Weak order and simple reflections

Subword complexes

Pipe dreams 0000 0000 Extension to Coxeter groups 0 00

Lattice properties of acyclic pipe dreams Propriétés de treillis des arrangements de tuyaux acycliques

Noémie Cartier

18 octobre 2023

Directed by:

Florent Hivert, LISN, Université Paris-Saclay Vincent Pilaud, CNRS, LIX, École Polytechnique

Image: A matrix and a matrix

Noémie Cartier

Weak order and simple reflections	Subword complexes	Pipe dreams	Extension to Coxeter groups
• 00000 0000000 0	0000 00000	0000 0000	
Lattices and lattice quotients			

What is a lattice?

Noémie Cartier Lattice properties of acyclic pipe dreams

Weak order and simple reflections	Subword complexes	Pipe dreams	Extension to Coxeter groups
•00000 0000000 0	0000 00000	0000 0000	
Lattices and lattice quotients			

What is a lattice?

Partially ordered set or \mathbf{poset} : a set with a partial order relation

reflexive

 $x \leq x$

transitive

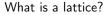
 $x \leq y, y \leq z \Rightarrow x \leq z$

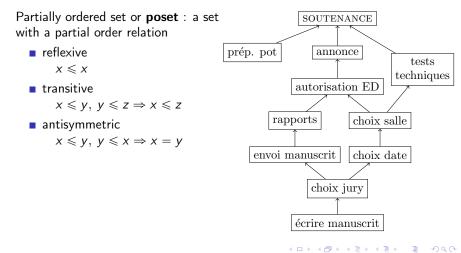
antisymmetric

 $x \leqslant y, \ y \leqslant x \Rightarrow x = y$

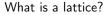
▲ロ▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

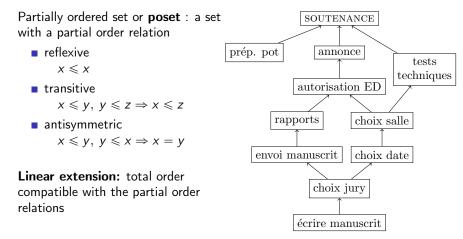
Weak order and simple reflections	Subword complexes	Pipe dreams	Extension to Coxeter groups
• 00000 0000000 0	0000 00000	0000 0000	
Lattices and lattice quotients			





Weak order and simple reflections	Subword complexes	Pipe dreams	Extension to Coxeter groups
00000 0000000 0	0000 00000	0000 0000	
Lattices and lattice quotients			





▲ロト ▲圖ト ▲画ト ▲画ト 三回 - のへで

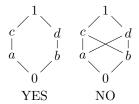
Weak order and simple reflections	Subword complexes	Pipe dreams	Extension to Coxeter groups
000000 0000000 0	0000 00000	0000	
Lattices and lattice quotients			

What is a lattice?

A poset (X, \leq) is a **lattice** if any pair $a, b \in X$ has:

a join or least upper bound $a \lor b$;

• a **meet** or greatest lower bound $a \wedge b$.



Weak order and simple reflections	Subword complexes	Pipe dreams	Extension to Coxeter groups
000●00 0000000 0	0000 00000	0000 0000	
Lattices and lattice quotients			

What is a lattice?

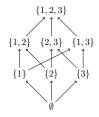
A poset (X, \leq) is a **lattice** if any pair $a, b \in X$ has:

• a **join** or least upper bound $a \lor b$;

• a **meet** or greatest lower bound $a \wedge b$.

Classical examples:

- the **boolean lattice** (*P*(*A*), ⊆) : union and intersection;
- the **divisibility order** on positive integers: GCD and LCM.

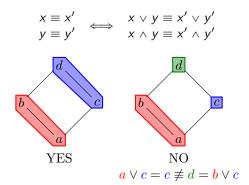


(日) (同) (三) (三)

э

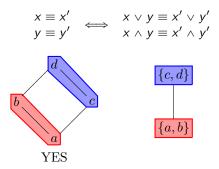
Weak order and simple reflections 0000€0 0000000 0	Subword complexes 0000 00000	Pipe dreams 0000 0000	Extension to Coxeter groups 0 00
Lattices and lattice quotients			

 \equiv an equivalence relation on X a lattice is a **lattice congruence** if:



