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Talk overview

Graphic sequence: integer sequence n— 1> dy > --- > d, > 0 that is the
degree sequence of n-vertex graph.

a 3 1

(32,2,2%)

@ Why may you want to count these?
@ Reformulation to problem about integrated random walks.

@ Main result and proof sketch.



Wine glasses are reconstructible
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Graph reconstruction conjecture

G is reconstructible if every graph with the same multiset of strict induced
subgraphs is isomorphic to it.

Reconstruction conjecture (Kelly and Ulam)

Every graph G on n > 3 vertices is reconstructible.

P. Kelly. On isometric transformations. PhD thesis, University of Wisconsin, 1942.
S. Ulam. A collection of mathematical problems, volume 8. Interscience Publishers,

1960.
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Degree reconstruction from small cards

{-deck: multiset of induced subgraphs on ¢ vertices.

For which ¢ can the degree sequence of any n-vertex graph G be
reconstructed from ¢-deck?

Want: same /-deck implies same degree sequence.



Lower bound calculation

number of ¢-decks > number of degree sequences for n-vertex graphs



Lower bound calculation

20

() 2

number of ¢-decks > number of degree sequences for n-vertex graphs
> 2"

Each (-vertex graph appears at most () times in the deck.

¢ =Q(+/log n)



Simple lower bound

G(n) = number of graphic sequences of length n
= number of degree sequences for n-vertex graphs
> 2"



Simple lower bound

G(n) = number of graphic sequences of length n

= number of degree sequences for n-vertex graphs

> 21,
Induction on n, two new sequences from (di,...,dn,—1):
(n—1,d1+1,...,dy,—1+ 1) new vertex connected to all
(di,...,dn—1,0) new vertex connected to none
Q(‘»I new Q(ﬁ.\/
vertex




Simple upper bound

G(n) = number of graphic sequences of length n
= number of degree sequences for n-vertex graphs
<an



Simple upper bound

G(n) = number of graphic sequences of length n
= number of degree sequences for n-vertex graphs
<an

Stars-and-bars argument: number of integer sequences
n—-1>d>-->2d, >0

is at most (2:) < 4n.



Counting graphic sequences

G(n) = number of graphic sequences of length n.

Burns (2007): for some constants ci,c2 > 0, all n € N

4n 4
— <G < ——Fr—.
Uy = (n) = V/nlog®n
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Counting graphic sequences

G(n) = number of graphic sequences of length n.
Burns (2007): for some constants ci,c2 > 0, all n € N

4n 4n
— <G
Cl ( \/’IOan

Balister, Donderwinkel, G., Johnston, Scott, 2023+

n

G(n) = (cveg + 0(1)) 57
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Related work: score sequences

T(n) = number of out-degree sequences for n-vertex tournaments.

~ 1970: Moser, Erd6s-Moser and Kleitman investigate 4+ conjecture.
Winston-Kleitman (lower bound, 1983) and Kim-Pittel (upper bound,

2000) show
4n

Kolesnik (2022) shows there is a constant ¢ ~ 0.392 such that
4"

T(n)=(c+ o(l))m.
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Exact counts

013527 THE ON-LINE ENCYCLOPEDIA
2'395%8 OF INTEGER SEQUENCES ®

10221121

founded in 1964 by N. J. A. Sloane
[ H Search ] Hunts
(Greetings from The On-Line Encyclopedia of Integer S D)

A004251 Number of graphical partitions (degree-vectors for simple graphs with n vertices, or possible Z]
ordered row-sum vectors for a symmetric 0-1 matrix with diagonal values 0).
(Formerly M1250)
1, 1, 2, 4, 11, 31, 162, 342, 1213, 4361, 16016, 59348, 222117, 836315, 3166852, 12042628,
45967479, 176605709, 675759564, 2600672458, 10029832754, 38753710486, 149990133774, 581393603996,
2256710139346, 8770547818956, 34125389919850, 132919443189544, 518232001761434, 2022337118015338,

OFFSET e,3

COMMENTS In other words, a(n) is the number of graphic sequences of length n, where a
graphic sequence is a sequence of numbers which can be the degree sequence of
some graph.

