Counting graphic sequences via integrated random walks

Carla Groenland
 TU Delft

Joint work with Paul Balister, Serte Donderwinkel,
Tom Johnston and Alex Scott
JCB 2024

THDelft

Started March 2022, Oxford; https://arxiv.org/pdf/2301.07022.pdf

Talk overview

Graphic sequence: integer sequence $n-1 \geq d_{1} \geq \cdots \geq d_{n} \geq 0$ that is the degree sequence of n-vertex graph.

$$
(3,2,2,2,1)
$$

- Why may you want to count these?
- Reformulation to problem about integrated random walks.
- Main result and proof sketch.

Wine glasses are reconstructible

Graph reconstruction conjecture

G is reconstructible if every graph with the same multiset of strict induced subgraphs is isomorphic to it.

Reconstruction conjecture (Kelly and Ulam)

Every graph G on $n \geq 3$ vertices is reconstructible.

[^0]
Degree reconstruction from small cards

ℓ-deck: multiset of induced subgraphs on ℓ vertices.

Problem

For which ℓ can the degree sequence of any n-vertex graph G be reconstructed from ℓ-deck?

Want: same ℓ-deck implies same degree sequence.

Lower bound calculation

number of ℓ-decks \geq number of degree sequences for n-vertex graphs

Lower bound calculation

$$
\binom{n}{\ell}^{2^{\ell^{2}}} \geq
$$

number of ℓ-decks \geq number of degree sequences for n-vertex graphs

$$
\geq 2^{n}
$$

Each ℓ-vertex graph appears at most $\binom{n}{\ell}$ times in the deck.

$$
\ell=\Omega(\sqrt{\log n})
$$

Simple lower bound

$G(n)=$ number of graphic sequences of length n
$=$ number of degree sequences for n-vertex graphs
$\geq 2^{n}$.

Simple lower bound

$G(n)=$ number of graphic sequences of length n

$$
=\text { number of degree sequences for } n \text {-vertex graphs }
$$

$\geq 2^{n}$.
Induction on n, two new sequences from $\left(d_{1}, \ldots, d_{n-1}\right)$:

$$
\begin{aligned}
& \left(n-1, d_{1}+1, \ldots, d_{n-1}+1\right) \text { new vertex connected to all } \\
& \left(d_{1}, \ldots, d_{n-1}, 0\right) \text { new vertex connected to none }
\end{aligned}
$$

Simple upper bound

$G(n)=$ number of graphic sequences of length n
$=$ number of degree sequences for n-vertex graphs
$\leq 4^{n}$.

Simple upper bound

$G(n)=$ number of graphic sequences of length n
$=$ number of degree sequences for n-vertex graphs
$\leq 4^{n}$.

Stars-and-bars argument: number of integer sequences

$$
n-1 \geq d_{1} \geq \cdots \geq d_{n} \geq 0
$$

is at most $\binom{2 n}{n} \leq 4^{n}$.

Counting graphic sequences

$G(n)=$ number of graphic sequences of length n.
Burns (2007): for some constants $c_{1}, c_{2}>0$, all $n \in \mathbb{N}$

$$
c_{1} \frac{4^{n}}{n} \leq G(n) \leq \frac{4^{n}}{\sqrt{n} \log ^{c_{2}} n}
$$

Counting graphic sequences

$G(n)=$ number of graphic sequences of length n.
Burns (2007): for some constants $c_{1}, c_{2}>0$, all $n \in \mathbb{N}$

$$
c_{1} \frac{4^{n}}{n} \leq G(n) \leq \frac{4^{n}}{\sqrt{n} \log ^{c_{2}} n}
$$

