A method to solve Tutte’s equations of higher degree
The case of constellations

Séverin Charbonnier – Université de Genève
work in progress (Valentin Bonzom, Guillaume Chapuy, Elba Garcia-Failde, Wenjie Fang)

Journées de Combinatoire de Bordeaux
Laboratoire Bordelais de Recherche en Informatique
January 30th 2023
1 Definitions, motivation, context
 - Constellations: definitions
 - Motivation
 - Scope of the talk

2 Tutte/Loop equations

3 Solving higher loop equations
 - Spectral curve
 - Topological recursion
Definition (Map)

A map is a graph G where each vertex is endowed with a cyclic ordering of the incident half-edges.
Definition (Map)
A map is a graph G where each vertex is endowed with a cyclic ordering of the incident half-edges.

Genus
The genus g of a connected map is given by Euler’s formula:

$$\#\text{vertices} - \#\text{edges} + \#\text{faces} = 2 - 2g$$
Definition (Map)
A map is a graph G where each vertex is endowed with a cyclic ordering of the incident half-edges.

Genus
The genus g of a connected map is given by Euler's formula:

$$\text{#vertices} - \text{#edges} + \text{#faces} = 2 - 2g$$
Definition (m-constellations)

Let $m \geq 1$. An m-constellation is a bicolored map (gray/white faces) such that:

- each gray face (hyperedge) has degree m;
- each vertex has a color $c \in \{1, \ldots, m\}$, s.t. the colors around a hyperedge increase clockwise.

For instance ($m = 3$):

\[
\begin{array}{c}
\text{1} \\
\text{2} \\
\text{3} \\
\text{3} \\
\text{1} \\
\text{2} \\
\text{3}
\end{array}
\]

Degree of a white face (hyperface): multiple of m.

Size of a constellation: #hyperedges.

Constellations of type (g, n)

Let $g \in \mathbb{Z} \geq 0$, $n \in \mathbb{Z} \geq 1$. M is an m-constellations of type (g, n) ($M \in \mathcal{C}_{g, n}$) if it is connected, of genus g, and has n marked labelled rooted hyperfaces. Other hyperfaces: internal.

Roots: edges $1 - m$.
Definition (m-constellations)

Let $m \geq 1$. An m-constellation is a bicolored map (gray/white faces) such that:

- each gray face (hyperedge) has degree m;

For instance ($m = 3$):

```plaintext
1 2 3 3 1 2 3 1 2
```

Degree of a white face (hyperface): multiple of m.

Size of a constellation: #hyperedges.

Constellations of type (g, n)

Let $g \in \mathbb{Z}_{\geq 0}$, $n \in \mathbb{Z}_{\geq 1}$. M is an m-constellations of type (g, n) ($M \in C_{g,n}$) if it is connected, of genus g, and has n marked labelled rooted hyperfaces. Other hyperfaces: internal.

Roots: edges $1 - m$.
Definition (\textit{m-constellations})

Let $m \geq 1$. An \textit{m-constellation} is a bicolored map (gray/white faces) such that:

- each gray face (\textit{hyperedge}) has degree m;
- each vertex has a color $c \in \{1, \ldots, m\}$, s.t. the colors around a hyperedge increase clockwise.

For instance ($m = 3$):
Definition (m-constellations)

Let \(m \geq 1 \). An \(m \)-constellation is a bicolored map (gray/white faces) such that:

- each gray face (hyperedge) has degree \(m \);
- each vertex has a color \(c \in \{1, \ldots, m\} \), s.t. the colors around a hyperedge increase clockwise.

For instance (\(m = 3 \)):

Degree of a white face (hyperface): multiple of \(m \).
Size of a constellation: \#hyperedges
Definition \((m\text{-constellations})\)

Let \(m \geq 1\). An \(m\)-constellation is a bicolored map (gray/white faces) such that:

- each gray face (hyperedge) has degree \(m\);
- each vertex has a color \(c \in \{1, \ldots, m\}\), s.t. the colors around a hyperedge increase clockwise.

For instance \((m = 3)\):

\[
\begin{array}{c}
1 \\
2 \\
3 \\
2 \\
3 \\
1 \\
3 \\
1 \\
3 \\
2 \\
1 \\
2 \\
3
\end{array}
\]

\(M \in \mathcal{C}_{1,2}\)

Degree of a white face (hyperface): multiple of \(m\).
Size of a constellation: \(#\text{hyperedges}\)

Constellations of type \((g, n)\)

Let \(g \in \mathbb{Z}_{\geq 0}, n \in \mathbb{Z}_{\geq 1}\). \(M\) is an \(m\)-constellations of type \((g, n)\) \((M \in \mathcal{C}_{g,n})\) if it is connected, of genus \(g\), and has \(n\) marked labelled rooted hyperfaces. Other hyperfaces: internal.

Roots: edges \(1 - m\)
Weight

Let $M \in \mathcal{C}_{g,n}$. Put a weight:

- v per vertex;
- t per hyperedge;
- p_k per internal face of degree $k \cdot m$ ($1 \leq k \leq K$, bounded degree);
- $X - \ell_i - 1$ for the ith marked face of degree $\ell_i \cdot m$.

$$w(M) = X - 3_1 \cdot 2 \cdot t \cdot p_1 \cdot \ldots$$
Weight

Let $M \in \mathcal{C}_{g,n}$. Put a weight:
- v per vertex;
- t per hyperedge;
- p_k per internal face of degree $k \cdot m$ ($1 \leq k \leq K$, bounded degree);
- $X^{-\ell_i}i^{-1}$ for the ith marked face of degree $\ell_i \cdot m$.

$$w(M) = v^{10}$$
Generating functions

Weight

Let $M \in C_{g,n}$. Put a weight:

- v per vertex;
- t per hyperedge;

$$w(M) = v^{10} t^7$$
Weight

Let $M \in \mathcal{C}_{g,n}$. Put a weight:

- v per vertex;
- t per hyperedge;
- p_k per internal face of degree $k \cdot m$ ($1 \leq k \leq K$, bounded degree);

$w(M) = p_1 p_3 v^{10} t^7$
Weight

Let $M \in \mathcal{C}_{g,n}$. Put a weight:

- v per vertex;
- t per hyperedge;
- p_k per internal face of degree $k \cdot m$ ($1 \leq k \leq K$, bounded degree);
- $X_i^{-\ell_i-1}$ for the i^{th} marked face of degree $\ell_i \cdot m$.

$w(M) = X_1^{-3}X_2^{-2}p_1p_3v^{10}t^7$
Weight

Let $M \in \mathcal{C}_{g,n}$. Put a weight:

- v per vertex;
- t per hyperedge;
- p_k per internal face of degree $k \cdot m$ ($1 \leq k \leq K$, bounded degree);
- $X_i^{-\ell_i-1}$ for the i^{th} marked face of degree $\ell_i \cdot m$.

Definition (Generating functions)

The generating function of m-constellations of type (g, n) is

$$C_{g,n}(X_1, \ldots, X_n; v, t, p_k) = \sum_{M \in \mathcal{C}_{g,n}} w(M) \in \mathbb{Q}[v, p_k, X_i^{-1}][[t]]$$

Remarks: No automorphism factor ($n \geq 1$).
Parameters of the model: t, v, p_k; variables: X_1, \ldots, X_n.

$$w(M) = X_1^{-3} X_2^{-2} p_1 p_3 v^{10} t^7$$
Generating functions

Weight

Let $M \in \mathcal{C}_{g,n}$. Put a weight:

- v per vertex;
- t per hyperedge;
- p_k per internal face of degree $k \cdot m$ ($1 \leq k \leq K$, bounded degree);
- $X_i^{-\ell_i-1}$ for the i^{th} marked face of degree $\ell_i \cdot m$.

Definition (Generating functions)

The generating function of m-constellations of type (g, n) is

$$C_{g,n}(X_1, \ldots, X_n; v, t, p_k) = \sum_{M \in \mathcal{C}_{g,n}} w(M) \in \mathbb{Q}[v, p_k, X_i^{-1}][[t]]$$

Remarks: No automorphism factor ($n \geq 1$).
Parameters of the model: t, v, p_k; variables: X_1, \ldots, X_n.

Goal: compute the $C_{g,n}$'s
Why should we compute the $C_{g,n}$’s?

Constellations as Hurwitz numbers

M: connected m-constellation, size d.

- Label the hyperedges from 1 to d;
- For $c \in \{1, \ldots, m\}$: vertices of color c encode cycles of $\sigma_c \in S_d$ (turn clockwise);
- Edges “1−m” around hyperfaces (clockwise): cycles of $\sigma_0 \in S_d$.

Proposition

Labelled connected m-constellations of size d are in bijection with $(m+1)$-tuples of permutations $\sigma_0, \ldots, \sigma_m \in S_d$ s.t.

$$\sigma_m \ldots \sigma_1 \cdot \sigma_0 = 1_d$$

and $\sigma_0, \ldots, \sigma_m$ act transitively on $\{1, \ldots, d\}$.