Weak order and simple reflections	Subword complexes	Pipe dreams	Extension to Coxeter groups
00000●	0000	0000	0
000000000000000000000000000000	00000	0000	00
Lattices and lattice quotients			

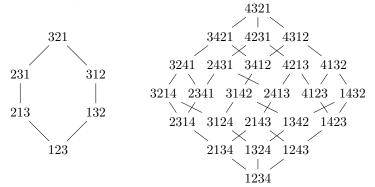
 \equiv an equivalence relation on X a lattice is a **lattice congruence** if:



⇒ **lattice quotient** X/\equiv : poset induced by \leq on the equivalence classes of \equiv

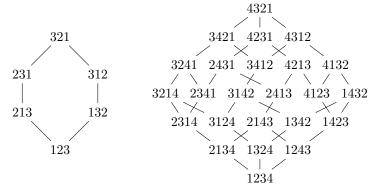
Weak order and simple reflections ⊙⊙⊙⊙⊙ ⊙⊙⊙⊙⊙⊙⊙ ⊙	Subword complexes 0000 00000	Pipe dreams 0000 0000	Extension to Coxeter groups 0 00
The weak order on permutations			

Weak order on permutations :



Weak order and simple reflections ○○○○○○ ●○○○○○○○ ○	Subword complexes 0000 00000	Pipe dreams 0000 0000	Extension to Coxeter groups 0 00
The weak order on permutations			

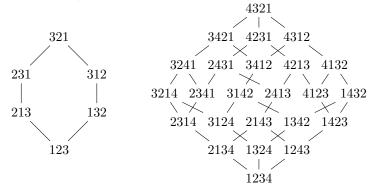
Weak order on permutations :



Defined by inclusion on **inversion sets**: $inv(\omega) := \{i < j \text{ and } \omega^{-1}(i) > \omega^{-1}(j)\} \rightarrow (1, 2) \in inv(24135)$

Weak order and simple reflections ○○○○○○ ●○○○○○○○ ○	Subword complexes 0000 00000	Pipe dreams 0000 0000	Extension to Coxeter groups 0 00
The weak order on permutations			

Weak order on permutations :



Defined by inclusion on **inversion sets**: $inv(\omega) := \{i < j \text{ and } \omega^{-1}(i) > \omega^{-1}(j)\} \rightarrow (1,2) \in inv(24135)$

《曰》 《聞》 《臣》 《臣》

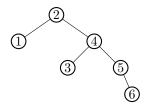
2

The weak order on \mathfrak{S}_n is a **lattice** (Guilbaud–Rosenstiehl, '63).

Weak order and simple reflections	Subword complexes	Pipe dreams	Extension to Coxeter groups
000000 0000000 0	0000 00000	0000 0000	
The weak order on permutations			

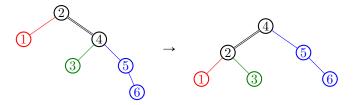
Weak order and simple reflections ○○○○○○ ○●○○○○○ ○	Subword complexes 0000 00000	Pipe dreams 0000 0000	Extension to Coxeter groups O OO
The weak order on permutations			

Data structure: binary search tree



Weak order and simple reflections ○○○○○○ ○●○○○○ ○	Subword complexes 0000 00000	Pipe dreams 0000 0000	Extension to Coxeter groups O OO
The weak order on permutations			

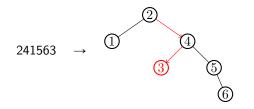
Data structure: binary search tree



Balancing operation: tree rotation (Adelson-Velsky-Landis, '62)

Weak order and simple reflections	Subword complexes	Pipe dreams	Extension to Coxeter groups
000000 0	00000	0000	ŏo
The weak order on permutations			

Data structure: binary search tree



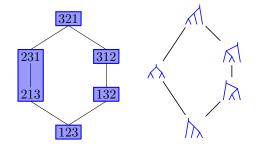
From permutations to binary trees: insertion into a BST

(日) (周) (三) (三)

3

Noémie Cartier

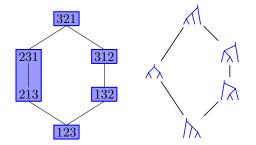
Weak order and simple reflections ○○○○○ ○○○○●○○ ○	Subword complexes 0000 00000	Pipe dreams 0000 0000	Extension to Coxeter groups 0 00
The weak order on permutations			