Balister, Donderwinkel, G., Johnston, Scott, 2023+

$$
G(n)=\left(c_{\mathrm{deg}}+o(1)\right) \frac{4^{n}}{n^{3 / 4}}
$$

Related work: score sequences

$T(n)=$ number of out-degree sequences for n-vertex tournaments.
\approx 1970: Moser, Erdős-Moser and Kleitman investigate + conjecture. Winston-Kleitman (lower bound, 1983) and Kim-Pittel (upper bound, 2000) show

$$
T(n)=\Theta\left(\frac{4^{n}}{n^{5 / 2}}\right)
$$

Kolesnik (2022) shows there is a constant $c \approx 0.392$ such that

$$
T(n)=(c+o(1)) \frac{4^{n}}{n^{5 / 2}}
$$

Exact counts

013627 THE ON-LINE ENCYCLOPEDIA

 ${ }_{23} 1 S_{12}^{20}$ OF INTEGER SEQUENCES ${ }^{\circledR}$10221121
founded in 1964 by N. J. A. Sloane
(Greetings from The On-Line Encyclopedia of Integer Sequences!)

A004251	Number of graphical partitions (degree-vectors for simple graphs with n vertices, or possible ordered row-sum vectors for a symmetric $0-1$ matrix with diagonal values 0). (Formerly M1250)	4
$\begin{aligned} & 1,1,2, \\ & 45967479 \\ & 22567101 \\ & 78985740 \end{aligned}$	$11,31,102,342,1213,4361,16016,59348,222117,836315,3166852,12042620$, 176005709, 675759564, 2600672458, 10029832754, 38753710486, 149990133774, 581393603996, $346,8770547818956,34125389919850,132919443189544,518232001761434,2022337118015338$, 034636, 30873421455729728 (list; graph; refs; listen; history; text; internal format)	
OFFSET	0,3	
COMMENTS	In other words, $a(n)$ is the number of graphic sequences of length n, where a graphic sequence is a sequence of numbers which can be the degree sequence of some graph.	

Previously known: $n \leq 290$. We compute for $n \leq 1651$.

Erdős-Gallai (1960)

$n-1 \geq d_{1} \geq \cdots \geq d_{n} \geq 0$ graphic sequence \Longleftrightarrow

- Parity condition: $d_{1}+\cdots+d_{n}$ is even.
- Dominating condition: for all k, 'highest k degrees can feasibly be obtained', that is,

$$
d_{1}+\cdots+d_{k} \leq k(k-1)+\min \left(d_{k+1}, k\right)+\cdots+\min \left(d_{n}, k\right)
$$

Erdős-Gallai (1960)

$n-1 \geq d_{1} \geq \cdots \geq d_{n} \geq 0$ graphic sequence \Longleftrightarrow

- Parity condition: $d_{1}+\cdots+d_{n}$ is even.
- Dominating condition: for all k, 'highest k degrees can feasibly be obtained', that is,

$$
d_{1}+\cdots+d_{k} \leq k(k-1)+\min \left(d_{k+1}, k\right)+\cdots+\min \left(d_{n}, k\right)
$$

Counting \rightarrow probability: what is the probability that a uniformly random $n-1 \geq d_{1} \geq \cdots \geq d_{n} \geq 0$ satisfies both conditions?

Probability of being even

Lemma

A uniformly random sequence $n-1 \geq d_{1} \geq \cdots \geq d_{n} \geq 0$ which satisfies the dominating condition, has probability $\frac{1}{2}+o(1)$ of satisfying the parity condition (that $\sum_{i=1}^{n} d_{i}$ is even).

Idea: 'match sequences with odd and even sums'.
Unexpected experimental observation: (\# even - \# odd) $\approx 4^{n} / n^{O(1)}$.

Reformulation as lattice path

Reformulation as lattice path

$$
s_{i}=(n-1)-d_{i}
$$

Reformulation as lattice path

$$
\begin{aligned}
& s_{i}=(n-1)-d_{i} \\
& s_{i}^{\prime}=n-d_{i}^{\prime} \text { where }
\end{aligned}
$$

$d_{i}^{\prime}=$ number of vertices of degree $\geq i$.

Reformulation as lattice path

$s_{i}=(n-1)-d_{i}$
$s_{i}^{\prime}=n-d_{i}^{\prime}$ where
$d_{i}^{\prime}=$ number of vertices of degree $\geq i$.

