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I- A Pitman’s Theorem (1975)

If {bt , t ≥ 0} a standard real Brownian motion then

{Pbt := bt − 2 inf
0≤s≤t

bs , t ≥ 0}

is a BES(3) process
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Figure – Pitman’s transform Pf (t) = f (t)− 2 infs≤t f (s)



I- A Pitman’s Theorem (1975)

BES(3) : Markov process with transition densities

qt(x , y) =
h(y)

h(x)
p0
t (x , y), x , y > 0, t > 0,

p0
t (x , y) = pt(x , y)− pt(x ,−y), h(x) = x .



I- A Pitman’s Theorem (1975)

Remarks :

1. BES(3) lives in R+

2. R+ is a fundamental domain for W = 〈s0〉.
3. BES(3) is a Doob’s h-process



II- A π/3 angle cone

Figure – A π/3 angle cone

W = 〈s1, s2〉. For any y ∈ R2, there exists a unique x in C s.t. y ∈W .{x}.



II- A π/3 angle cone

Figure – Fundamental domain - longest element

w0 = s1s2s1.



II- A π/3 angle cone

1. W = 〈s1, s2〉 acting on R2.

2. A fundamental domain C, a π/3 angle cone.

3. w0 = s1s2s1.



II- A π/3 angle cone

Figure – Pitman’s transforms

i ∈ {1, 2}, Pαi f (t) = f (t)− infs≤t(f (s), αi )αi .
(·, ·) standard inner product on R3.



II- A π/3 angle cone

If {bt , t ≥ 0} is a standard Brownian motion on R2 then

{Pα1Pα2Pα1bt , t ≥ 0}

is a Doob’s h-process in C with transition densities

qt(x , y) =
h(y)

h(x)
pCt (x , y), x , y ∈ C, t > 0,

h(x) = (α1, x)(α2, x)(α3, x), α3 = α1 + α2,
(pCt , t ≥ 0) transition densities of b killed on ∂C.



III- Discrete models

Figure – Random walk



III- Discrete models

Figure – Young diagram



III- Discrete models

Figure – Random walk and Young diagram



III- Discrete models

1. Discrete models ↔ Representation theory

2. Simple random walk ↔ Complex representations of sl2(C)

3. Two dimensional random walk in R2 ↔ Complex representations of sl3(C)



III- Discrete models

sl3(C) = {M ∈ M3(C) : tr(M) = 0}

Standard representation V = C3

hei = hiiei = γi (h)ei , i ∈ {1, 2, 3}

γ1 =↗, γ2 =↖, γ3 = ↓

X (n + 1)− X (n) ∈ {γ1, γ2, γ3}



IV- A Brownian motion in an affine Weyl chamber

Figure – Affine Weyl chamber

W = 〈s0, s1〉 acting on R∗+ × R ∪ {(0, 0)}, C = {xΛ0 + yα1/2 : 0 ≤ y ≤ x}
|W | =∞.



IV- A Brownian motion in an affine Weyl chamber

Figure – Affine Weyl chamber
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IV- A Brownian motion in an affine Weyl chamber

Figure – Affine Weyl chamber

{Xt , t ≥ 0} ?,
. . .P1P0 . . .P1P0Xt = ?



IV- A Brownian motion in an affine Weyl chamber

W , Weyl group of an Affine Lie algebra A1
1

V an integrable Highest-Weight Module
Set of weights P(V ) ⊂ {lΛ0 + kα1/2 : k ∈ Z}, l ∈ Z∗+.

V0, the fundamental representation P(V0) ⊂ {Λ0 + kα1/2 : k ∈ Z}.

X (n + 1)− X (n) ∈ P(V0), X (n) = nΛ0 + x(n)α1/2.

Bt = tΛ0 + btα1/2, t ≥ 0.
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IV- A Brownian motion in an affine Weyl chamber

Figure – Pitman’s transform corresponding to s1

P0η(t) = (t, f (t)− 2 infs≤t(f (s))),
P1η(t) = (t, f (t) + 2 infs≤t(s − f (s)), η(t) = (t, f (t)).



IV- A Brownian motion in an affine Weyl chamber

Theorem (Ph. Bougerol, M. D. 2022)

If {Bt = (t, bt), t ≥ 0} is a standard space-time Brownian motion then for
every t ∈ R+ the limit

lim
k
Pk . . .P0Bt + (0, 2(−1)k)

exists almost surely. The limiting process is a space-time Brownian motion
conditioned in Doob’s sense to remain in C.

P2k = P0, P2k+1 = P1.

Remark :
lim
k
Pk . . .P0Bt + (0, 2(−1)k) = lim

k
Lk+1Pk . . .P0Bt

L0Bt = (t, bt + infs≤t(s − bs)), L1Bt = (t, bt − infs≤t(bs)).
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IV- A Brownian motion in an affine Weyl chamber

Figure – Successive Pitman transformations



V- Idea of the proofs

Let {Bt = (t, bt + t/2), t ≥ 0} be a standard space-time Brownian motion with
a drift. For t ≥ 0, let (xk(t))k≥0 be a sequence of real numbers defined by

Pk . . .P0Bt = Bt + (0,
k∑

i=0

(−1)i−1xk(t)).

We set xk = limt→∞ xk(t).
x0 ≥ 0, xk

k
≥ xk+1

k+1
≥ 0, k ≥ 1. (Anti-lecture hall composition)
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