Definition (**Hurwitz numbers**)

Let $\mu(0), \mu(1), \ldots, \mu(m) \vdash d$. Hurwitz number:

$$H(\mu(0), \mu(1), \ldots, \mu(m)) := \# \{ \sigma_0, \ldots, \sigma_m \in S_d | \sigma_m \ldots \sigma_0 = 1_d, \sigma_c \text{ of type } \mu(c) \}$$

Counting constellations ⇔ computing Hurwitz numbers

Séverin Charbonnier (UniGe) Tutte and constellations JCB – LaBRI 30/01/2023 6 / 26
Why should we compute the $C_{g,n}$’s?

Constellations as Hurwitz numbers

M: connected m-constellation, size d.

- Label the hyperedges from 1 to d;

- For $c \in \{1, \ldots, m\}$: vertices of color c encode cycles of $\sigma_c \in S_d$ (turn clockwise);

- Edges "1−m" around hyperfaces (clockwise): cycles of $\sigma_0 \in S_d$.

Proposition

Labelled connected m-constellations of size d are in bijection with $(m+1)$-tuples of permutations $\sigma_0, \ldots, \sigma_m \in S_d$ s.t. $\sigma_m \cdots \sigma_1 \cdot \sigma_0 = 1_d$ and $\sigma_0, \ldots, \sigma_m$, act transitively on $\{1, \ldots, d\}$.

Definition (Hurwitz numbers)

Let $\mu^{(0)}, \mu^{(1)}, \ldots, \mu^{(m)} \vdash d$. Hurwitz number: $H(\mu^{(0)}, \mu^{(1)}, \ldots, \mu^{(m)}) := \# \{\sigma_0, \ldots, \sigma_m \in S_d | \sigma_m \cdots \sigma_0 = 1_d, \sigma_c \text{of type } \mu^{(c)}\}$

Counting constellations ⇔ computing Hurwitz numbers

Séverin Charbonnier (UniGe)
Why should we compute the $C_{g,n}$’s?

Constellations as Hurwitz numbers

M: connected m-constellation, size d.

- Label the hyperedges from 1 to d;
- For $c \in \{1, \ldots, m\}$: vertices of color c encode cycles of $\sigma_c \in \mathfrak{S}_d$ (turn clockwise);

\[\sigma_1 = (12)(45), \quad \sigma_2 = (16)(23), \quad \sigma_3 = (143)(56), \]

\[
\begin{array}{c}
1 & 6 & 2 \\
3 & 2 & 1 \\
5 & 4 & 3
\end{array}
\]
Why should we compute the $C_{g,n}$’s?

Constellations as Hurwitz numbers

M: connected m-constellation, size d.

- Label the hyperedges from 1 to d;
- For $c \in \{1, \ldots, m\}$: vertices of color c encode cycles of $\sigma_c \in \mathfrak{S}_d$ (turn clockwise);
- Edges “$1 - m$” around hyperfaces (clockwise): cycles of $\sigma_0 \in \mathfrak{S}_d$.

$\sigma_1 = (12)(45), \sigma_2 = (16)(23), \sigma_3 = (143)(56), \sigma_0 = (235)(46)$
Why should we compute the $C_{g,n}$’s?

Constellations as Hurwitz numbers

M: connected m-constellation, size d.

- Label the hyperedges from 1 to d;
- For $c \in \{1, \ldots, m\}$: vertices of color c encode cycles of $\sigma_c \in S_d$ (turn clockwise);
- Edges “1 − m” around hyperfaces (clockwise): cycles of $\sigma_0 \in S_d$.

\[
\begin{align*}
\sigma_1 &= (12)(45), \quad \sigma_2 = (16)(23) \\
\sigma_3 &= (143)(56), \quad \sigma_0 = (235)(46)
\end{align*}
\]

Proposition

Labelled m-constellations of size d are in **bijection** with $(m+1)$-tuples of permutations $\sigma_0, \ldots, \sigma_m \in S_d$ s.t. $\sigma_m \ldots \sigma_1 \cdot \sigma_0 = 1_d$
Why should we compute the $C_{g,n}$’s?

Constellations as Hurwitz numbers

M: connected m-constellation, size d.
- Label the hyperedges from 1 to d;
- For $c \in \{1, \ldots, m\}$: vertices of color c encode cycles of $\sigma_c \in \mathfrak{S}_d$ (turn clockwise);
- Edges “$1 - m$” around hyperfaces (clockwise): cycles of $\sigma_0 \in \mathfrak{S}_d$.

Proposition

Labelled connected m-constellations of size d are in bijection with $(m + 1)$-tuples of permutations $\sigma_0, \ldots, \sigma_m \in \mathfrak{S}_d$ s.t. $\sigma_m \cdots \sigma_1 \cdot \sigma_0 = 1_d$ and $\sigma_0, \ldots, \sigma_m$, act transitively on $\{1, \ldots, d\}$.

$\sigma_1 = (12)(45), \sigma_2 = (16)(23), \sigma_3 = (143)(56), \sigma_0 = (235)(46)$
Why should we compute the $C_{g,n}$’s?

Constellations as Hurwitz numbers

M: connected m-constellation, size d.
- Label the hyperedges from 1 to d;
- For $c \in \{1, \ldots, m\}$: vertices of color c encode cycles of $\sigma_c \in \mathfrak{S}_d$ (turn clockwise);
- Edges “$1 - m$” around hyperfaces (clockwise): cycles of $\sigma_0 \in \mathfrak{S}_d$.

Proposition

Labelled connected m-constellations of size d are in bijection with $(m + 1)$-tuples of permutations $\sigma_0, \ldots, \sigma_m \in \mathfrak{S}_d$ s.t.

$\sigma_m \ldots \sigma_1 \cdot \sigma_0 = 1_d$ and $\sigma_0, \ldots, \sigma_m$, act transitively on $\{1, \ldots, d\}$.

Definition (Hurwitz numbers)

Let $\mu^{(0)}, \mu^{(1)}, \ldots, \mu^{(m)} | d$. Hurwitz number:

$H(\mu^{(0)}, \mu^{(1)}, \ldots, \mu^{(m)}) := \# \{\sigma_0, \ldots, \sigma_m \in \mathfrak{S}_d \mid \sigma_m \ldots \sigma_0 = 1_d, \sigma_c \text{ of type } \mu^{(c)}\}$

\[\sigma_1 = (12)(45), \sigma_2 = (16)(23), \sigma_3 = (143)(56), \sigma_0 = (235)(46) \]
Why should we compute the $C_{g,n}$'s?

Constellations as Hurwitz numbers

M: connected m-constellation, size d.

- Label the hyperedges from 1 to d;
- For $c \in \{1, \ldots, m\}$: vertices of color c encode cycles of $\sigma_c \in \mathcal{S}_d$ (turn clockwise);
- Edges “1 – m” around hyperfaces (clockwise): cycles of $\sigma_0 \in \mathcal{S}_d$.

\[
\begin{align*}
\sigma_1 &= (12)(45), \quad \sigma_2 = (16)(23) \\
\sigma_3 &= (143)(56), \quad \sigma_0 = (235)(46)
\end{align*}
\]

Proposition

Labelled connected m-constellations of size d are in bijection with $(m + 1)$-tuples of permutations $\sigma_0, \ldots, \sigma_m \in \mathcal{S}_d$ s.t. $\sigma_m \ldots \sigma_1 \cdot \sigma_0 = 1_d$ and $\sigma_0, \ldots, \sigma_m$, act transitively on $\{1, \ldots, d\}$.

Definition (Hurwitz numbers)

Let $\mu^{(0)}, \mu^{(1)}, \ldots, \mu^{(m)} \vdash d$. Hurwitz number:

\[
H(\mu^{(0)}, \mu^{(1)}, \ldots, \mu^{(m)}) := \# \{ \sigma_0, \ldots, \sigma_m \in \mathcal{S}_d | \sigma_m \ldots \sigma_0 = 1_d, \sigma_c \text{ of type } \mu^{(c)} \}
\]

Counting constellations \iff computing Hurwitz numbers
Enumerative geometry

Let \(d \in \mathbb{Z}_{\geq 1}, \mu^{(0)}, \ldots, \mu^{(m)} \vdash d \), and \(x_0, \ldots, x_m \in \mathbb{P}^1 \) distinct. \(H(\mu^{(0)}, \ldots, \mu^{(m)}) \) counts the (possibly disconnected) isomorphism classes of branched coverings of degree \(d \) of the sphere with ramification profile \(\mu^{(c)} \) over the point \(x_c \).
Enumerative geometry

Let $d \in \mathbb{Z}_{\geq 1}$, $\mu^{(0)}, \ldots, \mu^{(m)} \vdash d$, and $x_0, \ldots, x_m \in \mathbb{P}^1$ distinct. $H(\mu^{(0)}, \ldots, \mu^{(m)})$ counts the (possibly disconnected) isomorphism classes of branched coverings of degree d of the sphere with ramification profile $\mu^{(c)}$ over the point x_c.

Integrable hierarchies

\[
\tau(p_k, t, v) := 1 + \sum_{d \geq 1} \frac{t^d}{d!} \sum_{\mu^{(0)}, \ldots, \mu^{(m)} \vdash d} H(\mu^{(0)}, \mu^{(1)}, \ldots, \mu^{(m)}) p_{\mu^{(0)}} v^{\ell(\mu^{(1)}) + \cdots + \ell(\mu^{(m)})}
\]

is a τ-function of the KP hierarchy. [Orlov–Sherbin’00].