▲口▶▲圖▶▲圖▶▲圖▶ 圖 の⊙⊙

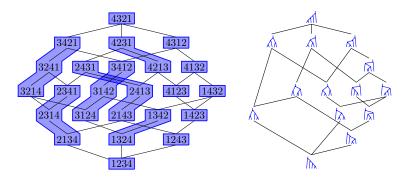
Noémie Cartier Lattice properties of acyclic pipe dreams

Weak order and simple reflections ○○○○○ ○○○○●○○ ○	Subword complexes 0000 00000	Pipe dreams 0000 0000	Extension to Coxeter groups 0 00
The weak order on permutations			



The insertion into BST is a **lattice morphism** (Hivert–Novelli–Thibon, '05).

Weak order and simple reflections ○○○○○ ○○○○●○ ○	Subword complexes 0000 00000	Pipe dreams 0000 0000	Extension to Coxeter groups 0 00
The weak order on permutations			



Noémie Cartier

Weak order and simple reflections ○○○○○○ ○○○○○○● ○	Subword complexes 0000 00000	Pipe dreams 0000 0000	Extension to Coxeter groups 0 00
The weak order on permutations			

 $UabV \lessdot UbaV$ $31245 \lessdot 31425$

Noémie Cartier Lattice properties of acyclic pipe dreams

Weak order and simple reflections ○○○○○ ○○○○○● ○	Subword complexes 0000 00000	Pipe dreams 0000 0000	Extension to Coxeter groups 0 00
The weak order on permutations			

 $UabV \lessdot UbaV$

 $31 \textcolor{red}{\textbf{245}} \lessdot 31 \textcolor{red}{\textbf{425}}$

 $\omega \lessdot \omega \tau_i$ with $\omega(i) < \omega(i+1)$

Weak order and simple reflections ○○○○○○ ○○○○○○● ○	Subword complexes 0000 00000	Pipe dreams 0000 0000	Extension to Coxeter groups 0 00
The weak order on permutations			

 $UabV \ll UbaV$ $31245 \ll 31425$ $\omega \ll \omega \tau_i$ with $\omega(i) < \omega(i+1)$

 \Rightarrow importance of generating set $S = \{\tau_i = (i, i+1) \mid 1 \leq i < n\}$

Weak order and simple reflections ○○○○○○ ○○○○○○● ○	Subword complexes 0000 00000	Pipe dreams 0000 0000	Extension to Coxeter groups 0 00
The weak order on permutations			

 $UabV \ll UbaV$ $31245 \ll 31425$ $\omega \ll \omega \tau_i$ with $\omega(i) < \omega(i+1)$

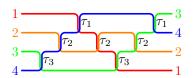
 \Rightarrow importance of generating set $S = \{\tau_i = (i, i+1) \mid 1 \leq i < n\}$

Computing products: $\tau_3 \tau_2 \tau_1 \tau_2 \tau_3 \tau_2 \tau_1 = ?$

Weak order and simple reflections ○○○○○○ ○○○○○● ○	Subword complexes 0000 00000	Pipe dreams 0000 0000	Extension to Coxeter groups 0 00
The weak order on permutations			

 $UabV \ll UbaV$ $31245 \ll 31425$ $\omega \ll \omega \tau_i$ with $\omega(i) < \omega(i+1)$

 \Rightarrow importance of generating set $S = \{\tau_i = (i, i+1) \mid 1 \leq i < n\}$



Computing products: $\tau_3 \tau_2 \tau_1 \tau_2 \tau_3 \tau_2 \tau_1 =?$

Sorting network \leftrightarrow simple reflections product

▲ロト ▲舂 ト ▲ 臣 ト ▲ 臣 ト ○ 臣 … の Q ()

Weak order and simple reflections	Subword complexes	Pipe dreams	Extension to Coxeter groups
000000 0000000 •	0000 00000	0000 0000	
Words on simple reflections			

• minimal length for ω : $\ell(\omega) = |inv(\omega)|$ (reduced words)

Weak order and simple reflections	Subword complexes	Pipe dreams	Extension to Coxeter groups
	0000	0000	O
	00000	0000	OO
Words on simple reflections			

• minimal length for ω : $\ell(\omega) = |inv(\omega)|$ (reduced words)