Dominating condition
 $\left(s_{1}-s_{1}^{\prime}\right)+\cdots+\left(s_{k}-s_{k}^{\prime}\right) \geq 0$ for all $k \leq \ell$

Split in half and reflect path

Interpretation of dominating condition

$\left(s_{1}-s_{1}^{\prime}\right)+\left(s_{2}-s_{2}^{\prime}\right)+\cdots+\left(s_{k}-s_{k}^{\prime}\right)$ equals sum of signed areas.

'Double count': compute area diagonally

Cheat: pretend $(n, 0)$ to $(0, n)$

$W, W^{\prime}: \ell$ times $\rightarrow, n-\ell$ times \downarrow Total of n steps.

$W, W^{\prime}: \ell$ times $\rightarrow, n-\ell$ times \downarrow Total of n steps.
$Y_{i}=$ difference in 'height' between W^{\prime} and W after 'step' i

$W, W^{\prime}: \ell$ times $\rightarrow, n-\ell$ times \downarrow
Total of n steps.
$Y_{i}=$ difference in 'height' between W^{\prime} and W after 'step' i
$Y_{0}=Y_{1}=0$
$Y_{2}=1$

$W, W^{\prime}: \ell$ times $\rightarrow, n-\ell$ times \downarrow
Total of n steps.
$Y_{i}=$ difference in 'height' between W^{\prime} and W after 'step' i
$Y_{0}=Y_{1}=0$
$Y_{2}=1$
$Y_{3}=2$

$W, W^{\prime}: \ell$ times $\rightarrow, n-\ell$ times \downarrow
Total of n steps.
$Y_{i}=$ difference in 'height' between W^{\prime} and W after 'step' i
$Y_{0}=Y_{1}=0$
$Y_{2}=1$
$Y_{3}=2$
$Y_{4}=1$

Symmetric simple random walk (SSRW)

- Steps: $X_{1}, X_{2}, \cdots \sim \operatorname{Unif}(\{-1,1\})$ independent.
- SSRW: $S_{k}=X_{1}+\cdots+X_{k}$.

Symmetric simple random walk (SSRW)

- Steps: $X_{1}, X_{2}, \cdots \sim \operatorname{Unif}(\{-1,1\})$ independent.
- SSRW: $S_{k}=X_{1}+\cdots+X_{k}$.
- $Z_{i}=1$ if W goes \downarrow at step i and -1 otherwise.
- $Z_{i}^{\prime}=1$ if W^{\prime} goes \rightarrow at step i and -1 otherwise.
- So $L_{i}=\frac{1}{2}\left(Z_{i}+Z_{i}\right) \in\{-1,0,0,1\}$.

Lazy, bridge, integrated

- Lazy steps: $L_{1}, L_{2}, \cdots \sim \operatorname{Unif}(\{-1,0,0,1\})$ independent.
- Lazy SSRW: $Y_{k}=L_{1}+\cdots+L_{k}$.

Lazy, bridge, integrated

- Lazy steps: $L_{1}, L_{2}, \cdots \sim \operatorname{Unif}(\{-1,0,0,1\})$ independent.
- Lazy SSRW: $Y_{k}=L_{1}+\cdots+L_{k}$.
- Lazy SSRW bridge: condition $\left(Y_{k}\right)_{k=0}^{n}$ on $Y_{n}=0$.
- Integrated walk: $A_{n}=Y_{1}+\cdots+Y_{n}$.

Lazy, bridge, integrated

- Lazy steps: $L_{1}, L_{2}, \cdots \sim \operatorname{Unif}(\{-1,0,0,1\})$ independent.
- Lazy SSRW: $Y_{k}=L_{1}+\cdots+L_{k}$.
- Lazy SSRW bridge: condition $\left(Y_{k}\right)_{k=0}^{n}$ on $Y_{n}=0$.
- Integrated walk: $A_{n}=Y_{1}+\cdots+Y_{n}$.
- Dominating condition: sum of areas is always positive.