The $C_{g,n}$’s are descendents of the τ-function.
What do we aim for?

\[C_{g,n}(X_1, \ldots, X_n) \in \mathbb{Q}[p_k, v, X_i^{-1}][[t]]. \]

For small enough \(t, X_1^{-1}, \ldots, X_n^{-1} \), \(C_{g,n} \) converges uniformly in \(p_k, v \).
What do we aim for?

\[C_{g,n}(X_1, \ldots, X_n) \in \mathbb{Q}[p_k, \nu, X_i^{-1}][[t]]. \]

For small enough \(t, X_1^{-1}, \ldots, X_n^{-1}, C_{g,n} \) converges uniformly in \(p_k, \nu \).

We want:

(i) Find a change of variables \((t, X) \leftrightarrow (S, z)\) s.t.
 - \(X = x(z) \) and \(C_{0,1}(x(z)) \) are rational in \(z \);
What do we aim for?

\[C_{g,n}(X_1, \ldots, X_n) \in \mathbb{Q}[p_k, \nu, X_i^{-1}][[t]]. \]

For small enough \(t, X_1^{-1}, \ldots, X_n^{-1} \), \(C_{g,n} \) converges uniformly in \(p_k, \nu \).

We want:

(i) Find a change of variables \((t, X) \leftrightarrow (S, z)\) s.t.

- \(X = x(z) \) and \(C_{0,1}(x(z)) \) are \textit{rational} in \(z \);
- \(C_{g,n}(x(z_1), \ldots, x(z_n); p_k, \nu, t(S)) \) are \textit{analytic} for small enough \(S, z_i \).
What do we aim for?

\[C_{g,n}(X_1, \ldots, X_n) \in \mathbb{Q}[p_k, \nu, X_i^{-1}][[t]]. \]

For small enough \(t, X_1^{-1}, \ldots, X_n^{-1} \), \(C_{g,n} \) converges uniformly in \(p_k, \nu \).

We want:

(i) Find a change of variables \((t, X) \leftrightarrow (S, z) \) s.t.
 - \(X = x(z) \) and \(C_{0,1}(x(z)) \) are rational in \(z \);
 - \(C_{g,n}(x(z_1), \ldots, x(z_n); p_k, \nu, t(S)) \) are analytic for small enough \(S, z_i \).

(ii) Find a universal formula using complex geometry to compute the \(C_{g,n} \)'s recursively on \(2g - 2 + n \).
What do we aim for?

\(C_{g,n}(X_1, \ldots, X_n) \in \mathbb{Q}[p_k, \nu, X_i^{-1}][[t]]. \)

For small enough \(t, X_1^{-1}, \ldots, X_n^{-1} \), \(C_{g,n} \) converges uniformly in \(p_k, \nu \).

We want:

(i) Find a change of variables \((t, X) \leftrightarrow (S, z)\) s.t.

- \(X = x(z) \) and \(C_{0,1}(x(z)) \) are rational in \(z \);
- \(C_{g,n}(x(z_1), \ldots, x(z_n); p_k, \nu, t(S)) \) are analytic for small enough \(S, z_i \).

(ii) Find a universal formula using complex geometry to compute the \(C_{g,n} \)'s recursively on \(2g - 2 + n \).

Remark: once \(C_{g,n}(x(z_1), \ldots, x(z_n)) \) is known, one recovers:

\[C_{g,n}(X_1, \ldots, X_n) = C_{g,n}(x(Z(X_1)), \ldots, x(Z(X_n))) \]

where \(Z(X) \) are formal series in \(t \) s.t. \(x(Z(X)) = X \).
Topological Recursion (TR): procedure developed by Chekhov–Eynard–Orantin (’07)

Input
Spectral curve
\[S = (\Sigma, x, y, \omega_0, 2) \]

Output
Differentials \((\omega_g, n)_{g \geq 0, n \geq 0} \)
recursion on \(2g - 2 + n \)
Topological Recursion (TR): procedure developed by Chekhov–Eynard–Orantin (’07)

Input

Spectral curve

\(S = (\Sigma, x, y, \omega_0, 2) \)

Output

Differentials \((\omega_{g,n})_{g \geq 0, n \geq 0}\)

recursion on \(2g - 2 + n\)

Spectral curve

\(\Sigma : \text{Riemann surface;} \)
\(x : \Sigma \to \mathbb{P}^1 \text{ branched covering;} \)
\(y : \Sigma \to \mathbb{P}^1 ; \omega_{0,2} \in H^0(\Sigma, K^\otimes 2). \)
Topological Recursion (TR): procedure developed by Chekhov–Eynard–Orantin ('07)

Input
Spectral curve
\[S = (\Sigma, x, y, \omega_{0,2}) \]

Output
Differentials \((\omega_{g,n})_{g \geq 0, n \geq 0}\)
recursion on \(2g - 2 + n\)

Spectral curve
\[\Sigma : \text{Riemann surface;} \]
\[x : \Sigma \to \mathbb{P}^1 \text{ branched covering;} \]
\[y : \Sigma \to \mathbb{P}^1 ; \omega_{0,2} \in H^0(\Sigma, K^\otimes 2). \]

\[
\omega_{g,n}(z_1, l) = \sum_{a \in \Sigma, dx(a) = 0} \text{Res}_{z=a} \left(\frac{1}{2} \int_{\sigma_a(z)}^z \omega_{0,2}(z_1, \cdot) \right) \left(\omega_{g-1,n+1}(z, \sigma_a(z), l) \right)
\]

\[l = \{z_2, \ldots, z_n\}; \]
\[\sigma_a : \Sigma \to \Sigma \text{ local involution around } a: \sigma_a(a) = a, x(\sigma_a(z)) = x(z). \]
Topological Recursion (TR): procedure developed by Chekhov–Eynard–Orantin ('07)

Input
Spectral curve
\(S = (\Sigma, x, y, \omega_{0,2}) \)

Output
Differentials \((\omega_{g,n})_{g \geq 0, n \geq 0}\)
recursion on \(2g - 2 + n\)

Spectral curve
\(\Sigma \): Riemann surface;
\(x : \Sigma \to \mathbb{P}^1 \) branched covering;
\(y : \Sigma \to \mathbb{P}^1 ; \omega_{0,2} \in H^0(\Sigma, K^\otimes 2) \).

Various applications:
- Matrix models (hermitian, Kontsevich), map enumeration.
- Weil-Petersson volumes, intersection numbers (Witten–Kontsevich)
- Integrable hierarchies (KdV, KP)
- ...
Topological Recursion (TR): procedure developed by Chekhov–Eynard–Orantin ('07)

Input
Spectral curve

\[S = (\Sigma, x, y, \omega_{0,2}) \]

Output
Differentials \((\omega_{g,n})_{g \geq 0, n \geq 0}\)

recursion on \(2g - 2 + n\)

Spectral curve

\(\Sigma: \text{Riemann surface};\)

\(x: \Sigma \rightarrow \mathbb{P}^1\) branched covering;

\(y: \Sigma \rightarrow \mathbb{P}^1; \omega_{0,2} \in H^0(\Sigma, K^\otimes 2).\)

Various applications:

- Matrix models (hermitian, Kontsevich), map enumeration.
- Weil-Petersson volumes, intersection numbers (Witten–Kontsevich)
- Integrable hierarchies (KdV, KP)
- ...

Goal: prove that constellations satisfy TR.

For constellations with \(2g - 2 + n > 0\):

\[\omega_{g,n}(z_1, \ldots, z_n) := C_{g,n}(x(z_1), \ldots, x(z_n))dx(z_1)\ldots dx(z_n). \]
Scope of the talk

Constellations and TR:

- **[Alexandrov–Chapuy–Eynard–Harnad ’20]:** TR for constellations without internal face; weight v_c for vertices of color c.

- **[Bonzom–Chapuy–C–Garcia-Failde ’22], [Bychkov–Dunin-Barkowski–Kazarian–Shadrin ’22]:** TR for constellations with internal faces; hyperedges of various degrees; weight v_c for vertices of color c. (Even more general than that).

- **[BCCG-F]:** combinatorial techniques for the spectral curve (techniques of [Albenque–Bouttier]); deformation properties of TR for the other topologies.

- **[BD-BKS]:** semi-infinite wedge formalism + algebraic manipulations.

Scope of the talk:

- Prove TR for constellations with internal faces using Tutte’s equation (combinatorial techniques).

- The method can be applied to other models that satisfy higher degree loop equations/Tutte’s equation.

 Example: Ciliated maps **[Belliard–C–Eynard–Garcia-Failde ’21]**.
Scope of the talk

Constellations and TR:

- [Alexandrov–Chapuy–Eynard–Harnad '20]: TR for constellations without internal face; weight v_c for vertices of color c.

- [Bonzom–Chapuy–C–Garcia-Failde '22], [Bychkov–Dunin-Barkowski–Kazarian–Shadrin '22]: TR for constellations with internal faces; hyperedges of various degrees; weight v_c for vertices of color c. (Even more general than that).