Previously known: n < 290. We compute for n < 1651.



Erdés-Gallai (1960)

n—1>d; >--->d, >0 graphic sequence <=
@ Parity condition: di + --- + d, is even.

@ Dominating condition: for all k,
‘highest k degrees can feasibly be obtained’, that is,

di + -+ di < k(k — 1)+ min(dk+1, k) + - - - + min(dp, k)
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Erdés-Gallai (1960)

n—1>d; >--->d, >0 graphic sequence <=
@ Parity condition: di + --- + d, is even.

@ Dominating condition: for all k,
‘highest k degrees can feasibly be obtained’, that is,

di + -+ di < k(k — 1)+ min(dk+1, k) + - - - + min(dp, k)

Counting — probability: what is the probability that a uniformly random
n—1>d; > --->d, > 0 satisfies both conditions?
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Probability of being even

A uniformly random sequence n —1 > d; > --- > d, > 0 which satisfies
the dominating condition, has probability % + o(1) of satisfying the parity
condition (that >_7 , dj is even).

Idea: ‘match sequences with odd and even sums’.

Unexpected experimental observation: (# even - # odd) ~ 4"/no(1).
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Reformulation as lattice path

didyp -+ n
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Reformulation as lattice path

o si=(n—1)—d;

didyp -+ n
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Reformulation as lattice path

n—1
o si=(n—1)—d;
s/ = n— d/ where
d! = number of vertices of
degree > |.
A
<
d;
dy
d]. d2 e n
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Reformulation as lattice path

n—1 .
5 si=(n—1)—d;
s/ = n— d! where
d! = number of vertices of
o degree > |.
A (2,0)
2l s Dominating condition <=
A (s1—s1)+--+(sk—s,)>0
. for all k </
oy - )
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Split in half and reflect path

1 2 3
n—1 n—1
!
| .’ 4 w L,
S4 // //
7 7
e e
7 7
AL 4 [ s
14 PA W ’
e e
7 7
7 7
7 7
/ /
7 / 7
p w , y
Sy L
7
7 Aand //
s 4|3 s
// 2 ,/
, 1 ,
dydy -+ n dpdy -+ n
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Interpretation of dominating condition

n—1 - n—1 i -
/ /
1 +7
S4-5,, I + 7
7/ 7/
/ /
7 7
7/ 7/
7/ 7/
7 -2 il
7/ 7/
7 7
% —2:
7/ 7/
7 7
7 7
7/ 7/
. .
e e
7/ 7/
. .
didy - - n didy -~ n

(st — 1)+ (52— s5) + - - + (sk — s) equals sum of signed areas.
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‘Double count’: compute area diagonally

n—1 ‘ - n—1 -
774’7 // //
7 7
7 7
e e
7z 7z
7 7
7 7
-2 an 7
7 7
7 7
7
7 7
7z 7z
7 7
7z 7z
e e
7 7
7z 7z
didy - n didy - n
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Cheat: pretend (n,0) to (0, n)
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N

10

1011

12

11

12

13

13

7

14

didy -+

W, W' ¢ times —, n— { times |

Total of n steps.
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1 2 3

tl2 | 4]s| W .7

3| 4 6 //

5 717 //
6| 8|8 L’ ) .
Ve 7 W, W’: { times —, n— { times |
101112 //
1], Total of n steps.
13 4 . T ,
T : Y; = difference in ‘height’ between
, W’ and W after ‘step’ i
didy - n
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/, - W, W’: £ times —, n— { times |
- a Total of n steps.
. Y; = difference in ‘height’ between
W’ and W after ‘step’ i
- Yo=Y1=0
20 Yo =1
FACACET .
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K g W, W’: ¢ times —, n— £ times |
- a Total of n steps.
. Y; = difference in ‘height’ between
W’ and W after ‘step’ i
s Yo=Y1=0
Al Yo =1
I Y; =2
FACACET ?
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K g W, W’: ¢ times —, n— £ times |
- a Total of n steps.
. Y; = difference in ‘height’ between
W’ and W after ‘step’ i
- Yo=Y =0
, Y, =1
I Y; =2
. Yo=1
FACACET ?
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Symmetric simple random walk (SSRW)