Weak order and simple reflections	Subword complexes	Pipe dreams	Extension to Coxeter groups
000000	0000 00000	0000	
Words on simple reflections			

• minimal length for ω : $\ell(\omega) = |inv(\omega)|$ (reduced words)

• $\pi \leqslant \omega$ iff $\omega = \pi \sigma$ and $\ell(\omega) = \ell(\pi) + \ell(\sigma)$: π is a **prefix** of ω

・ロト・日本・日本・日本・日本・今日や

Noémie Cartier

Weak order and simple reflections	Subword complexes	Pipe dreams	Extension to Coxeter groups
000000 0000000 •	0000 00000	0000	
Words on simple reflections			

• minimal length for ω : $\ell(\omega) = |inv(\omega)|$ (reduced words)

• $\pi \leq \omega$ iff $\omega = \pi \sigma$ and $\ell(\omega) = \ell(\pi) + \ell(\sigma)$: π is a **prefix** of ω

• if $\pi \leq \omega$ then any reduced expression of ω has a reduced expression of π as a **subword**

Weak order and simple reflections 000000 0000000 0	Subword complexes ●000 ○0000	Pipe dreams 0000 0000	Extension to Coxeter groups O OO
Subwords and flips			

 $SC(Q, \omega)$ the **subword complex** on Q representing ω :

- ground set: indices of Q
- \blacksquare facets: complements of reduced subwords representing ω

(Knutson-Miller, '04)

Weak order and simple reflections	Subword complexes	Pipe dreams	Extension to Coxeter groups
000000	0000	0000	
000000	00000	0000	00
Subwords and flips			

 $SC(Q, \omega)$ the **subword complex** on Q representing ω :

- ground set: indices of Q
- \blacksquare facets: complements of reduced subwords representing ω

(Knutson-Miller, '04)

An example:

Facet $\{1, 2, 3, 8, 9\}$ of SC $(\tau_4 \tau_3 \tau_2 \tau_1 \tau_4 \tau_3 \tau_2 \tau_4 \tau_3 \tau_4, 25143)$

Subwords and flins	Weak order and simple reflections 000000 0000000 0	Subword complexes ○●○○ ○○○○○	Pipe dreams 0000 0000	Extension to Coxeter groups 0 00
	Subwords and flips			

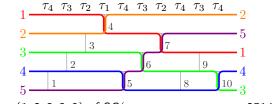
Fix Q word on S, $\omega \in \mathfrak{S}_n$

 $SC(Q, \omega)$ the **subword complex** on Q representing ω :

ground set: indices of Q

 \blacksquare facets: complements of reduced subwords representing ω

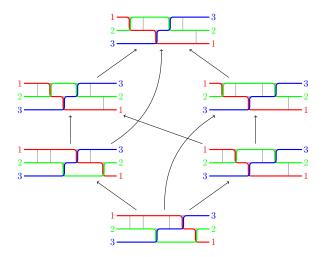
An example:



Facet $\{1, 2, 3, 8, 9\}$ of SC $(\tau_4 \tau_3 \tau_2 \tau_1 \tau_4 \tau_3 \tau_2 \tau_4 \tau_3 \tau_4, 25143)$

Weak order and simple reflections	Subword complexes	Pipe dreams	Extension to Coxeter groups
000000 0000000 0	0000 00000	0000 0000	
Subwords and flips			

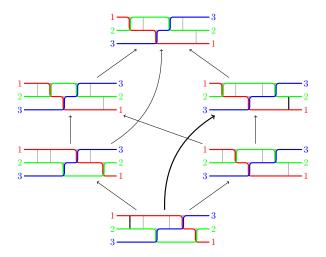
Structure given by flips: from one facet to another



Noémie Cartier

Weak order and simple reflections 000000 0000000 0	Subword complexes ○○○● ○○○○○	Pipe dreams 0000 0000	Extension to Coxeter groups 0 00
Subwords and flips			

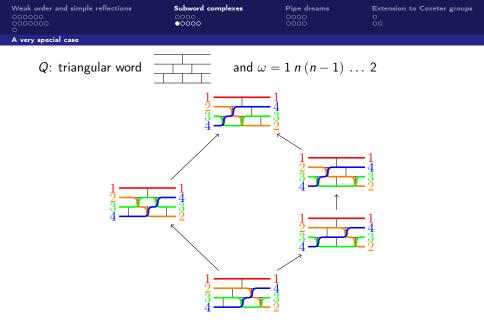
Structure given by flips: from one facet to another