- [BCCG-F]: combinatorial techniques for the spectral curve (techniques of Albenque–Bouttier); deformation properties of TR for the other topologies.

- [BD-BKS]: semi-infinite wedge formalism + algebraic manipulations.
Scope of the talk

Constellations and TR:

- **[Alexandrov–Chapuy–Eynard–Harnad '20]:** TR for constellations without internal face; weight v_c for vertices of color c.

- **[Bonzom–Chapuy–C–Garcia-Failde '22], [Bychkov–Dunin-Barkowski–Kazarian–Shadrin '22]:** TR for constellations with internal faces; hyperedges of various degrees; weight v_c for vertices of color c. (Even more general than that).

- **[BCCG-F]:** combinatorial techniques for the spectral curve (techniques of [Albenque–Bouttier]); deformation properties of TR for the other topologies.

- **[BD-BKS]:** semi-infinite wedge formalism + algebraic manipulations.
Scope of the talk

Constellations and TR:

- [Alexandrov–Chapuy–Eynard–Harnad '20]: TR for constellations without internal face; weight \(v_c \) for vertices of color \(c \).
- [Bonzom–Chapuy–C–Garcia-Failde '22], [Bychkov–Dunin-Barkowski–Kazarian–Shadrin '22]: TR for constellations with internal faces; hyperedges of various degrees; weight \(v_c \) for vertices of color \(c \). (Even more general than that).
- [BCCG-F]: combinatorial techniques for the spectral curve (techniques of [Albenque–Bouttier]); deformation properties of TR for the other topologies.
- [BD-BKS]: semi-infinite wedge formalism + algebraic manipulations.

Scope of the talk:

- Prove TR for constellations with internal faces using Tutte’s equation (combinatorial techniques).
Scope of the talk

Constellations and TR:

- [Alexandrov–Chapuy–Eynard–Harnad '20]: TR for constellations without internal face; weight v_c for vertices of color c.
- [Bonzom–Chapuy–C–Garcia-Failde '22], [Bychkov–Dunin-Barkowski–Kazarian–Shadrin '22]: TR for constellations with internal faces; hyperedges of various degrees; weight v_c for vertices of color c. (Even more general than that).
- [BCCG-F]: combinatorial techniques for the spectral curve (techniques of [Albenque–Bouttier]); deformation properties of TR for the other topologies.
- [BD-BKS]: semi-infinite wedge formalism + algebraic manipulations.

Scope of the talk:

- Prove TR for constellations with internal faces using Tutte’s equation (combinatorial techniques).
- The method can be applied to other models that satisfy higher degree loop equations/Tutte’s equation.

Example: Ciliated maps [Belliard–C–Eynard–Garcia-Failde '21].
Definitions, motivation, context
- Constellations: definitions
- Motivation
- Scope of the talk

Tutte/Loop equations

Solving higher loop equations
- Spectral curve
- Topological recursion
Tutte’s equation for usual maps

Principle:

- Start with $m \in \mathcal{M}_{g,n}$ contributing to $M_{g,n}(X_1, \ldots, X_n)$.

Since an edge has only 2 ends, Tutte’s equation is at most quadratic in $M_{g,n}$.
Tutte’s equation for usual maps

Principle:
- Start with \(m \in \mathcal{M}_{g,n} \) contributing to \(\mathcal{M}_{g,n}(X_1, \ldots, X_n) \).
- Erase the root edge of the first marked face;

![Diagram](image-url)
Tutte’s equation for usual maps

Principle:

- Start with $m \in \mathcal{M}_{g,n}$ contributing to $\mathcal{M}_{g,n}(X_1, \ldots, X_n)$.
- Erase the root edge of the first marked face; reroot the resulting map(s). Obtain maps in $\mathcal{M}_{g',n'}$ with $2g' - 2 + n' \leq 2g - 2 + n$.

Since an edge has only 2 ends, Tutte’s equation is at most quadratic in $\mathcal{M}_{g',n'}$.

\[\mathcal{M}_{g,n} \]
Tutte’s equation for usual maps

Principle:

- Start with $m \in M_{g,n}$ contributing to $M_{g,n}(X_1, \ldots, X_n)$.
- Erase the root edge of the first marked face; reroot the resulting map(s). Obtain maps in $M_{g',n'}$ with $2g' - 2 + n' \leq 2g - 2 + n$.

\[
\begin{array}{c}
\text{1} \quad 2 \\
M_{g,n}
\end{array}
\quad \quad \quad
\begin{array}{c}
\text{2} \\
\end{array}
\]

\[
\begin{array}{c}
\text{1} \quad 2 \\
\end{array}
\quad \quad \quad
\begin{array}{c}
\text{1} \\
\end{array}
\]
Principle:

- Start with \(m \in \mathcal{M}_{g,n} \) contributing to \(M_{g,n}(X_1, \ldots, X_n) \).

- Erase the root edge of the first marked face; reroot the resulting map(s). Obtain maps in \(\mathcal{M}_{g',n'} \) with \(2g' - 2 + n' \leq 2g - 2 + n \).

Since an edge has only 2 ends, Tutte’s equation is at most quadratic in \(\mathcal{M}_{g',n'} \).
Tutte’s equation for usual maps

Principle:
- Start with $m \in \mathcal{M}_{g,n}$ contributing to $M_{g,n}(X_1, \ldots, X_n)$.
- Erase the root edge of the first marked face; reroot the resulting map(s). Obtain maps in $\mathcal{M}_{g',n'}$ with $2g' - 2 + n' \leq 2g - 2 + n$.
Principle:

- Start with $m \in \mathcal{M}_{g,n}$ contributing to $M_{g,n}(X_1, \ldots, X_n)$.
- Erase the root edge of the first marked face; reroot the resulting map(s). Obtain maps in $\mathcal{M}_{g',n'}$ with $2g' - 2 + n' \leq 2g - 2 + n$.

\[
\begin{align*}
\mathcal{M}_{g,n} & \quad \xrightarrow{\text{1}} \quad 2 \quad \mathcal{M}_{g,n} \\
\mathcal{M}_{g,n} & \quad \xrightarrow{\text{1}} \quad 2 \quad \mathcal{M}_{g,n}
\end{align*}
\]
Tutte’s equation for usual maps

Principle:
- Start with \(m \in \mathcal{M}_{g,n} \) contributing to \(\mathcal{M}_{g,n}(X_1, \ldots, X_n) \).
- Erase the root edge of the first marked face; reroot the resulting map(s). Obtain maps in \(\mathcal{M}_{g',n'} \) with \(2g' - 2 + n' \leq 2g - 2 + n \).
- Get an equation (Tutte/Loop equation) between \(\mathcal{M}_{g,n} \) and terms involving \(\mathcal{M}_{g',n'} \) with \(2g' - 2 + n' \leq 2g - 2 + n \).
Tutte’s equation for usual maps

Principle:
- Start with $m \in \mathcal{M}_{g,n}$ contributing to $\mathcal{M}_{g,n}(X_1, \ldots, X_n)$.
- Erase the root edge of the first marked face; reroot the resulting map(s). Obtain maps in $\mathcal{M}_{g',n'}$ with $2g' - 2 + n' \leq 2g - 2 + n$.
- Get an equation (Tutte/Loop equation) between $\mathcal{M}_{g,n}$ and terms involving $\mathcal{M}_{g',n'}$ with $2g' - 2 + n' \leq 2g - 2 + n$.

![Diagram showing marked maps](image1)

Since an edge has only 2 ends, Tutte’s equation is at most quadratic in $\mathcal{M}_{g',n'}$.
Principle [Fang ’16]: start with $M \in \mathcal{C}_{g,n}$,
Principle [Fang ’16]: start with $M \in \mathcal{C}_{g,n}$, erase the root hyperedge of the first marked hyperface.
Principle [Fang ’16]: start with $M \in \mathcal{C}_{g,n}$, erase the root hyperedge of the first marked hyperface and reroot the resulting constellations.

![Diagram of Tutte's equation for constellations]

1. C_{g_1,n_1}
2. m
3. 1
4. 2
5. C_{g_2,n_2}
6. $m-1$
7. 3
8. C_{g_3,n_3}
Principle [Fang ’16]: start with $M \in C_{g,n}$, erase the root hyperedge of the first marked hyperface and reroot the resulting constellations.

⇒ Higher order terms (up to degree m) + many cases!
Principle [Fang ’16]: start with $M \in \mathcal{C}_{g,n}$, erase the root hyperedge of the first marked hyperface and reroot the resulting constellations.

⇒ Higher order terms (up to degree m) + many cases!

Idea: decompose the procedure into steps, erasing one vertex of the root hyperedge at a time.
Tutte’s equation for constellations

Principle [Fang ’16]: start with $M \in \mathcal{C}_{g,n}$, erase the root hyperedge of the first marked hyperface and reroot the resulting constellations.

⇒ Higher order terms (up to degree m) + many cases!

Idea: decompose the procedure into steps, erasing one vertex of the root hyperedge at a time.

