MINOR-UNIVERSAL GRAPH FOR BOUNDED GENUS GRAPHS

Cyril GAVOILLE, Claire HILAIRE

Labri, Université de Bordeaux

February 1st, 2023
Graph Minors

Introduction

On planar graph

Surfaces of bounded genus

Proof

Conclusion
Graph Minors

H is a minor of G if H can be obtained from G by
- vertex deletion
- edge deletion
- edge contraction
Graph Minors

H is a **minor** of G if H can be obtained from G by

- vertex deletion
- edge deletion
- edge contraction
Graph Minors

\(H \) is a \textbf{minor} of \(G \) if \(H \) can be obtained from \(G \) by
- vertex deletion
- edge deletion
- edge contraction

\[H \]

\[G \]
Graph Minors

H is a **minor** of G if H can be obtained from G by
- vertex deletion
- edge deletion
- edge contraction

Cyril Gavoille, Claire Hilaire

Minor-universal graph for bounded genus graphs
Graph Minors

H is a **minor** of G if H can be obtained from G by

- vertex deletion
- edge deletion
- edge contraction

H

G

Cyril Gavoille, Claire Hilaire

Minor-universal graph for bounded genus graphs
Graph Minors

H is a **minor** of G if H can be obtained from G by
- vertex deletion
- edge deletion
- edge contraction

G is a **major** of H.
Graph Minors

H is a **minor** of G if H can be obtained from G by
- vertex deletion
- edge deletion
- edge contraction

G is a **major** of H.
Graph Minors

H is a **minor** of G if H can be obtained from G by
- vertex deletion
- edge deletion
- edge contraction

G is a **major** of H.

Cyril GAVOILLE, Claire HILAIRE

MINOR-UNIVERSAL GRAPH FOR BOUNDED GENUS GRAPHS
Graph Minors

H is a **minor** of G if H can be obtained from G by
- vertex deletion
- edge deletion
- edge contraction

G is a **major** of H.
Minor-universality

Let \mathcal{F} be a family of finite graphs.
Minor-universality

Let \mathcal{F} be a family of finite graphs. U is minor-universal for \mathcal{F} if any $G \in \mathcal{F}$, G is a minor of U.
Minor-universality

Let \mathcal{F} be a family of finite graphs. U is minor-universal for \mathcal{F} if any $G \in \mathcal{F}$, G is a minor of U. → What is the order of a smallest U?
Minor-universality

Let \mathcal{F} be a \textit{family of finite graphs}. U is \textit{minor-universal} for \mathcal{F} if any $G \in \mathcal{F}$, G is a minor of U.

\rightarrow What is the order of a smallest U given a certain \textit{property}?
Minor-universality

Let F be a family of finite graphs. U is minor-universal for F if any $G \in F$, G is a minor of U.

→ What is the order of a smallest U given a certain property?

Examples:

▶ Order of a tree minor-universal for the trees on n vertices?
Minor-universality

Let \mathcal{F} be a family of finite graphs. U is minor-universal for \mathcal{F} if any $G \in \mathcal{F}$, G is a minor of U.

→ What is the order of a smallest U given a certain property?

Examples:

▷ Order of a tree minor-universal for the trees on n vertices?
→ [O. Bodini ’03] $\Omega(n \log n)$ and $O(n^{1.984\ldots})$.
Minor-universality

Let \mathcal{F} be a family of finite graphs. U is minor-universal for \mathcal{F} if any $G \in \mathcal{F}$, G is a minor of U.

→ What is the order of a smallest U given a certain property?

Examples:

- Order of a tree minor-universal for the trees on n vertices?
 → [O. Bodini ’03] $\Omega(n \log n)$ and $O(n^{1.984...})$.

- Order of a planar graph minor-universal for the planar n-graphs?
Minor-universality

Let \mathcal{F} be a family of finite graphs. U is minor-universal for \mathcal{F} if any $G \in \mathcal{F}$, G is a minor of U.

→ What is the order of a smallest U given a certain property?

Examples:

- Order of a tree minor-universal for the trees on n vertices?
 → [O. Bodini ’03] $\Omega(n \log n)$ and $O(n^{1.984...})$.

- Order of a planar graph minor-universal for the planar n-graphs?
 → [RST ’94] $O(n^2)$ with the $2n \times 2n$-grid.
Genus of graphs

Simple connected graphs on compact connected orientable surfaces.
Genus of graphs

Simple connected graphs on compact connected orientable surfaces.
Genus of graphs

\[g = 0 \]

\[g = 1 \]

Simple connected graphs on compact connected orientable surfaces.
Genus of graphs

$g = 0$

$g = 1$

$g = 2$

$g = 3$

$g = 4$

...