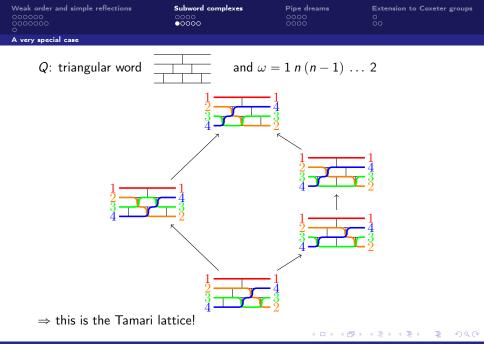
Noémie Cartier

Weak order and simple reflections 000000 0000000 0	Subword compl ○○○○ ●○○○○	exes Pipe dreams 0000 0000	Extension to Coxeter groups 0 00
A very special case			
Q: triangular word		and $\omega = 1 \ n (n-1)$. 2

Noémie Cartier Lattice properties of acyclic pipe dreams



Noémie Cartier



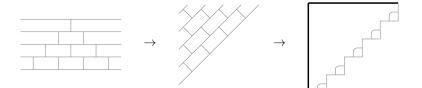
Noémie Cartier

Weak order and simple reflections 000000 0000000 0	Subword complexes ○○○○ ○●○○○	Pipe dreams 0000 0000	Extension to Coxeter groups 0 00
A very special case			

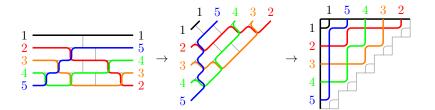
▲□▶▲□▶▲□▶▲□▶ = つへで

Noémie Cartier Lattice properties of acyclic pipe dreams

Weak order and simple reflections	Subword complexes	Pipe dreams	Extension to Coxeter groups
000000 0000000 0	0000 0●000	0000 0000	
A yeary energial case			

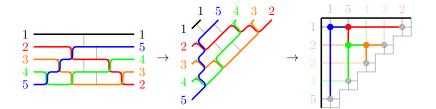


Weak order and simple reflections	Subword complexes	Pipe dreams	Extension to Coxeter groups
000000 0000000 0	0000 00000	0000 0000	
A very special case			



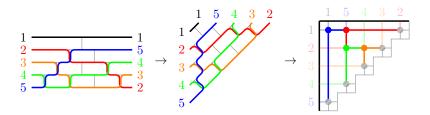
Noémie Cartier Lattice properties of acyclic pipe dreams

Weak order and simple reflections	Subword complexes	Pipe dreams	Extension to Coxeter groups
000000 0000000 0	0000 00000	0000 0000	
A very special case			



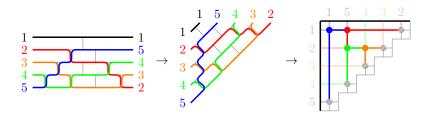
Noémie Cartier Lattice properties of acyclic pipe dreams

Weak order and simple reflections	Subword complexes	Pipe dreams	Extension to Coxeter groups
000000 0000000 0	0000 00000	0000 0000	
A very special case			



A binary tree appears on the pipe dream \rightarrow bijection

Weak order and simple reflections	Subword complexes	Pipe dreams	Extension to Coxeter groups
000000 0000000 0	0000 00000	0000 0000	
A very special case			



A binary tree appears on the pipe dream \rightarrow bijection Tree rotations \equiv flips \rightarrow lattice isomorphism (Woo, 2004)

Weak order and simple reflections	Subword complexes	Pipe dreams	Extension to Coxeter groups
000000 0000000 0	0000 00000	0000 0000	
A very special case			

Can we find other lattice quotients of parts of the weak order with pipe dreams?