@ Steps: Xi, Xo,--- ~ Unif({—1,1}) independent.
e SSRW: Sk:X1—|—-~+Xk.
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Symmetric simple random walk (SSRW)

@ Steps: Xi, Xo,--- ~ Unif({—1,1}) independent.
@ SSRW: S = Xy + -+ + X,.

o Z;=1if W goes | at step i and —1 otherwise.
o Z/ =1if W goes — at step i and —1 otherwise.
So Lj = 3(Z+ Z) € {-1,0,0,1}.
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Lazy, bridge, integrated

o Lazy steps: Ly, Ly, - ~ Unif({—1,0,0,1}) independent.
@ Lazy SSRW: Y, = L1+ -+ L.
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Lazy, bridge, integrated

Lazy steps: Li, Ly, -+~ Unif({—1,0,0,1}) independent.
Lazy SSRW: Y, = L1+ --- + Lg.

Lazy SSRW bridge: condition (Yy);_, on Y, = 0.
Integrated walk: A, =Y1+---4+ Y.
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Lazy, bridge, integrated

Lazy steps: Li, Ly, -+~ Unif({—1,0,0,1}) independent.
Lazy SSRW: Y, = L1+ --- + Lg.

Lazy SSRW bridge: condition (Yy);_, on Y, = 0.
Integrated walk: A, =Y1+---4+ Y.

Dominating condition: sum of areas is always positive.

Equivalent: A; > 0,A>>0,...,A, > 0.
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Quick asymptotics using theorem of Vysotksy

For (Y;)_; the lazy SSRW and A, = Zf'(:1 Y; its area process,
P(A1,...,A,>0]Y,=0)=0(n%.

Theorem of Vysotsky (2014) applies to wide range of random processes.
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Quick asymptotics using theorem of Vysotksy

For (Y;)_; the lazy SSRW and A, = Zf'(:1 Y; its area process,
P(A1,...,A,>0]Y,=0)=0(n%.
Theorem of Vysotsky (2014) applies to wide range of random processes.

Adding this to our reformulation (‘exercise’),
G(n) = ©(n"Y/*)O(4"/v/n) = ©(4" /n**).

To get correct constant, we strengthen the probabilistic result above.
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Persistence probability for integrated (lazy) SSRW

Persistence probability: probability that a random process does not go
negative.

Balister, Donderwinkel, G., Johnston, Scott, 2023+

r(s/4)
nAP(Ar, ... Ay >0 Y, =0) > —
V2m(1—p)

as n — 00.

(Definition of p later, I is extension of factorial.)
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Main result: complete statement

Balister, Donderwinkel, G., Johnston, Scott, 2023+

The number of degree sequences for n-vertex graphs

n

G(n) = (Cdeg + 0(1))%

where i
Cdeg = # = 0.099094.
4m\/2(1 — p)

G(n) <2”n_ 1) a1 o)P(Ar. . Ay 20| Ya—0)
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For (Y;)™_, the lazy SSRW and A, = S°K | V; its area process,
p=P(A, =0)

with
1 :inf{k > 1: Yk :O,Ak §0}

first visit of Y to 0 at which (Ak) hits non-positive number.
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014 | --- 0.099094
- G(n)n3/4/4n
0.12 |
0.10 ¢
0.08 |
0.06 |
100 10! 102 103
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1/4

Heuristic for n~

o Lazy SSRW bridge: Y=L+ - -+ L;
o Excursion: Y;=0,Yj11,...,Yiek 0, Yigkr1 =0.
o N = O(y/n) excursions with areas (i,. .., (.
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1/4

Heuristic for n—

Lazy SSRW bridge: Y;=L1 +---+ L;
o Excursion: Y;=0,Yj11,...,Yiek 0, Yigkr1 =0.

N = ©(y/n) excursions with areas (i,. .., (.

Dominating condition: £, = S5, ¢; > 0 for all k.