Simple connected graphs on compact connected orientable surfaces.
Result
Result

N. Robertson, P. Seymour, R. Thomas, 1994

For all n, there is a **planar** graph on $O(n^2)$ vertices minor-universal for the **planar n-graphs**.
Result

N. Robertson, P. Seymour, R. Thomas, 1994

For all n, there is a planar graph on $O(n^2)$ vertices minor-universal for the planar n-graphs.

C. Gavoille, C. H., 2023+

For all $n, g \geq 1$, there is a graph with genus g and $O(g^2(n + g)^2)$ vertices minor-universal for the n-graphs with genus g.
Minor-universal grid for planar graphs
Minor-universal grid for planar graphs

Step 1: Getting a Hamiltonian planar major

Every planar n-graph is a minor of a Hamiltonian planar $2n$-graph.
Minor-universal grid for planar graphs

Step 1: Getting a Hamiltonian planar major

Every planar n-graph is a minor of a Hamiltonian planar $2n$-graph.

Step 2: Getting the grid

Every Hamiltonian planar N-graph is a minor of the $N \times N$-grid.
Construction of a Hamiltonian major

Step 1: Getting a Hamiltonian planar major

Every planar n-graph is a minor of a Hamiltonian planar $2n$-graph.
Construction of a Hamiltonian major

Step 1: Getting a Hamiltonian planar major

Every planar n-graph is a minor of a Hamiltonian planar $2n$-graph.
Construction of a Hamiltonian major

Step 1: Getting a Hamiltonian planar major

Every planar n-graph is a minor of a Hamiltonian planar $2n$-graph.
Construction of a Hamiltonian major

Step 1: Getting a Hamiltonian planar major

Every planar n-graph is a minor of a Hamiltonian planar $2n$-graph.

![Graph Diagram]
Construction of a Hamiltonian major

Step 1: Getting a Hamiltonian planar major

Every planar n-graph is a minor of a Hamiltonian planar $2n$-graph.
Construction of a Hamiltonian major

Step 1: Getting a Hamiltonian planar major

Every planar n-graph is a minor of a Hamiltonian planar $2n$-graph.
Construction of a Hamiltonian major

Step 1: Getting a Hamiltonian planar major

Every planar n-graph is a minor of a Hamiltonian planar $2n$-graph.
Construction of a Hamiltonian major

Step 1: Getting a Hamiltonian planar major

Every planar n-graph is a minor of a Hamiltonian planar $2n$-graph.
Construction of a Hamiltonian major

Step 1: Getting a Hamiltonian planar major

Every planar n-graph is a minor of a Hamiltonian planar $2n$-graph.
Construction of a Hamiltonian major

Step 1: Getting a Hamiltonian planar major

Every planar n-graph is a minor of a Hamiltonian planar $2n$-graph.
Construction of a Hamiltonian major

Step 1: Getting a Hamiltonian planar major

Every planar n-graph is a minor of a Hamiltonian planar $2n$-graph.
Minor-universal grid for planar graphs

Step 1: Getting a Hamiltonian planar major
Every planar n-graph is a minor of a Hamiltonian planar $2n$-graph.

Step 2: Getting the grid
Every Hamiltonian planar N-graph is a minor of the $N \times N$-grid.
Construction of a grid major

Step 2: Getting the grid

Every Hamiltonian planar N-graph is a minor of the $N \times N$-grid.
Construction of a grid major

Step 2: Getting the grid

Every Hamiltonian planar N-graph is a minor of the $N \times N$-grid.
Construction of a grid major

Step 2: Getting the grid

Every Hamiltonian planar N-graph is a minor of the $N \times N$-grid.
Construction of a grid major

Step 2: Getting the grid

Every Hamiltonian planar N-graph is a minor of the $N \times N$-grid.
Polygonal schema for surfaces

\[\sigma = a_1 \bar{a}_1 b_1 \bar{b}_1 \ldots a_g \bar{a}_g b_g \]
Polygonal schema for surfaces

Classification Theorem (subpart)

Every compact, connected, orientable surface of genus $g \geq 1$ is homeomorphic to a polygonal surface given by the following polygonal schemata, called canonical:

$$\sigma = a_1 \bar{a}_1 b_1 \bar{b}_1 ... a_g b_g \bar{a}_g \bar{b}_g$$

[Éric Colin de Verdière]
Classification Theorem (subpart)