Equivalent: $A_{1} \geq 0, A_{2} \geq 0, \ldots, A_{n} \geq 0$.

Quick asymptotics using theorem of Vysotksy

For $\left(Y_{i}\right)_{i=1}^{n}$ the lazy SSRW and $A_{k}=\sum_{i=1}^{k} Y_{i}$ its area process,

$$
\mathbb{P}\left(A_{1}, \ldots, A_{n} \geq 0 \mid Y_{n}=0\right)=\Theta\left(n^{-1 / 4}\right)
$$

Theorem of Vysotsky (2014) applies to wide range of random processes.

Quick asymptotics using theorem of Vysotksy

For $\left(Y_{i}\right)_{i=1}^{n}$ the lazy SSRW and $A_{k}=\sum_{i=1}^{k} Y_{i}$ its area process,

$$
\mathbb{P}\left(A_{1}, \ldots, A_{n} \geq 0 \mid Y_{n}=0\right)=\Theta\left(n^{-1 / 4}\right)
$$

Theorem of Vysotsky (2014) applies to wide range of random processes.

Adding this to our reformulation ('exercise'),

$$
G(n)=\Theta\left(n^{-1 / 4}\right) \Theta\left(4^{n} / \sqrt{n}\right)=\Theta\left(4^{n} / n^{3 / 4}\right)
$$

To get correct constant, we strengthen the probabilistic result above.

Persistence probability for integrated (lazy) SSRW

Persistence probability: probability that a random process does not go negative.

Balister, Donderwinkel, G., Johnston, Scott, 2023+

$$
n^{1 / 4} \mathbb{P}\left(A_{1}, \ldots, A_{n} \geq 0 \mid Y_{n}=0\right) \rightarrow \frac{\Gamma(3 / 4)}{\sqrt{2 \pi(1-\rho)}}
$$

as $n \rightarrow \infty$.
(Definition of ρ later, Γ is extension of factorial.)

Main result: complete statement

Balister, Donderwinkel, G., Johnston, Scott, 2023+

The number of degree sequences for n-vertex graphs

$$
G(n)=\left(c_{\mathrm{deg}}+o(1)\right) \frac{4^{n}}{n^{3 / 4}}
$$

where

$$
c_{\mathrm{deg}}=\frac{\Gamma(3 / 4)}{4 \pi \sqrt{2(1-\rho)}} \approx 0.099094
$$

$$
G(n)\binom{2 n-1}{n}^{-1}=2(1+o(1)) \mathbb{P}\left(A_{1}, \ldots, A_{n} \geq 0 \mid Y_{n}=0\right)
$$

Definition of ρ

For $\left(Y_{i}\right)_{i=1}^{n}$ the lazy SSRW and $A_{k}=\sum_{i=1}^{k} Y_{i}$ its area process,

$$
\rho=\mathbb{P}\left(A_{\tau_{1}}=0\right)
$$

with

$$
\tau_{1}=\inf \left\{k \geq 1: Y_{k}=0, A_{k} \leq 0\right\}
$$

first visit of Y to 0 at which $\left(A_{k}\right)$ hits non-positive number.

Heuristic for $n^{-1 / 4}$

- Lazy SSRW bridge: $Y_{i}=L_{1}+\cdots+L_{i}$
- Excursion: $Y_{i}=0, Y_{i+1}, \ldots, Y_{i+k} \neq 0, Y_{i+k+1}=0$.
- $N=\Theta(\sqrt{n})$ excursions with areas $\zeta_{1}, \ldots, \zeta_{N}$.