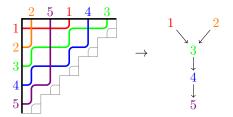
Weak order and simple reflections 000000 0000000 0	Subword complexes 0000 00000	Pipe dreams ●000 0000	Extension to Coxeter groups 0 00
Triangular pipe dreams			

- * ロ > * 個 > * 注 > * 注 > ・ 注 ・ の < @

Weak order and simple reflections 000000 0000000 0	Subword complexes 0000 00000	Pipe dreams ●000 0000	Extension to Coxeter groups 0 00
Triangular pipe dreams			

Contact graph:

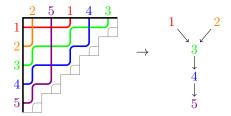
- vertices: pipes
- edges: from a to b if a b appears in the picture



Weak order and simple reflections 000000 0000000 0	Subword complexes 0000 00000	Pipe dreams ●000 0000	Extension to Coxeter groups 0 00
Triangular pipe dreams			

Contact graph:

- vertices: pipes
- edges: from a to b if $a \rightarrow b$ appears in the picture



Acyclic contact graph \iff vertex of **brick polytope** (Pilaud–Santos, '12)

Weak order and simple reflections 000000 0000000 0	Subword complexes 0000 00000	Pipe dreams 0●00 0000	Extension to Coxeter groups 0 00
Triangular pipe dreams			

What are the linear extensions of acyclic contact graphs?

Weak order and simple reflections 000000 0000000 0	Subword complexes 0000 00000	Pipe dreams 0●00 0000	Extension to Coxeter groups 0 00
Triangular pipe dreams			

What are the linear extensions of acyclic contact graphs?

• if $\pi \notin [id, \omega]$ then π is **not** a linear extension

• if $\pi \in [id, \omega]$ then π is a linear extension of **exactly one pipe dream**

Weak order and simple reflections 000000 0000000 0	Subword complexes 0000 00000	Pipe dreams 0●00 0000	Extension to Coxeter groups 0 00
Triangular pipe dreams			

What are the linear extensions of acyclic contact graphs?

- if $\pi \notin [id, \omega]$ then π is **not** a linear extension
- if $\pi \in [id, \omega]$ then π is a linear extension of **exactly one pipe dream**

 \Rightarrow surjective map Ins_{ω} from [id, ω] to acyclic pipe dreams $\Sigma(\omega)$

Weak order and simple reflections 000000 0000000 0	Subword complexes 0000 00000	Pipe dreams 0●00 0000	Extension to Coxeter groups 0 00
Triangular pipe dreams			

What are the linear extensions of acyclic contact graphs?

• if $\pi \notin [id, \omega]$ then π is **not** a linear extension

- if $\pi \in [id, \omega]$ then π is a linear extension of **exactly one pipe dream**
- \Rightarrow surjective map Ins_{ω} from [id, ω] to acyclic pipe dreams $\Sigma(\omega)$

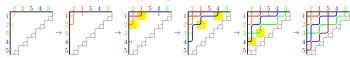
Theorem (Bergeron–C.–Ceballos–Pilaud)

For any $\omega \in \mathfrak{S}_n$, the ascending flip graph on $\Sigma(\omega)$ is a **lattice quotient** of the weak order interval $[id, \omega]$. The map $Ins_{\omega} : [id, \omega] \mapsto \Sigma(\omega)$ is a **lattice morphism**.

Weak order and simple reflections 000000 0000000 0	Subword complexes 0000 00000	Pipe dreams 00●0 0000	Extension to Coxeter groups 0 00
Triangular pipe dreams			

Two algorithms to compute $Ins_{\omega}(\pi)$: (for $\omega = 21543$ and $\pi = 21435$)

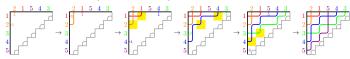
insertion algorithm (pipe by pipe)



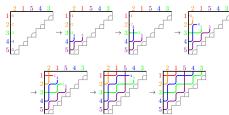
Weak order and simple reflections	Subword complexes	Pipe dreams	Extension to Coxeter groups
		0000	
Triangular pipe dreams			

Two algorithms to compute $Ins_{\omega}(\pi)$: (for $\omega = 21543$ and $\pi = 21435$)

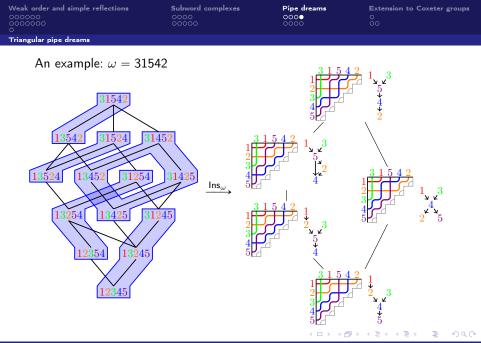
insertion algorithm (pipe by pipe)



sweeping algorithm (cell by cell)