⇒ Deform the model by allowing the root hyperedge to have smaller degree.
Principle [Fang ’16]: start with $M \in \mathcal{C}_{g,n}$, erase the root hyperedge of the first marked hyperface and reroot the resulting constellations.

$$C_{g_1,n_1}, \quad C_{g_2,n_2}, \quad C_{g_3,n_3}$$

\Rightarrow Higher order terms (up to degree m) + many cases!

Idea: decompose the procedure into steps, erasing one vertex of the root hyperedge at a time.

\Rightarrow **Deform** the model by allowing the root hyperedge to have smaller degree.

Remark: same problem for ciliated maps (erasing a vertex of degree r); same solution!
Deformation of the root hyperedge

Let \(g \in \mathbb{Z}_{\geq 0}, \ n \in \mathbb{Z}_{\geq 1}. \)

Definition (twisted constellation)

\(M \in \mathcal{G}_{g,n} \) is a **twisted constellation** of type \((g, n)\) if it is a constellation of type \((g, n)\) s.t. the first root hyperedge has degree \(1 \leq \ell \leq m - 1.\)

First root: edge \(1 - \ell.\)

\[M \in \mathcal{G}_{0,2} \]
Deformation of the root hyperedge

Let \(g \in \mathbb{Z}_{\geq 0}, \ n \in \mathbb{Z}_{\geq 1}. \)

Definition (twisted constellation)

\(M \in \mathcal{S}_{g,n} \) is a twisted constellation of type \((g, n)\) if it is a constellation of type \((g, n)\) s.t. the first root hyperedge has degree \(1 \leq \ell \leq m - 1\).

First root: edge \(1 - \ell\).
Deformation of the root hyperedge

Let $g \in \mathbb{Z}_{\geq 0}$, $n \in \mathbb{Z}_{\geq 1}$.

Definition (twisted constellation)

$M \in \mathcal{S}_{g,n}$ is a twisted constellation of type (g, n) if it is a constellation of type (g, n) s.t. the first root hyperedge has degree $1 \leq \ell \leq m - 1$.

First root: edge $1 - \ell$.

Generating function

Catalytic variable u: weight $tu^{m-1-\ell}$ for the first root hyperedge of degree ℓ.

1^{st} marked face, degree $km + q \rightarrow X_1^{-k-1}$.

$$H_{g,n}(u; X_1, X_2, \ldots, X_n) := \sum_{M \in \mathcal{S}_{g,n}} w(M)$$
Deformation of the root hyperedge

Let \(g \in \mathbb{Z}_{\geq 0} \), \(n \in \mathbb{Z}_{\geq 1} \).

Definition (twisted constellation)

\(M \in \mathcal{F}_{g,n} \) is a **twisted constellation** of type \((g, n)\) if it is a constellation of type \((g, n)\) s.t. the first root hyperedge has degree \(1 \leq \ell \leq m - 1 \).

First root: edge \(1 - \ell \).

Generating function

Catalytic variable \(u \): weight \(tu^{m-1-\ell} \) for the first root hyperedge of degree \(\ell \).

1st marked face, degree \(km + q \rightarrow X_1^{-k-1} \).

\[
H_{g,n}(u; X_1, X_2, \ldots, X_n) := \sum_{M \in \mathcal{F}_{g,n}} w(M)
\]

Lemma (constellations from twisted constellations)

\[
tC_{g,n}(X_1, \ldots, X_n) = [u^{m-2}] H_{g,n}(u; X_1, X_2, \ldots, X_n)
\]
Principle: start from $M \in \mathcal{S}_{g,n}$;

![Diagram](image)

5 cases:

- **Case 1**

- **Case 2**
Principle: start from $M \in \mathcal{S}_{g,n}$; remove the vertex of biggest color in the first root hyperedge
Tutte’s equation for constellations

Principle: start from $M \in \mathcal{H}_{g,n}$; remove the vertex of biggest color in the first root hyperedge and reroot.
Tutte’s equation for constellations

Principle: start from $M \in \mathcal{S}_{g,n}$; remove the vertex of biggest color in the first root hyperedge and reroot.

5 cases:

Case 1
Tutte’s equation for constellations

Principle: start from $M \in \mathcal{S}_{g,n}$; remove the vertex of biggest color in the first root hyperedge and reroot.

\[x_1^\ell \ell - 1 \rightarrow \]

5 cases:
\[I = \{X_2, \ldots, X_n\} \]

Case 1

Contribution: \[\frac{v}{u} H_{g,n}(u; X_1; I) \]
Tutte’s equation for constellations

Principle: start from $M \in \mathcal{S}_{g,n}$; remove the vertex of biggest color in the first root hyperedge and reroot.

![Diagram of Tutte’s equation for constellations]

5 cases:
$I = \{X_2, \ldots, X_n\}$

Case 1

Case 2

Contribution: $\frac{v}{u} H_{g,n}(u; X_1; I)$
Tutte’s equation for constellations

Principle: start from $M \in \mathcal{S}_{g,n}$; remove the vertex of biggest color in the first root hyperedge and reroot.

5 cases:

$I = \{X_2, \ldots, X_n\}$

Case 1

Contribution: \(\frac{v}{u} H_{g,n}(u; X_1; I) \)

\[
\frac{1}{u} \sum_{k=1}^{K} p_k \left\{ X_1^k H_{g,n}(u; X_1; I) \right\} < 0 \text{ (in X_1)}
\]
Case 3

\[I = \{ X_2, \ldots, X_n \}, \quad I_j = \{ X_j \} \]

\[x_1^{\ell - 1} x_j^{1} \]

\[X_1^{u} X_j^{D} X_1^{H} g, n-1 (u; X_1^{H}; I_j) - X_j^{H} g, n-1 (u; X_j; I_j) \]
\[I = \{ X_2, \ldots, X_n \}, \quad l_j = l \setminus \{ X_j \} \]

\[
\frac{1}{u} \sum_{j=2}^{n} \frac{d}{dX_j} \frac{X_1 H_{g,n-1}(u; X_1; l_j) - X_j H_{g,n-1}(u; X_j; l_j)}{X_1 - X_j}
\]
$I = \{X_2, \ldots, X_n\}$, $I_j = I \setminus \{X_j\}$

Case 3

$$\frac{1}{u} \sum_{j=2}^{n} \frac{d}{dX_j} \frac{X_1 H_{g,n-1}(u; X_1; I_j) - X_j H_{g,n-1}(u; X_j; I_j)}{X_1 - X_j}$$

Case 4
\(I = \{X_2, \ldots, X_n\}, \ I_j = I \setminus \{X_j\} \)

Case 3

\[
\frac{1}{u} \sum_{j=2}^{n} \frac{d}{dX_j} \frac{X_1 H_{g,n-1}(u; X_1; I_j) - X_j H_{g,n-1}(u; X_j; I_j)}{X_1 - X_j}
\]

Case 4

\[
\frac{X_1}{u} \sum_{\substack{h+h' = g \\ J \sqcup J' = l}} H_{h,1+\#J}(u; X_1; J) C_{h',1+\#J'}(X_1, J')
\]
$l = \{X_2, \ldots, X_n\}$, $l_j = l \setminus \{X_j\}$

\[
\frac{1}{u} \sum_{j=2}^{n} \frac{d}{dX_j} \frac{X_1 H_{g, n-1}(u; X_1; l_j) - X_j H_{g, n-1}(u; X_j; l_j)}{X_1 - X_j}
\]

Case 3

Case 4

Case 5

\[
\frac{X_1}{u} \sum_{h+h' = g \atop J \sqcup J' = l} H_{h, 1+\#J(u; X_1; J)} C_{h', 1+\#J'(X_1, J')}
\]
\[I = \{X_2, \ldots, X_n\}, \quad l_j = I \setminus \{X_j\} \]

Case 3

\[
\frac{1}{u} \sum_{j=2}^{n} \frac{d}{dX_j} \frac{X_1 H_{g,n-1}(u; X_1; l_j) - X_j H_{g,n-1}(u; X_j; l_j)}{X_1 - X_j}
\]

Case 4

Case 5

\[
\frac{X_1}{u} \sum_{\substack{h+h'=g \\text{ and} \ J \cup J' = l}} H_{h,1+\# J}(u; X_1; J) C_{h',1+\# J'}(X_1, J')
\]

\[
\frac{X_1}{u} H_{g-1,n+1}(u; X_1; X_1, l)
\]
Tutte's equation

\[H_{g,n}(u; X_1; l) + \frac{X_1}{u} C_{g,n}(X_1, \ldots, X_n) = \frac{v}{u} H_{g,n}(u; X_1; l) + \frac{1}{u} \sum_{k=1}^{K} p_k \left\{ X_1^k H_{g,n}(u; X_1; l) \right\} \]

\[+ \frac{1}{u} \sum_{j=2}^{n} \frac{d}{dX_j} \left(\frac{X_1 H_{g,n-1}(u; X_1; l_j) - X_j H_{g,n-1}(u; X_j; l_j)}{X_1 - X_j} \right) \]

\[+ \frac{X_1}{u} \sum_{\substack{h+h'=g \\ J \sqcup J' = I}} H_{h,1+\#J}(u; X_1; J) C_{h',1+\#J'}(X_1, J') + \frac{X_1}{u} H_{g-1,n+1}(u; X_1; X_1; l) \]
Tutte’s equation

\[H_{g,n}(u; X_1; l) + \frac{X_1}{u} C_{g,n}(X_1, \ldots, X_n) = \frac{\nu}{u} H_{g,n}(u; X_1; l) + \frac{1}{u} \sum_{k=1}^{K} p_k \left\{ X_1^k H_{g,n}(u; X_1; l) \right\} < 0 \]

\[+ \frac{1}{u} \sum_{j=2}^{n} \frac{d}{dX_j} \frac{X_1 H_{g,n-1}(u; X_1; l_j)}{X_1 - X_j} - X_j H_{g,n-1}(u; X_1; l_j) \]

\[+ \frac{X_1}{u} \sum_{h+h' = g \atop J \sqcup J' = l} H_{h,1+\#J}(u; X_1; J) C_{h',1+\#J'}(X_1, J') + \frac{X_1}{u} H_{g-1,n+1}(u; X_1; X_1, l) \]