Heuristic for $n^{-1 / 4}$

- Lazy SSRW bridge: $Y_{i}=L_{1}+\cdots+L_{i}$
- Excursion: $Y_{i}=0, Y_{i+1}, \ldots, Y_{i+k} \neq 0, Y_{i+k+1}=0$.
- $N=\Theta(\sqrt{n})$ excursions with areas $\zeta_{1}, \ldots, \zeta_{N}$.
- Dominating condition: $E_{k}=\sum_{i=1}^{k} \zeta_{i} \geq 0$ for all k.
- $\left(E_{k}\right)_{k=1}^{N}$ is almost symmetric random walk; SRW with N steps remains positive with probability $\Theta(\sqrt{N})$.

Exchangeable and symmetric excursions

- $N=\Theta(\sqrt{n})$ excursions with areas $\zeta_{1}, \ldots, \zeta_{N}$.
- $E_{k}=\sum_{i=1}^{k} \zeta_{i}$.
- Steps are not independent!

Exchangeable and symmetric excursions

- $N=\Theta(\sqrt{n})$ excursions with areas $\zeta_{1}, \ldots, \zeta_{N}$.
- $E_{k}=\sum_{i=1}^{k} \zeta_{i}$.
- Steps are not independent!
- Exchangeable: $\left(\zeta_{1}, \ldots, \zeta_{N}\right) \stackrel{d}{=}\left(\zeta_{\sigma(1)}, \ldots, \zeta_{\sigma(N)}\right)$ for any permutation $\sigma \in \Sigma_{N}$.
- + symmetric: for any permutation σ and $s_{1}, \ldots, s_{N} \in\{1,-1\}$,

$$
\left(\zeta_{1}, \ldots, \zeta_{N}\right) \stackrel{d}{=}\left(s_{1} \zeta_{\sigma(1)}, \ldots, s_{N} \zeta_{\sigma(N)}\right)
$$

Exploiting symmetry and exchangeability

$$
\mathbb{P}\left(\sum_{i=1}^{k} \zeta_{i} \geq 0 \text { for all } k \in[N]\right)=\mathbb{P}\left(\sum_{i=1}^{k} s_{i} \zeta_{\sigma(i)} \geq 0 \text { for all } k \in[N]\right)
$$

Exploiting symmetry and exchangeability

$$
\begin{aligned}
& \mathbb{P}\left(\sum_{i=1}^{k} \zeta_{i} \geq 0 \text { for all } k \in[N]\right)=\mathbb{P}\left(\sum_{i=1}^{k} s_{i} \zeta_{\sigma(i)} \geq 0 \text { for all } k \in[N]\right) \\
& =\sum_{x \in \mathbb{R}^{P}} \mathbb{P}\left(\zeta_{1}=x_{1}, \ldots, \zeta_{N}=x_{N}\right) \mathbb{P}\left(\sum_{i=1}^{k} s_{i} x_{\sigma(i)} \geq 0 \text { for all } k \in[N]\right) .
\end{aligned}
$$

Useful (combinatorial) lemma

For $x=\left(x_{1}, \ldots, x_{N}\right) \in \mathbb{R}^{N}$, permutation $\sigma \in \Sigma_{N}$ and signs $s \in\{-1,1\}^{N}$ chosen uniformly at random (independently),

$$
\mathbb{P}\left(\sum_{i=1}^{k} s_{i} x_{\sigma(i)} \geq 0 \text { for all } k \in[N]\right)=? ? ?
$$

Useful (combinatorial) lemma

For $x=\left(x_{1}, \ldots, x_{N}\right) \in \mathbb{R}^{N}$, permutation $\sigma \in \Sigma_{N}$ and signs $s \in\{-1,1\}^{N}$ chosen uniformly at random (independently),

$$
\mathbb{P}\left(\sum_{i=1}^{k} s_{i} x_{\sigma(i)} \geq 0 \text { for all } k \in[N]\right)=\frac{(2 N-1)!!}{2^{N} N!}
$$

does not depend on x if x is 'generic': for all distinct $A, A^{\prime} \subseteq[N]$

$$
\sum_{i \in A} x_{i} \neq \sum_{i \in A^{\prime}} x_{i}
$$

Making excursions 'generic'

If the steps $L_{1}, L_{2}, \ldots, L_{n}$ of the lazy SSRW bridge are 'perturbed' by

$$
\epsilon_{1}, \ldots, \epsilon_{n} \sim \operatorname{Unif}\left(\left[-\frac{1}{2 n}, \frac{1}{2 n}\right]\right)
$$

slightly, then 'perturbed' $\widetilde{\zeta}_{1}, \ldots, \widetilde{\zeta}_{N}$ would be 'generic'!

