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Talk overview

Graphic sequence: integer sequence n − 1 ≥ d1 ≥ · · · ≥ dn ≥ 0 that is the
degree sequence of n-vertex graph.

Why may you want to count these?

Reformulation to problem about integrated random walks.

Main result and proof sketch.
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Wine glasses are reconstructible
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Graph reconstruction conjecture

G is reconstructible if every graph with the same multiset of strict induced
subgraphs is isomorphic to it.

Reconstruction conjecture (Kelly and Ulam)

Every graph G on n ≥ 3 vertices is reconstructible.

P. Kelly. On isometric transformations. PhD thesis, University of Wisconsin, 1942.
S. Ulam. A collection of mathematical problems, volume 8. Interscience Publishers,

1960.
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Degree reconstruction from small cards

`-deck: multiset of induced subgraphs on ` vertices.

Problem

For which ` can the degree sequence of any n-vertex graph G be
reconstructed from `-deck?

Want: same `-deck implies same degree sequence.
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Lower bound calculation

(
n

`

)2`
2

≥

number of `-decks ≥ number of degree sequences for n-vertex graphs

≥ 2n.

Each `-vertex graph appears at most
(n
`

)
times in the deck.

` = Ω(
√

log n)
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Simple lower bound

G (n) = number of graphic sequences of length n

G (n) = number of degree sequences for n-vertex graphs

G (n) ≥ 2n.

Induction on n, two new sequences from (d1, . . . , dn−1):

(n − 1, d1 + 1, . . . , dn−1 + 1) new vertex connected to all

(d1, . . . , dn−1, 0) new vertex connected to none
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Simple upper bound

G (n) = number of graphic sequences of length n

G (n) = number of degree sequences for n-vertex graphs

G (n) ≤ 4n.

Stars-and-bars argument: number of integer sequences

n − 1 ≥ d1 ≥ · · · ≥ dn ≥ 0

is at most
(2n
n

)
≤ 4n.
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Counting graphic sequences

G (n) = number of graphic sequences of length n.

Burns (2007): for some constants c1, c2 > 0, all n ∈ N

c1
4n

n
≤ G (n) ≤ 4n√

n logc2 n
.

Balister, Donderwinkel, G., Johnston, Scott, 2023+

G (n) = (cdeg + o(1))
4n

n3/4
.
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Related work: score sequences

T (n) = number of out-degree sequences for n-vertex tournaments.

≈ 1970: Moser, Erdős-Moser and Kleitman investigate + conjecture.

Winston-Kleitman (lower bound, 1983) and Kim-Pittel (upper bound,
2000) show

T (n) = Θ

(
4n

n5/2

)
.

Kolesnik (2022) shows there is a constant c ≈ 0.392 such that

T (n) = (c + o(1))
4n

n5/2
.
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Exact counts

Previously known: n ≤ 290. We compute for n ≤ 1651.
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Erdős-Gallai (1960)

n − 1 ≥ d1 ≥ · · · ≥ dn ≥ 0 graphic sequence ⇐⇒

Parity condition: d1 + · · ·+ dn is even.

Dominating condition: for all k ,
‘highest k degrees can feasibly be obtained’, that is,

d1 + · · ·+ dk ≤ k(k − 1) + min(dk+1, k) + · · ·+ min(dn, k)

Counting → probability: what is the probability that a uniformly random
n − 1 ≥ d1 ≥ · · · ≥ dn ≥ 0 satisfies both conditions?
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Probability of being even

Lemma

A uniformly random sequence n − 1 ≥ d1 ≥ · · · ≥ dn ≥ 0 which satisfies
the dominating condition, has probability 1

2 + o(1) of satisfying the parity
condition (that

∑n
i=1 di is even).

Idea: ‘match sequences with odd and even sums’.

Unexpected experimental observation: (# even - # odd) ≈ 4n/nO(1).
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Reformulation as lattice path

n−1

nd1 d2 · · ·

s4

s′4

(`,`)

si = (n − 1)− di

s ′i = n − d ′i where

d ′i = number of vertices of
degree ≥ i .