Set \(\sum \) discarding terms with topology \((0, 1)\), and:

\[\tilde{H}_{g,n}(u; X_1, l) := H_{g,n}(u; X_1, l) - \delta_{g,0} \delta_{n,1} \]

\[\tilde{C}_{g,n}(X_1, l) := C_{g,n}(X_1, l) + \frac{\delta_{g,0} \delta_{n,2}}{(X_1 - X_2)^2} \]

\[Y(X_1) := \frac{\nu}{X_1} + \sum_{k=1}^{K} p_k X_1^{k-1} + C_{0,1}(X_1) \]
Tutte’s equation

Tutte’s equation for constellations \((2g - 2 + n > 0)\)

\[
\left(\frac{u}{X_1} - Y(X_1) \right) \tilde{H}_{g,n}(u; X_1, I) = \tilde{H}_{0,1}(u; X_1) \tilde{C}_{g,n}(X_1, I)
\]

\[
+ \sum_{\begin{array}{c} h + h' = g \\ J \sqcup J' = I \end{array}} \tilde{H}_{h,1+\#J}(u; X_1; J) \tilde{C}_{h',1+\#J'}(X_1, J') + \tilde{H}_{g-1,n+1}(u; X_1; X_1, I)
\]

\[
- \frac{1}{X_1} \sum_{k=1}^{K} p_k \left\{ X_1^k \tilde{H}_{g,n}(u; X_1; I) \right\} \geq 0 - \frac{1}{X_1} \sum_{j=2}^{n} \frac{d}{dX_j} \frac{X_j \tilde{H}_{g,n-1}(u; X_j; I_j)}{X_1 - X_j}
\]

where \(\sum_{\text{no (0,1)}}\) discards terms with topology \((0, 1)\), and:

\[
\tilde{H}_{g,n}(u; X_1, I) := H_{g,n}(u; X_1, I) - \delta_{g,0}\delta_{n,1}
\]

\[
\tilde{C}_{g,n}(X_1, I) := C_{g,n}(X_1, I) + \frac{\delta_{g,0}\delta_{n,2}}{(X_1 - X_2)^2}
\]

\[
Y(X_1) := \frac{v}{X_1} + \sum_{k=1}^{K} p_k X_1^{k-1} + C_{0,1}(X_1)
\]
1 Definitions, motivation, context
 - Constellations: definitions
 - Motivation
 - Scope of the talk

2 Tutte/Loop equations

3 Solving higher loop equations
 - Spectral curve
 - Topological recursion
Theorem (Spectral curve) [23+], [Fang ’16]

Carry out the change of variables $(t, X) \leftrightarrow (S, z)$:

$$
T = \frac{S}{\left(\nu + \sum_{k=1}^{K} p_k S^k \binom{m-1}{k} \right)^{m-1}}; \quad X(z) = \frac{S (1 + z)^m}{z}
$$
Theorem (Spectral curve) [23+, Fang ’16]

Carry out the change of variables \((t, X) \leftrightarrow (S, z)\):

\[
t = \frac{S}{\left(v + \sum_{k=1}^{K} p_k S^k \left(\binom{m k - 1}{k} \right) \right)^{m-1}} ; \quad X(z) = \frac{S(1 + z)^m}{z}
\]

Then:

\[
Y(X(z)) = \frac{z}{S(1 + z)^{m-1}} \left(v + \sum_{k=1}^{K} p_k S^k \sum_{\ell=0}^{k} \binom{m k - 1}{k - \ell} z^{-\ell} \right)
\]
Theorem (Spectral curve) [23+, Fang ’16]

Carry out the change of variables \((t, X) \leftrightarrow (S, z)\):

\[
t = \frac{S}{\left(v + \sum_{k=1}^{K} p_k S^k \binom{m_k - 1}{k} \right)^{m-1}} ; \quad X(z) = \frac{S(1 + z)^m}{z}
\]

Then:

\[
Y(X(z)) = \frac{z}{S(1 + z)^{m-1}} \left(v + \sum_{k=1}^{K} p_k S^k \sum_{\ell=0}^{k} \binom{m_k - 1}{k - \ell} z^{-\ell} \right)
\]

\[
\widetilde{C}_{0,2}(X(z_1), X(z_2)) = \frac{1}{X'(z_1)X'(z_2)(z_1 - z_2)^2}
\]
Theorem \((\textbf{Spectral curve})\)\cite{23+, Fang'16}

Carry out the change of variables \((t, X) \leftrightarrow (S, z)\):

\[t = \frac{S}{\left(v + \sum_{k=1}^{K} p_k S^k \binom{m}{k} \right)^{m-1}} \quad ; \quad X(z) = \frac{S(1 + z)^m}{z} \]

Then:

\[Y(X(z)) = \frac{z}{S(1 + z)^{m-1}} \left(v + \sum_{k=1}^{K} p_k S^k \sum_{\ell=0}^{k} \binom{mk - 1}{k - \ell} z^{-\ell} \right) \]

\[\tilde{C}_{0,2}(X(z_1), X(z_2)) = \frac{1}{X'(z_1)X'(z_2)(z_1 - z_2)^2} \]

\textbf{Strategy of the proof}

- \(Y\): guess and check. Tools: Tutte’s equation and harmonizing operator.
- \(\tilde{C}_{0,2}\): careful analysis of the poles. Tools: Tutte’s equation.
Harmonizing operators

[Bousquet-Mélou–Chapuy–Préville-Ratelle ’13], [Fang ’16].

Set x, y to be the rational functions given on previous slide.
Harmonizing operators

[Bousquet-Mélou–Chapuy–Préville-Ratelle ’13], [Fang ’16].

Set x, y to be the rational functions given on previous slide.

For $z \in \mathbb{C}$, let Z_0, \ldots, Z_K be the solutions of $xy(Z) = xy(z)$.

Sharp operator $\#$

Let f be a function.

$$f^\#(z) = \sum_{i=0}^{K} \frac{f(Z_i)}{\prod_{j \neq i} (x(Z_i) - x(Z_j))}$$
Harmonizing operators

[Bousquet-Mélou–Chapuy–Préville-Ratelle ’13], [Fang ’16].

Set x, y to be the rational functions given on previous slide.

For $z \in \mathbb{C}$, let Z_0, \ldots, Z_K be the solutions of $xy(Z) = xy(z)$.

Sharp operator $\#$

Let f be a function.

$$f^\#(z) = \sum_{i=0}^{K} \frac{f(Z_i)}{\prod_{j \neq i} (x(Z_i) - x(Z_j))}$$

Lemma

Let Q be a polynomial in x of degree $\leq K - 1$:

$$Q^\# = 0, \ (x^K)^\# = 1, \ (x^{-1})^\# = -\frac{p_K}{t(xy)^m}$$
Harmonizing operators

[Bousquet-Mélou–Chapuy–Préville-Ratelle '13], [Fang '16].

Set \(x, y \) to be the rational functions given on previous slide.

For \(z \in \mathbb{C} \), let \(Z_0, \ldots, Z_K \) be the solutions of \(xy(Z) = xy(z) \).

Sharp operator \(\# \)

Let \(f \) be a function.

\[
 f^\#(z) = \sum_{i=0}^{K} \frac{f(Z_i)}{\prod_{j \neq i} (x(Z_i) - x(Z_j))} \]

Flat operator \(\flat \)

Let \(f \) be a function.

\[
 f^\flat(z) = \sum_{i=0}^{m-1} \frac{f(z(i))}{\prod_{j \neq i} (y(z(i)) - y(z(j)))} \]

Lemma

Let \(Q \) be a polynomial in \(x \) of degree \(\leq K - 1 \):

\[
 Q^\# = 0, \quad (x^K)^\# = 1, \quad (x^{-1})^\# = -\frac{p_K}{t(xy)^m} \]

Lemma

Let \(Q \) be a polynomial in \(y \) of degree \(\leq m - 2 \):

\[
 Q^\flat = 0 \]
Harmonizing operators

[Bousquet-Mélou–Chapuy–Préville-Ratelle ’13], [Fang ’16].

Set x, y to be the rational functions given on previous slide.

For $z \in \mathbb{C}$, let Z_0, \ldots, Z_K be the solutions of $xy(Z) = xy(z)$.

