structure with periodic colorings ✓
Unbounded treewidth ⇒ infinite grid-like workspace ?
Definitions
Let T be a tree decomposition of G,
Adhesion set: $X_i \cap X_j$ for some $i \neq j$
Adhesion: supremum size of an adhesion set
Definitions

Let T be a tree decomposition of G,

Adhesion set: $X_i \cap X_j$ for some $i \neq j$

Adhesion: supremum size of an adhesion set

Torso of a bag X_i: graph $G[X_i]$ s. t.
- $G[X_i] \subset G[X_i]$
- add all edges uv s. t. u, v in an adhesion of X_i and connected by a path in $G \setminus E[X_i]$.
Definition

H minor of G: H can be obtained from G by contracting edges and by deleting vertices and edges.

Proposition

Having bounded treewidth is a minor closed property.
Robertson-Seymour’s structure theorem on graph minors

Why is G H-minor free?

Let G be a H-minor-free graph. Then G is piecewise

- too thin to contain H
- almost embeddable on surfaces too simple to contain H as a minor.

Robertson, Seymour 2003

Diestel, Thomas 1999

The same holds for locally-finite graphs G that exclude some finite minor.
Robertson-Seymour’s structure theorem on graph minors

Why is G H-minor free?
Let G be a H-minor-free graph. Then G is piecewise
- too thin to contain H
- almost embeddable on surfaces too simple to contain H as a minor.

Robertson, Seymour 2003
Let H be a fixed graph, $\exists k$, s. t. any H-minor free graph G admits a tree-decomposition with :
- adhesion is at most k,
- torsos are “almost” embeddable in a surface in which H does not embed (too low genus)

Diestel, Thomas 1999
The same holds for locally-finite graphs G that exclude some finite minor.
What about graphs with many symmetries?

Definition

G quasi-transitive: ∃ a *t*-coloring of *G*, s. t. ∀ *u*, *v* colored identically, ∃φ ∈ Aut(*G*) with *u* = φ(*v*)

(*V(G)* has finitely many orbits under the action of Aut(*G*))
What about graphs with many symmetries?

Definition

G quasi-transitive: \exists a t-coloring of G, s. t. $\forall u, v$ colored identically, $\exists \phi \in Aut(G)$ with $u = \phi(v)$

($V(G)$ has finitely many orbits under the action of $Aut(G)$)
What about graphs with many symmetries?

Definition

\(G \) **quasi-transitive**: \(\exists \) a \(t \)-coloring of \(G \), s. t. \(\forall u, v \) colored identically, \(\exists \phi \in Aut(G) \) with \(u = \phi(v) \)

\((V(G) \) has finitely many orbits under the action of \(Aut(G) \))
Definition

Canonical tree decomposition: \(\forall \phi \in Aut(G), \phi \) maps bags on other bags \((Aut(G)\) induces an action on \(T \) s. t. \(\forall \phi, \forall i, \phi(X_i) = X_{i,\phi} \)\)
Definition

Canonical tree decomposition: \(\forall \phi \in Aut(G), \phi \) maps bags on other bags \((Aut(G))\) induces an action on \(T \) s. t. \(\forall \phi, \forall i, \phi(X_i) = X_{i.\phi} \)

Esperet, Giocanti, L. 2023

Let \(G \) be a quasi-transitive locally finite graph \(G \) avoiding the countable clique as a minor. Then \(G \) admits a canonical tree decomposition s. t.

Theorem 1 torsos are finite or planar
Definition

Canonical tree decomposition: $\forall \phi \in Aut(G)$, ϕ maps bags on other bags $(Aut(G)$ induces an action on T s. t. $\forall \phi, \forall i, \phi(X_i) = X_{i,\phi}$)

Esperet, Giocanti, L. 2023

Let G be a quasi-transitive locally finite graph G avoiding the countable clique as a minor. Then G admits a canonical tree decomposition s. t.

Theorem 1 torsos are finite or planar

Theorem 2
- adhesion is at most 3
- torsos are minors of G
- torsos are planar or have bounded treewidth
Definition

Hadwiger number of G: supremum of the sizes of its complete minors.
Definition

Hadwiger number of G: supremum of the sizes of its complete minors.

Thomassen 1992

Every locally finite quasi-transitive 4-connected graph attains its Hadwiger number.
Hadwiger number

Definition
Hadwiger number of G: supremum of the sizes of its complete minors.

Thomassen 1992
Every locally finite quasi-transitive 4-connected graph attains its Hadwiger number.

Esperet, Giocanti, L. 2023
Every locally finite quasi-transitive graph attains its Hadwiger number.

"K_∞ minor free $\Rightarrow K_t$ minor free for some t"
Definitions

- Ray: infinite one-way path in G
- Two rays r_1 and r_2 are equivalent if \forall finite subgraph C of G, \exists a connected component of $G \setminus C$ intersecting r_1 an infinite number of times, and r_2 too
- End of G: equivalence class of rays
Definitions

- **Ray**: infinite one-way path in G
- Two rays r_1 and r_2 are equivalent if \forall finite subgraph C of G, \exists a connected component of $G \setminus C$ intersecting r_1 an infinite number of time, and r_2 too.
- **End** of G: equivalence class of rays
- **Thickness** of an end: supremum in $\mathbb{N} \cup \{\infty\}$ of the number of pairwise disjoint rays living in it.
Definitions

- **Ray**: infinite one-way path in G
- **Two rays** r_1 and r_2 are equivalent if \forall finite subgraph C of G, \exists a connected component of $G \setminus C$ intersecting r_1 an infinite number of time, and r_2 too
- **End** of G: equivalence class of rays
- **Thickness** of an end: supremum in $\mathbb{N} \cup \{\infty\}$ of the number of pairwise disjoint rays living in it

Hopf 1944 & Diestel, Jung, Möller 1993

A quasi-transitive graph has 0,1,2 or an infinite number of ends
Separating the ends

Definitions

- A finite set C separates two ends if they have an infinite number of vertices in distinct components of $G \setminus C$.
- A graph G is vertex-accessible if there is a $k < \infty$ s. t. any two ends can be separated by a set of size k.