Where does Γ come from?

If $\zeta_{1}, \ldots, \zeta_{N}$ would be 'generic', probability of interest would be

$$
\mathbb{E}\left[\frac{(2 N-1)!!}{2^{N} N!}\right] \sim n^{-1 / 4} \Gamma(3 / 4) / \sqrt{2 \pi}
$$

where for N the number of excursions,

$$
n^{-1 / 2} N \rightarrow 2 \sqrt{E}, \quad E \sim \operatorname{Exp}(1)
$$

Where does ρ come from?

When the area process is >0 or <0, the perturbed one is also >0 or <0 respectively.

Still need to account for when it equals zero.

Where does ρ come from?

When the area process is >0 or <0, the perturbed one is also >0 or <0 respectively.

Still need to account for when it equals zero.
For i with $\zeta_{1}+\cdots+\zeta_{i}=0$, do we have

$$
\epsilon_{1}+\cdots+\epsilon_{i} \geq 0 ?
$$

$M=$ number of i such that $\zeta_{1}+\cdots+\zeta_{i}=0$.
M conditional on the dominating condition converges in distribution to Geom (ρ).

Open problem: upper bound in useful lemma

For $(s, \sigma) \sim \operatorname{Unif}\left(\{-1,1\}^{N} \times \Sigma_{N}\right)$ when is

$$
\mathbb{P}\left(\sum_{i=1}^{k} s_{i} x_{\sigma(i)} \geq 0 \text { for all } k \in[N]\right)
$$

maximal? Is this for $x_{1}=\cdots=x_{N}$?

Open problem: fixed number of edges

What if you fix the number of edges instead of the number of vertices?
Let $p(N)$ the fraction of partitions of an integer N that are graphical. Answering a conjecture of Wilf (1982), Pittel (1999) showed $p(N) \rightarrow 0$ as $N \rightarrow \infty$.

Known: $p(N)=N^{-\Theta(1)}$.
Can you show $\Theta\left(N^{-\alpha}\right)$ or $(c+o(1)) N^{-\alpha}$?

Open problem: other variations

We computed the number of graphic sequences for n-vertex graphs. What about bipartite graphs, digraphs, uniform hypergraphs?

Open problem: other variations

We computed the number of graphic sequences for n-vertex graphs. What about bipartite graphs, digraphs, uniform hypergraphs?

We computed the persistence probability for the integrated (lazy) SSRW bridge up to $(1+o(1))$.
Can you do this for other integrated random processes?

Thank you for your attention!

Balister, Donderwinkel, G., Johnston, Scott, 2023+
For $\left(Y_{i}\right)_{i=1}^{n}$ lazy SSRW and $\left(A_{i}\right)_{i=1}^{n}$ its area process,

$$
\mathbb{P}\left(A_{1}, \ldots, A_{n} \geq 0 \mid Y_{n}=0\right)=(1+o(1)) \frac{\Gamma(3 / 4)}{\sqrt{2 \pi(1-\rho)}} \frac{1}{n^{1 / 4}} .
$$

Balister, Donderwinkel, G., Johnston, Scott, 2023+

$$
G(n)=(1+o(1)) \frac{\Gamma(3 / 4)}{4 \pi \sqrt{2(1-\rho)}} \frac{4^{n}}{n^{3 / 4}} .
$$

[^0]: P. Kelly. On isometric transformations. PhD thesis, University of Wisconsin, 1942.
 S. Ulam. A collection of mathematical problems, volume 8. Interscience Publishers, 1960.