For $z \in \mathbb{C}$, let $z^{(0)}, \ldots, z^{(m-1)}$ be the solutions of $x(Z) = x(z)$.

Sharp operator $\#$

Let f be a function.

$$f^\#(z) = \sum_{i=0}^{K} \frac{f(Z_i)}{\prod_{j \neq i} (x(Z_i) - x(Z_j))}$$

Flat operator \flat

Let f be a function.

$$f^\flat(z) = \sum_{i=0}^{m-1} \frac{f(z^{(i)})}{\prod_{j \neq i} (y(z^{(i)}) - y(z^{(j)}))}$$

Lemma

Let Q be a polynomial in x of degree $\leq K - 1$:

$$Q^\# = 0, \ (x^K)^\# = 1, \ (x^{-1})^\# = -\frac{p_K}{t(xy)^m}$$

Lemma

Let Q be a polynomial in y of degree $\leq m - 2$:

$$Q^\flat = 0$$

The harmonizing operators allow to get rid of some polynomial terms in x, y!
Proof for $Y(X(z))$

Tutte’s equation for $(g, n) = (0, 1)$:

$$(u - XY(X))\tilde{H}_{0,1}(u; X) = v - u + \frac{tu^m}{X} - X \sum_{k=1}^{K} p_k \left\{ X^k \tilde{H}_{0,1}(u; X) \right\} \geq 0$$
Proof for $Y(X(z))$

Tutte's equation for $(g, n) = (0, 1)$:

$$(u - X Y(X)) \tilde{H}_{0,1}(u; X) = v - u + \frac{t u^m}{X} - X \sum_{k=1}^{K} p_k \left\{ X^k \tilde{H}_{0,1}(u; X) \right\} \geq 0$$

Setting $u = X Y(X)$, get the algebraic equation: $P(X, X Y(X)) = 0$.
Proof for $Y(X(z))$

Tutte’s equation for $(g, n) = (0, 1)$:

\[
(u - XY(X))\tilde{H}_{0,1}(u; X) = v - u + \frac{tu^m}{X} - X \sum_{k=1}^{K} p_k \left\{ X^k \tilde{H}_{0,1}(u; X) \right\} \geq 0
\]

Setting $u = XY(X)$, get the algebraic equation: $P(X, XY(X)) = 0$.

Remark: there is a unique series $Y(X)$ in $\mathbb{Q}[X^{-1}, p_k, v][[t]]$ s.t.

(i) $Y(X) = \frac{v}{X} + \sum_{k=1}^{K} p_k X^{k-1} + O(t)$

(ii) $P(X, XY(X)) = 0$.

Séverin Charbonnier (UniGe)
Tutte and constellations
JCB – LaBRI 30/01/2023 21 / 26
Proof for $Y(X(z))$

Tutte’s equation for $(g, n) = (0, 1)$:

\[
(u - XY(X))\tilde{H}_{0,1}(u; X) = v - u + \frac{tu^m}{X} - X \sum_{k=1}^{K} p_k \left\{ X^k \tilde{H}_{0,1}(u; X) \right\} \geq 0
\]

Setting $u = XY(X)$, get the algebraic equation: $P(X, XY(X)) = 0$.

Remark: there is a unique series $Y(X)$ in $\mathbb{Q}[X^{-1}, p_k, v][[t]]$ s.t.

(i) $Y(X) = \frac{v}{X} + \sum_{k=1}^{K} p_k X^{k-1} + O(t)$

(ii) $P(X, XY(X)) = 0$.

Strategy: check that the guessed rational functions $x(z), y(z)$ satisfy (i) and (ii).

(i): “routine” check.
Harmonizing operator business

\[P(X, u) = v - u + \frac{tu^m}{X} - X \sum_{k=1}^{K} p_k \left\{ X^k \tilde{H}_{0,1}(u; X) \right\} \geq 0 \]

(ii) Observation:

\[P(x(z), u) = \frac{tu^m}{x(z)} + p_K x(z)^K + \text{pol. in } x(z) \text{ of degree } K - 1. \]
Harmonizing operator business

$$P(X, u) = v - u + \frac{tu^m}{X} - X \sum_{k=1}^{K} p_k \left\{ X^k \tilde{H}_{0,1}(u; X) \right\} \geq 0$$

(ii) Observation:

$$P(x(z), u) = \frac{tu^m}{x(z)} + p_K x(z)^K + \text{pol. in } x(z) \text{ of degree } K - 1.$$

Apply the sharp operator to $$P(x(z), u)$$, using the lemma:

$$\left(P(x(z), u) \right)^\# = \frac{p_K}{x(z)^m y(z)^m} (x(z)^m y(z)^m - u^m)$$

$$\Rightarrow \left(P(x(z), x(z) y(z)) \right)^\# = 0. \text{ Does this imply } P(x(z), x(z) y(z)) = 0?$$
Harmonizing operator business

\[P(X, u) = v - u + \frac{tu^m}{X} - X \sum_{k=1}^K p_k \left\{ X^k \tilde{H}_{0,1}(u; X) \right\} \geq 0 \]

(ii) Observation:

\[P(x(z), u) = \frac{tu^m}{x(z)} + p_K x(z)^K + \text{pol. in } x(z) \text{ of degree } K - 1. \]

Apply the \textbf{sharp operator} to \(P(x(z), u) \), using the lemma:

\[(P(x(z), u))^\# = \frac{p_K}{x(z)^m y(z)^m} (x(z)^m y(z)^m - u^m) \]

\[\Rightarrow (P(x(z), x(z) y(z)))^\# = 0. \] Does this imply \(P(x(z), x(z) y(z)) = 0 ? \)

\[\text{Reconstruction lemma [Fang '16]} \]

If \(A \in SzQ[z, p_k, v][[S]], [S^i]A \) is polynomial in \(z \) of degree \(\leq i \), and \(A^\# = 0 \), then \(A = 0. \)

Upshot: \(P(x(z), x(z) y(z)) = 0. \)
Harmonizing operator business

\[P(X, u) = v - u + \frac{tu^m}{X} - X \sum_{k=1}^{K} p_k \left\{ X^k \tilde{H}_{0,1}(u; X) \right\} \geq 0 \]

(ii) Observation:

\[P(x(z), u) = \frac{tu^m}{x(z)} + p_K x(z)^K + \text{pol. in } x(z) \text{ of degree } K - 1. \]

Apply the sharp operator to \(P(x(z), u) \), using the lemma:

\[(P(x(z), u))^\# = \frac{p_K}{x(z)^m y(z)^m} (x(z)^m y(z)^m - u^m) \]

\[\Rightarrow (P(x(z), x(z) y(z)))^\# = 0. \] Does this imply \(P(x(z), x(z) y(z)) = 0? \)

Reconstruction lemma [Fang ’16]

If \(A \in Sz\mathbb{Q}[z, p_k, v][[S]], [S^i]A \) is polynomial in \(z \) of degree \(\leq i \), and \(A^\# = 0 \), then \(A = 0 \).

Upshot: \(P(x(z), x(z) y(z)) = 0. \)

Corollary

\[\tilde{H}_{0,1}(u; x(z)) = \frac{t}{x(z)} \prod_{i=1}^{m-1} \left(u - x(z)y(z^{(i)}) \right) \]
For constellations, TR boils down to this result:

Theorem (Topological Recursion for constellations) [23+]

For $g \in \mathbb{Z}_{\geq 0}$, $n \in \mathbb{Z}_{\geq 1}$ s.t. $2g - 2 + n > 0$:

$$
\tilde{C}_{g,n}(x(z_1), l)dx(z_1) = \sum_{b \text{ s.t. } dx(b)=0} \text{Res } d\xi(z) \int_{\xi=0}^{z} \frac{dz_1 d\xi}{(z_1 - \xi)^2} \left(\tilde{H}_{g-1,n+1}(xy; x, x, l)
+ \sum_{h+h'=g \atop J \sqcup J' = l} \tilde{H}_{h,1+\#J}(xy; x, J) \tilde{C}_{h',1+\#J'}(x, J') \right)
$$

where $l = \{x(z_2), \ldots, x(z_n)\}$, $x = x(z)$ and $y = y(z)$.