(Ex)N_, is almost symmetric random walk;

SRW with N steps remains positive with probability ©(v/N).
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Exchangeable and symmetric excursions

e N = ©(+/n) excursions with areas (3,...,(n.
° k= Zf:l Gi-

@ Steps are not independent!
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Exchangeable and symmetric excursions

N = ©(y/n) excursions with areas (3, ..., (N-
Ex = Z;{:1 Ci-

@ Steps are not independent!

d
Exchangeable: (C1,-..,Cn) = (Co(1)s - - - Co(ny) for any
permutation o € X .

@ -+ symmetric: for any permutation o and s,...,sy € {1, -1},

(Cryeer ) 2 (51Co(1)s - - - s SNCa(N))-
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Exploiting symmetry and exchangeability

k k
P (Z ¢ >0forall k e [N]) =P (Z siCy(7) > 0 for all k € [N])

i=1 i=1
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Exploiting symmetry and exchangeability

k k
P (Z ¢ >0forall k e [N]) =P (Z siCy(7) > 0 for all k € [N])

i=1 i=1

k
= Z P(G1=x1,....¢n=xn) P (Zs,-xa(,-) >0 for all k € [N]) .

x€RN i=1
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Useful (combinatorial) lemma

For x = (x1,...,xy) € RN, permutation o € ¥y and signs s € {—1,1}N
chosen uniformly at random (independently),

k
P <Z Sixo(iy = 0 for all k € [N]) =77

i=1
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Useful (combinatorial) lemma

For x = (x1,...,xy) € RN, permutation o € ¥y and signs s € {—1,1}N
chosen uniformly at random (independently),

k
(2N — 1!
P <Z six,(7) > 0 for all k € [/v]> e
i=1 !
does not depend on x if x is ‘generic’: for all distinct A, A" C [N]

Zx,— #* Zx,-.

icA i€eA’
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Making excursions ‘generic’

If the steps L1, Ly, ..., L, of the lazy SSRW bridge are ‘perturbed’ by

: 1 1
61,...7€nNUn|f<|:—2n72n:|)

slightly, then ‘perturbed’ 51, .. .,ZN would be ‘generic’!
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Where does I come from?

If (1,...,¢n would be ‘generic’, probability of interest would be

E [(2/;/N—N1!)!!] ~ n Y41 (3/4)/V2r

where for N the number of excursions,

n~Y2N = 2VE, E ~ Exp(1)
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Where does p come from?

When the area process is > 0 or < 0, the perturbed one is also > 0 or <0
respectively.

Still need to account for when it equals zero.
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Where does p come from?

When the area process is > 0 or < 0, the perturbed one is also > 0 or <0
respectively.

Still need to account for when it equals zero.
For i with (1 +---+ (; = 0, do we have
€1+ -+¢>07

M = number of j such that {(; +---+ (; = 0.

M conditional on the dominating condition converges in distribution to
Geom(p).
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Open problem: upper bound in useful lemma

For (s,0) ~ Unif({—1,1}N x ) when is

K
P <Z sixs(jy = 0 for all k € [N])
i=1

maximal? Is this for x; = -+ = xp?
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Open problem: fixed number of edges

What if you fix the number of edges instead of the number of vertices?
Let p(N) the fraction of partitions of an integer N that are graphical.

Answering a conjecture of Wilf (1982), Pittel (1999) showed p(N) — 0 as
N — oo.

Known: p(N) = N—©1),
Can you show ©(N~%) or (¢ 4+ o(1))N—*?
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Open problem: other variations

We computed the number of graphic sequences for n-vertex graphs.

What about bipartite graphs, digraphs, uniform hypergraphs?
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Open problem: other variations

We computed the number of graphic sequences for n-vertex graphs.
What about bipartite graphs, digraphs, uniform hypergraphs?

We computed the persistence probability for the integrated (lazy) SSRW
bridge up to (1 + o(1)).

Can you do this for other integrated random processes?
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Thank you for your attention!

Balister, Donderwinkel, G., Johnston, Scott, 2023+
For (Yi)7_, lazy SSRW and (A;)"_, its area process,

r3/4) 1
2m(1—p) n'/*

P(A1,..., Ay > 0] Y, =0) = (1+0(1))

Balister, Donderwinkel, G., Johnston, Scott, 2023+
r(3/4) 4n

4 /2(1 —p) n3/4
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