Lattice properties of acyclic pipe dreams



Noémie Cartier

Lattice properties of acyclic pipe dreams

Weak order and simple reflections	Subword complexes	Pipe dreams	Extension to Coxeter groups
000000	0000	0000	
0000000 0	00000	0000	00
Generalized pipe dreams			

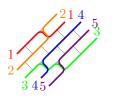
Second extension: other sorting networks

Wesk order and simple reflections 000000 0000000 0	Subword complexes 0000 00000	Pipe dreams ○○○○ ●○○○	Extension to Coxeter groups 0 00
Generalized pipe dreams			
Second extension: other	r sorting networks		
alternating sor	rting networks \leftrightarrow	alternating sh ↑	apes
	↔		

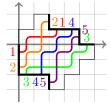
Weak order and simple reflections 000000 00000000 0	Subword complexes 0000 00000	Pipe dreams ○○○○ ○●○○	Extension to Coxeter groups 0 00
Generalized pipe dreams			
Second extension: oth	ner sorting networks		

 \leftrightarrow

alternating sorting networks



 \leftrightarrow alternating shapes



▲日▼▲□▼▲□▼▲□▼ □ □ ○○○

Weak order and simple reflections 000000 0000000 0	Subword complexes 0000 00000	Pipe dreams ○○○○ ○●○○	Extension to Coxeter groups 0 00
Generalized pipe dreams			
Second extension: othe	r sorting networks		
alternating so	rting networks \leftrightarrow 21453 345		apes 53 →

3

▲口▶ ▲圖▶ ▲厘▶ ▲厘▶ -

 $Ins_{F,\omega}$ is still well defined on [id, ω], BUT...

Weak order and simple reflections 000000 0000000 0	Subword complexes 0000 00000	Pipe dreams ○○○○ ○●○○	Extension to Coxeter groups 0 00
Generalized pipe dreams			
Second extension: othe	er sorting networks		
alternating so	orting networks 🛛 🔶	 alternating s 	hapes
	214_{5}		1 5

 $Ins_{F,\omega}$ is still well defined on [id, ω], BUT...

- some linear extensions can be outside of $[id, \omega]$
- the flip graph is not always the image of the weak order

Image: A matrix and a matrix

-∢∃>

Weak order and simple reflections 000000 0000000 0	Subword complexes 0000 00000	Pipe dreams ○○○○ ○●○○	Extension to Coxeter groups 0 00
Generalized pipe dreams			
Second extension: othe	er sorting networks		
alternating sc	orting networks 🛛 \leftrightarrow	alternating	shapes
	0	T I	

 $Ins_{F,\omega}$ is still well defined on [id, ω], BUT...

- some linear extensions can be outside of $[id, \omega]$
- the flip graph is not always the image of the weak order

Restrictions:

- $\Sigma_F(\omega)$ contains strongly acyclic pipe dreams
- order on $\Sigma_F(\omega)$: acyclic order (weaker than flip order)

Weak order and simple reflections	Subword complexes	Pipe dreams	Extension to Coxeter groups
000000	0000	○○○○	0
0000000	00000	○○●○	00
Generalized pipe dreams			

Theorem (C.)

For any alternating shape F and $\omega \in \mathfrak{S}_n$ sortable on F, the acyclic order on $\Sigma_F(\omega)$ is a **lattice quotient** of the weak order interval $[id, \omega]$. The map $Ins_{F,\omega} : [id, \omega] \mapsto \Sigma_F(\omega)$ is a **lattice morphism**.

▲ロト ▲暦 ▶ ▲ 臣 ▶ ▲ 臣 ● ○○○

Weak order and simple reflections	Subword complexes	Pipe dreams	Extension to Coxeter groups
000000	0000	○○○○	0
0000000	00000	○○●○	00
Generalized pipe dreams			

Theorem (C.)

For any alternating shape F and $\omega \in \mathfrak{S}_n$ sortable on F, the acyclic order on $\Sigma_F(\omega)$ is a **lattice quotient** of the weak order interval $[id, \omega]$. The map $Ins_{F,\omega} : [id, \omega] \mapsto \Sigma_F(\omega)$ is a **lattice morphism**.

