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Symbolic dynamics

Let A be a finite alphabet.

Let AZ be the set of two-sided infinite sequences (also called points), a
compact metric space.

The shift transformation S : AZ — AZ is defined by

y = S(x) if yp = xp41 for every n € Z.

A shift space X on a finite alphabet A is a closed and shift invariant
subset of AZ.



Symbolic dynamics

Let A be a finite alphabet and X a shift space.

The factors (or blocks) of X are the finite words u such that u appears
in some point of X.

A point avoids a finite word u if u does not appear as factor in the
point.

Shift spaces are also the set X¢ of all points avoiding all the words of
F, for some set of finite words F.



Examples of shift spaces

The full shift is AZ (all points).

Shift spaces Xg where F is a finite set are called shifts of finite type.
Shift spaces Xg where F is a regular are called sofic shifts.

Xe with F = {11} is a shift of finite type called the golden mean shift. \
0
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If a sofic shift is irreducible, i.e. presented by a finite automaton
(labeled graph) which is strongly connected, it has a minimal
deterministic presentation.



Conjugacy

A block map (or factor map) is a map ¢: A% — BZ for which there are
nonnegative integers m, a and a map ¢: A™t1T2 5 B such that:

¢(x) =y if and only if y; = @(X[i—a,...,i—l,i,iﬂ,,..i+a])-
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A conjugacy (or isomorphism) from a shift space X to a shift space Y
is a block map which is invertible. In this case the inverse is also a
block map.

If there is a conjugacy from X to Y, we can think of Y as being a
"recoded” version of X.



Conjugacy: example

Xg with F = {11} is a shift of finite type called the golden mean shift.
X with G = {ac, ba, bb, cc} is a shift of finite.
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The decidability of conjugacy is an open problem

Open problem

The decidability of the conjugacy of two shifts of finite type is
unknown, even for irreducible shifts of finite type.

Taking a minimal presentation of an irreducible shift of finite type, up
to a conjugacy, one may assume that all labels are distinct and the shift
can be defined by the transition matrix of the graph G of the
presentation. Such shifts are called edge shifts.

a



State splitting

A state splitting is a transformation of an automaton or a graph.

An output state splitting of a single state s is obtained as follows:
one splits the output edges of s into two parts E; and E;
one replaces s with two copies s; and s

the edges in E; become the output edges of s;, the edges in E
become the output edges of s,

each input edge of s is changed into an input edge of s; and an
input edge of s, (with the same labels).



State splitting



State splitting

Proposition

If X is an edge shift defined by a graph G and Y is the edge shift
defined by the split graph, then X and Y are conjugate.




State splitting

An essential graph is a graph such that each state has at least one
incoming edge and at least one outgoing edge.

Theorem (Decomposition Theorem, R. Williams 1973)

Two edge shifts X and Y defined by essential graphs G and H are
conjugate if and only there is sequence of (input and output) state
splittings and (input and output) state mergings from G to H.




String shift equivalence
Two nonnegative integer matrices M, N are elementary equivalent if
there are, possibly nonsquare, matrices R, S such that

M = RS,N = SR.

Two nonnegative integer matrices M, N are strong shift equivalent if
there is a sequence of elementary equivalences from M to N:

M = RygSo, SoRo = My,
My = R151,51R1 = Mo,

My = RySp, S¢Ry = N.

Theorem (Classification Theorem, R. Williams 1973)

Two edge shifts defined by matrices M and N are conjugate if and only
if M and N are strong shift equivalent.




Conjugacy: examples

Let X and Y be the edge shifts defined by the graphs given by the
matrices M and N respectively:
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The shifts X and Y are conjugate (K. Baker, using computer research
to prove strong shift equivalence).



Conjugacy: examples

It is not known whether X and Y defined by My and N, are conjugate
for k > 4.

Mk:[ 1 k]7 Nk:[i k(kl—l)]



Some conjugacy invariants

(Topological) entropy :

B(X) = lim > log Card(£n(X)),

n—oo n

where £,(X) is the set of factors of length n of points of X.
For instance, h(A%) = log Card(A).



Some conjugacy invariants

Zeta function: determines the numbers of periodic sequences of all
periods.

(x(z) = expz an7X)Z",

where pp(X) is the number of points x such that S"(x) = x.

The zeta function of an edge shift is m
(R. Bowen, O. E. Lanford 1970).

The zeta function of a sofic shift is Z-rational (A. Manning 1971,
R. Bowen 1978). It is further N-rational (C. Reutenauer 1997).



Some conjugacy invariants

Invariants of strong shift equivalence obtained from the category
point of vue (E. Jeandel 2021).



Algebraic conjugacy invariants

For an edge shift defined by a matrix M of size r x r.
The Bowen-Franks group is BF(M) = Z"/Z"(ld — M),
where Z(Id — M) is the image of Z" under the matrix Id — M
acting on the right.

The eventual range Ry is (7o, Q" M*.

Ay = {vERpy | vMk € Z" for some k > 0}.

The automorphism dps of M is the restriction of M to Ay, so that
om(v) = vM for v € Apy.