Every compact, connected, orientable surface of genus \(g \geq 1 \) is homeomorphic to a polygonal surface given by the following **polygonal schemata**, called **canonical**:

\[\sigma = a_1 b_1 \bar{a}_1 b_1 \ldots a_g b_g \bar{a}_g b_g \]
Polygonal embedding for graphs

\[G \text{ has a polygonal embedding characterized by:} \]

1. Borders of the \(k \)-gon respecting the schemata \(\sigma \).
2. At most \(N \) external vertices on each border (\(p_1, p_2, p_3, q_1, q_2, q_3 \)).
3. At most \(n \) internal vertices (1, 2, 3, 4, 5).
Polygonal embedding for graphs

\[G \] has a polygonal embedding characterized by:

- \(\sigma \leq N \) external vertices on each border (\(p_1, p_2, p_3, q_1, q_2, q_3 \)).
- At most \(n \) internal vertices (1,2,3,4,5).

Cyril Gavoille, Claire Hilaire

Minor-universal graph for bounded genus graphs
Polygonal embedding for graphs
Polygonal embedding for graphs

\(G \) has a polygonal embedding characterized by:
- at most \(n \) internal vertices (1,2,3,4,5).
- at most \(N \) external vertices on each border (\(\bar{a}_1, \bar{b}_1 \)).
Polygonal embedding for graphs

G has a polygonal embedding characterized by:

- at most N external vertices on each border ($p_1, p_2, p_3, q_1, q_2, q_3$).
- at most n internal vertices (1, 2, 3, 4, 5).
Polygonal embedding for graphs

G has a polygonal embedding characterized by:
Polygonal embedding for graphs

G has a polygonal embedding characterized by:
- \rightarrow, \leftarrow: borders of the k-gon respecting the schemata σ.
Polygonsal embedding for graphs

G has a polygonal embedding characterized by:
- \rightarrow, \leftarrow: borders of the k-gon respecting the schemata σ.
- at most N external vertices on each border ($p_1, p_2, p_3, q_1, q_2, q_3$).
Polygonal embedding for graphs

G has a polygonal embedding characterized by:
- \rightarrow,\leftarrow: borders of the k-gon respecting the schemata σ.
- at most N external vertices on each border ($p_1, p_2, p_3, q_1, q_2, q_3$).
- at most n internal vertices (1,2,3,4,5).
Polygonal embedding for graphs

G has a polygonal embedding of type $P_{\sigma,k}(N,n)$:
- \rightarrow, \leftarrow: borders of the k-gon respecting the schemata σ.
- at most N external vertices on each border ($p_1, p_2, p_3, q_1, q_2, q_3$).
- at most n internal vertices ($1, 2, 3, 4, 5$).
Polygonal embedding for graphs

G has a polygonal embedding of type $P_{\sigma,k}(N, n)$:

- \rightarrow, \rightarrow: borders of the k-gon respecting the schemata σ.
- at most N external vertices on each border ($p_1, p_2, p_3, q_1, q_2, q_3$).
- at most n internal vertices (1,2,3,4,5).
Polygonal embedding for graphs

F. Lazarus, M. Pocchiola, G. Vegter, A. Verrous, 2001
(version E. Colin de Verdière)

Let G be an n-graph embedded on an orientable surface S of genus $g \geq 1$.
One can compute in $O(g(g + n))$ time a canonical polygonal schema of S such that each border intersects at most 4 times each edge of G.

Corollary

Every n-vertex graph of genus $g \geq 1$ has a polygonal embedding $P_{\sigma,4g}(4(3n + 6g - 6), n)$ with $\sigma = a_1b_1\bar{a}_1\bar{b}_1 \cdots a_g b_g \bar{a}_g \bar{b}_g$.
Sketch of the proof

C. Gavoille, C. H., 2023+

For all $n, g \geq 1$, there is a graph with genus g and $O(g^2(n + g)^2)$ vertices minor-universal for the n-graphs with genus g.
Sketch of the proof

C. Gavoille, C. H., 2023+

For all $n, g \geq 1$, there is a graph with genus g and $O(g^2(n + g)^2)$ vertices minor-universal for the n-graphs with genus g.
Sketch of the proof

C. Gavoille, C. H., 2023+

For all $n, g \geq 1$, there is a graph with genus g and $O(g^2(n + g)^2)$ vertices minor-universal for the n-graphs with genus g.