Dominating condition ⇐⇒
(s1− s ′1) + · · ·+ (sk − s ′k) ≥ 0

for all k ≤ `
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Split in half and reflect path

W

W ′

n−1

nd1 d2 · · ·

s4

s′4

1

2

34

d1 d2 · · ·

n−1

n

W

W ′
1 2 3

4
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Interpretation of dominating condition

d1 d2 · · ·

n−1

n

s4-s′4

d1 d2 · · ·

n−1

n

+7

−2

−2

(s1 − s ′1) + (s2 − s ′2) + · · ·+ (sk − s ′k) equals sum of signed areas.
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‘Double count’: compute area diagonally

d1 d2 · · ·

n−1

n

+7

−2

−2

d1 d2 · · ·

n−1

n
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Cheat: pretend (n, 0) to (0, n)
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W ,W ′: ` times →, n − ` times ↓

Total of n steps.

Yi = difference in ‘height’ between
W ′ and W after ‘step’ i
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Symmetric simple random walk (SSRW)

Steps: X1,X2, · · · ∼ Unif({−1, 1}) independent.

SSRW: Sk = X1 + · · ·+ Xk .

Zi = 1 if W goes ↓ at step i and −1 otherwise.

Z ′i = 1 if W ′ goes → at step i and −1 otherwise.

So Li = 1
2 (Zi + Zi ) ∈ {−1, 0, 0, 1}.
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Lazy, bridge, integrated

Lazy steps: L1, L2, · · · ∼ Unif({−1, 0, 0, 1}) independent.

Lazy SSRW: Yk = L1 + · · ·+ Lk .

Lazy SSRW bridge: condition (Yk)nk=0 on Yn = 0.

Integrated walk: An = Y1 + · · ·+ Yn.

Dominating condition: sum of areas is always positive.

Equivalent: A1 ≥ 0,A2 ≥ 0, . . . ,An ≥ 0.
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Quick asymptotics using theorem of Vysotksy

For (Yi )
n
i=1 the lazy SSRW and Ak =

∑k
i=1 Yi its area process,

P(A1, . . . ,An ≥ 0 | Yn = 0) = Θ(n−1/4).

Theorem of Vysotsky (2014) applies to wide range of random processes.

Adding this to our reformulation (‘exercise’),

G (n) = Θ(n−1/4)Θ(4n/
√
n) = Θ(4n/n3/4).

To get correct constant, we strengthen the probabilistic result above.
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Persistence probability for integrated (lazy) SSRW

Persistence probability: probability that a random process does not go
negative.

Balister, Donderwinkel, G., Johnston, Scott, 2023+

n1/4P(A1, . . . ,An ≥ 0 | Yn = 0)→ Γ(3/4)√
2π(1− ρ)

as n→∞.

(Definition of ρ later, Γ is extension of factorial.)
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Main result: complete statement

Balister, Donderwinkel, G., Johnston, Scott, 2023+

The number of degree sequences for n-vertex graphs

G (n) = (cdeg + o(1))
4n

n3/4

where

cdeg =
Γ(3/4)

4π
√

2(1− ρ)
≈ 0.099094.

G (n)

(
2n − 1

n

)−1

= 2(1 + o(1))P(A1, . . . ,An ≥ 0 | Yn = 0)
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Definition of ρ

For (Yi )
n
i=1 the lazy SSRW and Ak =

∑k
i=1 Yi its area process,

ρ = P(Aτ1 = 0)

with
τ1 = inf{k ≥ 1 : Yk = 0,Ak ≤ 0}

first visit of Y to 0 at which (Ak) hits non-positive number.
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Heuristic for n−1/4

Lazy SSRW bridge: Yi = L1 + · · ·+ Li

Excursion: Yi = 0,Yi+1, . . . ,Yi+k 6= 0,Yi+k+1 = 0.

N = Θ(
√
n) excursions with areas ζ1, . . . , ζN .

Dominating condition: Ek =
∑k

i=1 ζi ≥ 0 for all k.

(Ek)Nk=1 is almost symmetric random walk;

SRW with N steps remains positive with probability Θ(
√
N).

29 / 38



Heuristic for n−1/4

Lazy SSRW bridge: Yi = L1 + · · ·+ Li

Excursion: Yi = 0,Yi+1, . . . ,Yi+k 6= 0,Yi+k+1 = 0.