Dunwoody 2007

Planar quasi-transitive graphs are vertex-accessible.

Esperet, Giocanti, L. 2023

Quasi-transitive graphs K_∞-minor free graphs are vertex-accessible.
Separating the ends

Definitions

- A finite set C separates two ends if they have an infinite number of vertices in distinct components of $G \setminus C$
- A graph G is vertex-accessible if there is a $k < \infty$ s. t. any two ends can be separated by a set of size k.

Dunwoody 2007

Planar quasi-transitive graphs are vertex-accessible.
Separating the ends

Definitions

• A finite set C separates two ends if they have an infinite number of vertices in distinct components of $G \setminus C$
• A graph G is vertex-accessible if there is a $k < \infty$ s. t. any two ends can be separated by a set of size k.

Dunwoody 2007

Planar quasi-transitive graphs are vertex-accessible.

Esperet, Giocanti, L. 2023

Quasi-transitive graphs K_∞-minor free graphs are vertex-accessible.
Decomposing and presenting groups

Stallings 1972

Γ a finitely generated group. Γ has more than one end ⇔ Γ can be decomposed as a product of two groups (amalgamated free-product or HNN-extension over a finite group)

Definition

Γ accessible: Stallings’ inductive decomposition terminates
Decomposing and presenting groups

Stallings 1972

Γ a finitely generated group. Γ has more than one end ⇔ Γ can be decomposed as a product of two groups (amalgamated free-product or HNN-extension over a finite group)

Definition

Γ accessible: Stallings’ inductive decomposition terminates

Thomassen, Woess 1993 A group is accessible ⇔ one of its Cayley graphs is vertex-accessible
Decomposing and presenting groups

Stallings 1972
Γ a finitely generated group. Γ has more than one end ⇔ Γ can be decomposed as a product of two groups (amalgamated free-product or HNN-extension over a finite group)

Definition
Γ accessible: Stallings’ inductive decomposition terminates

Thomassen, Woess 1993 A group is accessible ⇔ one of its Cayley graphs is vertex-accessible
Γ = ⟨Σ|R⟩ finitely presented: R finite

Droms 2006 Finitely generated planar groups are finitely presented
Decomposing and presenting groups

Stallings 1972

Γ a finitely generated group. Γ has more than one end ⇔ Γ can be decomposed as a product of two groups (amalgamated free-product or HNN-extension over a finite group)

Definition

Γ accessible: Stallings’ inductive decomposition terminates

Thomassen, Woess 1993 A group is accessible ⇔ one of its Cayley graphs is vertex-accessible

Γ = ⟨Σ|R⟩ finitely presented: R finite

Droms 2006 Finitely generated planar groups are finitely presented

Dunwoody 1985 Finitely presented groups are accessible
Decomposing and presenting groups

Stallings 1972

Γ a finitely generated group. Γ has more than one end ⇔ Γ can be decomposed as a product of two groups (amalgamated free-product or HNN-extension over a finite group)

Definition

Γ accessible: Stallings’ inductive decomposition terminates

Thomassen, Woess 1993 A group is accessible ⇔ one of its Cayley graphs is vertex-accessible

Γ = ⟨Σ|R⟩ finitely presented: R finite

Droms 2006 Finitely generated planar groups are finitely presented

Dunwoody 1985 Finitely presented groups are accessible

Esperet, Giocanti, L. 2023 Finitely generated K_∞ minor free groups are accessible and finitely presented
For any \(g \geq 1 \), the fundamental group of the closed orientable surface of genus \(g \) has undecidable domino problem.
Domino conjecture on groups avoiding a minor

Aubrun, Barbieri, Moutot 2019
For any $g \geq 1$, the fundamental group of the closed orientable surface of genus g has undecidable domino problem

Bungaard, Nielsen 46 & Fox 52
One-ended planar groups contain the fundamental group of a closed orientable surface as a subgroup of finite index
Domino conjecture on groups avoiding a minor

Aubrun, Barbieri, Moutot 2019
For any $g \geq 1$, the fundamental group of the closed orientable surface of genus g has undecidable domino problem

Bungaard, Nielsen 46 & Fox 52
One-ended planar groups contain the fundamental group of a closed orientable surface as a subgroup of finite index

Esperet, Giocanti, L. 2023
The domino conjecture holds in groups with no K_∞-minor
Key ideas to take away

- Among quasi-transitive graphs, planar graphs and graphs excluding a minor are much alike
- For a quasi-transitive graph, K_∞-minor free $\implies K_t$ minor free for some t
Key ideas to take away

- Among quasi-transitive graphs, planar graphs and graphs excluding a minor are much alike
- For a quasi-transitive graph, K_∞-minor free \Rightarrow K_t minor free for some t

Thanks!