Technical theorem

$\forall \sigma, k, N, n$, there is a graph with a polygonal embedding $P_{\sigma,k}(N + 2n, k^2(N + 2n)^2)$, minor universal for the graphs with a polygonal embedding $P_{\sigma,k}(N, n)$.

Cyril GAVOILLE, Claire HILAIRE

MINOR-UNIVERSAL GRAPH FOR BOUNDED GENUS GRAPHS

12
Step 1/2: getting an outerplanar-like embedding

Let G be a graph with a polygonal embedding $P_{\sigma,k}(N, n)$. G is minor of a graph with polygonal embedding $P_{\sigma,k}(N + 2n, 0)$.
Step 1/2: getting an outerplanar-like embedding

Let G be a graph with a polygonal embedding $P_{\sigma,k}(N, n)$. G is minor of a graph with polygonal embedding $P_{\sigma,k}(N + 2n, 0)$.

![Diagram of the graph $P_{\sigma,k}(N, n)$ and its modifications to create an outerplanar-like embedding.]
Step 1/2: getting an outerplanar-like embedding

Let G be a graph with a polygonal embedding $P_{\sigma,k}(N, n)$. G is minor of a graph with polygonal embedding $P_{\sigma,k}(N + 2n, 0)$.
Step 1/2: getting an outerplanar-like embedding

Let G be a graph with a polygonal embedding $P_{\sigma,k}(N, n)$. G is minor of a graph with polygonal embedding $P_{\sigma,k}(N + 2n, 0)$.
Step 1/2: getting an outerplanar-like embedding

Let G be a graph with a polygonal embedding $P_{\sigma,k}(N, n)$. G is minor of a graph with polygonal embedding $P_{\sigma,k}(N + 2n, 0)$.
Step 1/2: getting an outerplanar-like embedding

Let G be a graph with a polygonal embedding $P_{\sigma,k}(N,n)$. G is minor of a graph with polygonal embedding $P_{\sigma,k}(N+2n,0)$.
Step 1/2: getting an outerplanar-like embedding

Let G be a graph with a **polygonal embedding** $P_{\sigma,k}(N, n)$. G is minor of a graph with polygonal embedding $P_{\sigma,k}(N + 2n, 0)$.
step 2/2: grid-like minor-universal graph

There is a graph with \textit{polygonal embedding} \(P_{\sigma,k}(N', \frac{(kN')^2}{2}) \) minor-universal for the graphs with \textit{polygonal embedding} \(P_{\sigma,k}(N', 0) \).
step 2/2: grid-like minor-universal graph

There is a graph with polygonal embedding $P_{\sigma,k}(N', (kN')^2)$ minor-universal for the graphs with polygonal embedding $P_{\sigma,k}(N', 0)$.
There is a graph with polygonal embedding $P_{\sigma,k}(N', \frac{(kN')^2}{2})$ minor-universal for the graphs with polygonal embedding $P_{\sigma,k}(N', 0)$.

step 2/2: grid-like minor-universal graph
Conclusion

For all $n, g \geq 1$, there is a graph with genus g and $O(g^2(n + g)^2)$ vertices minor-universal for the n-graphs with genus g.

Relies on the fact that graphs with oriented genus g have polygonal embeddings with same parameters.
Conclusion

C. Gavoille, C. H., 2023+

For all $n, g \geq 1$, there is a graph with genus g and $O(g^2(n + g)^2)$ vertices minor-universal for the n-graphs with genus g.

Relies on the fact that graphs with oriented genus g have polygonal embeddings with same parameters.

More generally:
We construct a minor-universal graph for any family of graphs with polygonal embedding having same parameters.
What about non-orientable surfaces?

F. Lazarus, M. Pocchiola, G. Vegter, A. Verrous, 2001 (version E. Colin de Verdière)

Let G be an n-graph embedded on an orientable surface S of genus $g \geqslant 1$.
There is a canonical polygonal schema P of S such that each border of P intersects at most 4 times each edge of G.

N. Fuladi, A. Hubard, A. de Mesmay, 2023+

Let G be an n-graph embedded on a non-orientable surface S of genus $g \geqslant 1$.
There is a canonical polygonal schema of S such that each border intersects at most 30 times each edge of G.

Cyril GAUVILLE, Claire HILAIRE
MINOR-UNIVERSAL GRAPH FOR BOUNDED GENUS GRAPHS
What about lower bounds?

Open even for planar graphs!

Open problem

Is there a sub-quadratic planar graph containing all the planar n-graphs as minor?
Thank you!