Séverin Charbonnier (UniGe)

Tutte and constellations

JCB – LaBRI 30/01/2023 23 / 26
Fastforward proof

Tutte:

\[
\left(\frac{u}{X_1} - Y(X_1) \right) \tilde{H}_{g,n}(u; X_1, I) = \tilde{H}_{0,1}(u; X_1) \tilde{C}_{g,n}(X_1, I) \\
+ \sum_{\substack{h+h'=g \no (0,1) \\ J\sqcup J'=I}} \tilde{H}_{h,1+\#J}(u; X_1; J) \tilde{C}_{h',1+\#J'}(X_1, J') + \tilde{H}_{g-1,n+1}(u; X_1; X_1, I) \\
- \frac{1}{X_1} \sum_{k=1}^{K} p_k \left\{ X_1^k \tilde{H}_{g,n}(u; X_1; I) \right\}_{\geq 0} - \frac{1}{X_1} \sum_{j=2}^{n} \frac{d}{dX_j} \frac{X_j \tilde{H}_{g,n-1}(u; X_j; I_j)}{X_1 - X_j}
\]
Tutte:

\[
\left(\frac{u}{X_1} - Y(X_1) \right) \tilde{H}_{g,n}(u; X_1, I) = \tilde{H}_{0,1}(u; X_1) \tilde{C}_{g,n}(X_1, I)
\]

\[
+ \sum_{\text{no } (0,1)} \tilde{H}_{h,1+\#J}(u; X_1; J) \tilde{C}_{h',1+\#J'}(X_1; J') + \tilde{H}_{g-1,n+1}(u; X_1; X_1, I)
\]

\[
+ P_{g,n}(u; X_1; I)
\]
Fastforward proof

\[u = X_1 Y(\lambda_1): \]

\[
\left(\frac{u}{X_1} - Y(\lambda_1) \right) \tilde{H}_{g,n}(u; X_1, I) = \tilde{H}_{0,1}(u; X_1) \tilde{C}_{g,n}(X_1, I)
\]

\[
\text{no } (0,1)
\]

\[
+ \sum_{\begin{array}{c}
 h + h' = g \\
 J \sqcup J' = I
\end{array}} \tilde{H}_{h,1+\#J}(u; X_1; J) \tilde{C}_{h',1+\#J'}(X_1; J') + \tilde{H}_{g-1,n+1}(u; X_1; X_1, I)
\]

\[
+ P_{g,n}(u; X_1; I)
\]
Fastforward proof

\[u = X_1 Y(X_1): \]

\[0 = \tilde{H}_{0,1}(X_1 Y_1; X_1) \tilde{C}_{g,n}(X_1, I) \]

\[\text{no (0,1)} \]

\[+ \sum_{h+h'=g, J\sqcup J'=I} \tilde{H}_{h,1+\#J}(X_1 Y_1; X_1; J) \tilde{C}_{h',1+\#J'}(X_1, J') + \tilde{H}_{g-1,n+1}(X_1 Y_1; X_1; X_1, I) \]

\[+ P_{g,n}(X_1 Y_1; X_1; I) \]
Cauchy formula

\[0 = \tilde{H}_{0,1}(X_1, Y_1; X_1) \tilde{C}_{g,n}(X_1, I) \]

\[+ \sum_{\substack{h+h' = g \\cap J \cap J' = I}} \tilde{H}_{h,1+\#J}(X_1, Y_1; X_1; J) \tilde{C}_{h',1+\#J'}(X_1; J') + \tilde{H}_{g-1,n+1}(X_1, Y_1; X_1; X_1, I) \]

\[+ P_{g,n}(X_1, Y_1; X_1; I) \]
Cauchy formula

\[
\tilde{C}_{g,n}(x(z_1), l) dx(z_1) = - \text{Res} \left[z = z_1 \right] \frac{\int_{\zeta = 0}^{z} \frac{dz_1 d\zeta}{(z_1 - \zeta)^2}}{H_{0,1}(xy; x)} \left(\tilde{H}_{g-1,n+1}(xy; x; x, l) \right.

\left. + \sum_{\text{no (0,1)}} \tilde{H}_{h,1} + \# J(xy; x; J) \tilde{C}_{h',1} + \# J'(x, J') + P_{g,n}(xy; x; l) \right)
\]
Deformation of contours:

\[
\tilde{C}_{g,n}(x(z_1), I) dx(z_1) = - \text{Res}_{z=z_1} dx(z) \frac{\int_{\zeta=0}^{z} \frac{dz_1 d\zeta}{(z_1 - \zeta)^2}}{H_{0,1}(xy; x)} \left(\tilde{H}_{g-1,n+1}(xy; x; x, I) \right. \\
+ \sum_{\text{no (0,1)}} \tilde{H}_{h,1+\#J}(xy; x; J) \tilde{C}_{h',1+\#J'}(x, J') + P_{g,n}(xy; x; I) \\
\left. + \sum_{h+h'=g \atop J \sqcup J' = I} \tilde{H}_{h,1+\#J}(xy; x; J) \tilde{C}_{h',1+\#J'}(x, J') + P_{g,n}(xy; x; I) \right)
\]
Deformation of contours:

\[
\tilde{C}_{g,n}(x(z_1), l)dx(z_1) = \sum_{b, \, \text{dx}(b) = 0} \text{Res } \frac{\text{dx}(z)}{\tilde{H}_0,1(xy; x)} \left(\frac{dz_1 d\zeta}{(z_1 - \zeta)^2} \right) \left(\tilde{H}_{g-1,n+1}(xy; x; x, l) \right)
\]

\[
+ \sum_{h + h' = g \atop J \sqcup J' = l} \tilde{H}_{h,1+\#J}(xy; x; J) \tilde{C}_{h',1+\#J'}(x, J') + P_{g,n}(xy; x; l)
\]
Flat operator: $P_{g,n}^b(xy,x) = 0 \rightarrow$ the last term does not contribute.

$$\tilde{C}_{g,n}(x(z_1), I)dx(z_1) = \sum_{b, dx(b)=0} \text{Res}_b \int_{\tilde{z}=b} d(x(z)) \frac{dz_1 d\zeta}{\tilde{H}_{0,1}(xy;x)} \left(\tilde{H}_{g-1,n+1}(xy;x;x,x,I)
ight)$$

$$+ \sum_{h+h'=g \atop J \sqcup J' = l} \tilde{H}_{h,1 + \# J}(xy;x;J) \tilde{C}_{h',1 + \# J'}(x,J') + P_{g,n}(xy;x;I)$$
Flat operator: $P_{g,n}^b(xy,x) = 0 \rightarrow$ the last term does not contribute.

\[
\tilde{C}_{g,n}(x(z_1),l)dx(z_1) = \sum_{b, dx(b)=0} \text{Res } dx(z) \left(\frac{\int_{\zeta=0}^{z} dz_1 d\zeta}{H_{0,1}(xy;x)} \right) \left(\tilde{H}_{g-1,n+1}(xy;x;x,l) \right)
\]

\[+ \sum_{h+h'=g \atop J \cup J'=l} \tilde{H}_{h,1+\#J}(xy;x;J) \tilde{C}_{h',1+\#J'}(x,J') \]
Take away:

- For higher degree loop equations: allow to deform a bit the model with a catalytic variable \rightarrow get quadratic equation.
- Use the harmonizing operators to get rid of annoying polynomial terms.

Other applications:
- Ciliated maps [Belliard–C–Eynard–Garcia-Failde '21], related to:
 - Combinatorics: fully simple maps [Borot–C–Garcia-Failde '21].
 - Enumerative geometry: intersection numbers of r-spin Witten class on $M_{g,n}$.
 - Integrable hierarchies: rth reduction of KP hierarchy.

To be done:
- Write the paper...
- Apply the same method to other models, e.g. the Brézin–Gross–Witten matrix model $Z_{BGW} = Z_{HN} d M e^{-\frac{1}{2} Tr M^1 - r Tr + \frac{1}{2} N \log(M) + MY}$
- Would it be useful for m-Tamari intervals [Bousquet-Mélou–Chapuy–Prévile-Ratelle '13]?

Séverin Charbonnier (UniGe)
Conclusion

Take away:

• For higher degree loop equations: allow to deform a bit the model with a catalytic variable → get quadratic equation.
• Use the harmonizing operators to get rid of annoying polynomial terms.

Other application:

Ciliated maps [Belliard–C–Eynard–Garcia-Failde ’21], related to:

• Combinatorics: fully simple maps [Borot–C–Garcia-Failde ’21].
• Enumerative geometry: intersection numbers of r-spin Witten class on $\overline{M}_{g,n}$.
• Integrable hierarchies: r^{th} reduction of KP hierarchy.

To be done:

• Write the paper...
• Apply the same method to other models, e.g. the Brézin–Gross–Witten matrix model $Z_{BGW} = Z_H N d M e^{-\hbar/2 Tr M^1 - r^1 - r + \hbar N/2 \log(M) + M_Y}$
• Would it be useful for m-Tamari intervals [Bousquet-Mélou–Chapuy–Prévillé-Ratelle ’13]?
Conclusion

Take away:

- For higher degree loop equations: allow to deform a bit the model with a catalytic variable → get quadratic equation.
- Use the harmonizing operators to get rid of annoying polynomial terms.

Other application:

Ciliated maps [Belliard–C–Eynard–Garcia-Failde '21], related to:

- Combinatorics: fully simple maps [Borot–C–Garcia-Failde '21].
- Enumerative geometry: intersection numbers of r-spin Witten class on $\overline{M}_{g,n}$.
- Integrable hierarchies: r^{th} reduction of KP hierarchy.

To be done:

- Write the paper...
- Apply the same method to other models, e.g. the Brézin–Gross–Witten matrix model

$$Z^{BGW} = \int_{H_N} dMe^{-\frac{1}{2} Tr\left(\frac{M^1-r}{1-r} + h \frac{1}{2} N \log(M) + MY \right)}$$

- Would it be useful for m-Tamari intervals [Bousquet-Mélou–Chapuy–Préville-Ratelle ’13]?
THANKS FOR YOUR ATTENTION!
THANKS FOR YOUR ATTENTION!
Higher TR
Cylinder