▲ロト ▲圖ト ▲画ト ▲画ト 三回 - のへで

Acyclic order \leftrightarrow skeleton of (part of) the Brick polyhedron

Weak order and simple reflections	Subword complexes	Pipe dreams	Extension to Coxeter groups
000000 0000000 0	0000 00000	0000	
Generalized pipe dreams			

Theorem (C.)

For any alternating shape F and $\omega \in \mathfrak{S}_n$ sortable on F, the acyclic order on $\Sigma_F(\omega)$ is a **lattice quotient** of the weak order interval $[id, \omega]$. The map $Ins_{F,\omega} : [id, \omega] \mapsto \Sigma_F(\omega)$ is a **lattice morphism**.

Acyclic order \leftrightarrow skeleton of (part of) the Brick polyhedron

Theorem (C.)

If the maximal permutation $\omega_0 = n (n - 1) \dots 21$ is sortable on *F*, then any linear extension of a pipe dream on *F* with exit permutation ω is in [id, ω], and **all acyclic pipe dreams are strongly acyclic**.

Weak order and simple reflections 000000 0000000 0	Subword complexes 0000 00000	Pipe dreams ○○○○ ○○○●	Extension to Coxeter groups 0 00
Generalized pipe dreams			
An example: $\omega = 31524$ 31524 15324 31254 13254 13254 12534 12534 12534 12345 12345 12345	$\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{2}$ $\frac{1}{3}$ $\frac{1}{1}$ $\frac{1}{2}$ $\frac{1}{3}$ $\frac{1}{2}$		

Noémie Cartier

Lattice properties of acyclic pipe dreams

Weak order and simple reflections	Subword complexes	Pipe dreams	Extension to Coxeter groups
A similar framework			

Further generalization: Coxeter groups

symmetric group \mathfrak{S}_n	Coxeter group W			
simple transpositions simple reflectio				
weak order				
subword complexes				
pair of pipes root in Φ				
P [#] root cone				
$\pi \in lin(P)$	root conf. $\subseteq \pi(\Phi^+)$			

▲ロト ▲御 ▶ ▲臣 ▶ ▲臣 ▶ □ 臣 □ のへで

Noémie Cartier

Lattice properties of acyclic pipe dreams

Weak order and simple reflections 000000 0000000 0	Subword complexes 0000 00000	Pipe dreams 0000 0000	Extension to Coxeter groups ⊖ ●○
Work in progress			

Theorem (BCCP)

For any word Q on S and $w \in W$ sortable on Q, the map $Ins_{Q,w}$ is **well-defined** on the weak order interval [e, w].

Weak order and simple reflections	Subword complexes	Pipe dreams	Extension to Coxeter groups
000000 0000000 0	0000 00000	0000 0000	0 ●0
Work in progress			

Theorem (BCCP)

For any word Q on S and $w \in W$ sortable on Q, the map $Ins_{Q,w}$ is **well-defined** on the weak order interval [e, w].

Theorem (Jahn-Stump, 2022)

If the Demazure product of Q is w_0 , then for any $w \in W$ the application $lns_Q(w, \cdot)$ is surjective on acyclic facets of SC(Q, w).

▲ロト ▲暦 ト ▲ 臣 ト ▲ 臣 - の Q @

Weak order and simple reflections 000000 0000000 0	Subword complexes 0000 00000	Pipe dreams 0000 0000	Extension to Coxeter groups ○ ●○
Work in progress			

Theorem (BCCP)

For any word Q on S and $w \in W$ sortable on Q, the map $Ins_{Q,w}$ is **well-defined** on the weak order interval [e, w].

Theorem (Jahn–Stump, 2022)

If the Demazure product of Q is w_0 , then for any $w \in W$ the application $lns_Q(w, \cdot)$ is surjective on acyclic facets of SC(Q, w).

Conjecture

If Q is an alternating word on S and $w \in W$ is sortable on Q, then the application $Ins_{Q,w} : [e, w] \mapsto SC(Q, w)$ is a **lattice morphism** from the weak order on [e, w] to the Brick polyhedron of SC(Q, w).

Weak	order	and	simple	reflections
0000	00			
Work	in pro	gres	s	

Subword complexes

Pipe dreams 0000 0000 Extension to Coxeter groups O O O

Thank you for your attention! Merci pour votre attention !

Noémie Cartier Lattice properties of acyclic pipe dreams