N = Θ(
√
n) excursions with areas ζ1, . . . , ζN .

Dominating condition: Ek =
∑k

i=1 ζi ≥ 0 for all k.

(Ek)Nk=1 is almost symmetric random walk;

SRW with N steps remains positive with probability Θ(
√
N).

29 / 38



Exchangeable and symmetric excursions

N = Θ(
√
n) excursions with areas ζ1, . . . , ζN .

Ek =
∑k

i=1 ζi .

Steps are not independent!

Exchangeable: (ζ1, . . . , ζN)
d
= (ζσ(1), . . . , ζσ(N)) for any

permutation σ ∈ ΣN .

+ symmetric: for any permutation σ and s1, . . . , sN ∈ {1,−1},

(ζ1, . . . , ζN)
d
= (s1ζσ(1), . . . , sNζσ(N)).
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Exploiting symmetry and exchangeability

P

(
k∑

i=1

ζi ≥ 0 for all k ∈ [N]

)
= P

(
k∑

i=1

siζσ(i) ≥ 0 for all k ∈ [N]

)

=
∑
x∈Rn

P (ζ1 = x1, . . . , ζN = xN)P

(
k∑

i=1

sixσ(i) ≥ 0 for all k ∈ [N]

)
.
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Useful (combinatorial) lemma

For x = (x1, . . . , xN) ∈ RN , permutation σ ∈ ΣN and signs s ∈ {−1, 1}N
chosen uniformly at random (independently),

P

(
k∑

i=1

sixσ(i) ≥ 0 for all k ∈ [N]

)
= ???

does not depend on x if x is ‘generic’: for all distinct A,A′ ⊆ [N]∑
i∈A

xi 6=
∑
i∈A′

xi .
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Making excursions ‘generic’

If the steps L1, L2, . . . , Ln of the lazy SSRW bridge are ‘perturbed’ by

ε1, . . . , εn ∼ Unif

([
− 1

2n
,

1

2n

])
slightly, then ‘perturbed’ ζ̃1, . . . , ζ̃N would be ‘generic’ !
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Where does Γ come from?

If ζ1, . . . , ζN would be ‘generic’, probability of interest would be

E
[

(2N − 1)!!

2NN!

]
∼ n−1/4Γ(3/4)/

√
2π

where for N the number of excursions,

n−1/2N → 2
√
E , E ∼ Exp(1)
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Where does ρ come from?

When the area process is > 0 or < 0, the perturbed one is also > 0 or < 0
respectively.

Still need to account for when it equals zero.

For i with ζ1 + · · ·+ ζi = 0, do we have

ε1 + · · ·+ εi ≥ 0?

M = number of i such that ζ1 + · · ·+ ζi = 0.

M conditional on the dominating condition converges in distribution to
Geom(ρ).
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Open problem: upper bound in useful lemma

For (s, σ) ∼ Unif({−1, 1}N × ΣN) when is

P

(
k∑

i=1

sixσ(i) ≥ 0 for all k ∈ [N]

)

maximal? Is this for x1 = · · · = xN?
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Open problem: fixed number of edges

What if you fix the number of edges instead of the number of vertices?

Let p(N) the fraction of partitions of an integer N that are graphical.

Answering a conjecture of Wilf (1982), Pittel (1999) showed p(N)→ 0 as
N →∞.

Known: p(N) = N−Θ(1).

Can you show Θ(N−α) or (c + o(1))N−α?
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Open problem: other variations

We computed the number of graphic sequences for n-vertex graphs.

What about bipartite graphs, digraphs, uniform hypergraphs?

We computed the persistence probability for the integrated (lazy) SSRW
bridge up to (1 + o(1)).

Can you do this for other integrated random processes?
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Thank you for your attention!

Balister, Donderwinkel, G., Johnston, Scott, 2023+

For (Yi )
n
i=1 lazy SSRW and (Ai )

n
i=1 its area process,

P(A1, . . . ,An ≥ 0 | Yn = 0) = (1 + o(1))
Γ(3/4)√
2π(1− ρ)

1

n1/4
.

Balister, Donderwinkel, G., Johnston, Scott, 2023+

G (n) = (1 + o(1))
Γ(3/4)

4π
√

2(1− ρ)

4n

n3/4
.

38 / 38