Af, ={veRy|vMke (ZT)" for some k > 0}.
The dimension triple (AM,A,\DJM), up to group isomorphisms, is
a conjugacy invariant.



Classes of shifts for which conjugacy is decidable

A one-sided shift space is the set of right-infinite sequences that
appear in a shift space X.

One-sided conjugacies are now block maps with no memory.
Conjugacy between two one-sided shifts of finite type is decidable
(R. Williams 1973).

Conjugacy between minimal substitution shifts is decidable (F.
Durand, J. Leroy 2022).

The problem is open for non-minimal substitution shifts.



Substitution shifts

Let A, B be finite alphabets.
A substitution is a morphism o: A* — B*.

When B = A one may iterate o.
It is non-erasing if o(a) is nonempty for every a € A.

The language of o, denoted L(o) is the set of factors of the words
o"(a) for n > 0.

The substitution shift defined by o, denoted by X(o) is the set of
bi-infinite sequences with all their factors in L(0).

The language of X(o) is the set L(X(c)) of factors of points in X(o).

A morphism is primitive if there is an integer n such that for each
letters a, b, the letter b appears in o"(a).



Substitution shifts

The Fibonacci shift is defined by the morphism o: a+> ab, b — a.

---abaab - abaababa - - -




Recognizability

The recognizability is a form of injectivity of o that allows one to
uniquely desubstitute y to another sequence x, with x traditionally
required to be in X(o), i.e. express y as a concatenation of
substitution words dictated by the letters in x.



Recognizability of morphisms

Definition

Let o: A* — B*. A centered o-representation of y € BZ is a pair

(x, k) of a sequence x € AZ and an integer k with 0 < k < |o(xo)|
such that y = S¥(o(x)).

Let o: a+> bab, b — bb. I

x [blb]b[blbb]b]b]-|a|b|blb|blb[b]b[b]b]

- A\

y [b]b]b[blb[blb]b]-|a][b]b[b]b[b[b]b[b]b]




Recognizability of morphisms

Definition

Let X be a shift space on A. A morphism o: A* — B* is recognizable
in X (respectively recognizable in X for aperiodic points) if for every
point y € B% (respectively every aperiodic point y € B%) there is at
most one centered o-representation (x, k) of y with x € X.

Definition

Let X be a shift space on A. A morphism o: A* — B* is fully
recognizable (respectively fully recognizable for aperiodic points) if it is
recognizable in AZ (respectively recognizable in AZ for aperiodic
points).




Recognizability of morphisms

The Fibonacci morphism o: a+— ab, b — a is fully recognizable. \

The Thue-Morse morphism o: a +— ab, b +— ba is not fully recognizable
since (ab)> can be obtained as 0(a*>°) and as S(o(b>°)). However, it

is fully recognizable for aperiodic points since any sequence containing
aa or bb has at most one factorization in {ab, ba}.




Recognizability of morphisms

Proposition
The family of morphisms which are fully recognizable for aperiodic
points is closed under composition.




Elementary morphisms

Definition (A. Ehrenfeucht, G. Rozenberg 1978)

A morphism o: A* — C* is elementary if for every alphabet B and
every pair of morphisms 3: A* — B* and a: B* — C* such that
o =« o f3, one has Card(B) > Card(A).

If o: A* — C* is elementary, one has in particular Card(C) > Card(A)
and moreover ¢ is non-erasing.

The Thue-Morse morphism o: a +— ab, b — ba is elementary. Indeed, if
o =ao B with 8: {a,b}* — c*, then ab = a(c’) and ba = a(c’)
which is impossible.




Elementary morphisms

Theorem (J. Karhumaki, J. Maiiuch, W. Plandowski 2003)

An elementary morphism is fully recognizable for aperiodic points.

Other proofs by V. Berthé, W. Steiner, J. Thuswaldner, R. Yassawi
2019 with a stronger hypothesis, and B., D. Perrin, A. Restivo 2022



Recognizability of one morphism

® Mossé’s Theorem (B. Mossé 1992, B. Mosse 1996): every
aperiodic primitive morphism o is recognizable in the shift X (o).

m Generalization by S. Bezuglyi, J. Kwiatkowski, K. Medynets 2009,
who proved that every aperiodic non-erasing morphism o is
recognizable in X (o).

m Generalisation by V. Berthé, W. Steiner, J. Thuswaldner, R.
Yassawi 2019, who proved that every non-erasing morphism o is
recognizable in X(o) for aperiodic points.

m Extension to possibly erasing morphisms by B., D. Perrin, A.
Restivo 2022.

Theorem (B., D. Perrin, A. Restivo 2022)

Any morphism o is recognizable for aperiodic points in X (o).




S-adic shifts

Let o = (0n)n>0 be a sequence of morphisms o,: (Apt1)* — (An)*
where A, are finite alphabets:

"'An+1ﬂ>AnE>An—1"'A1ﬂ>Ao.
For 0 < n < m we define

Oln,m) = 0n®0p410-:-00m—1.

LM (o) is the set of factors of the words O[n,m)(a) for some

ac A, and some m > n.

The shift X(") (o) is the set of sequences with all their factors in
L£0)(a).

The S-adic shift defined by o is X(©)(o).

A sequence of morphisms o = (¢,)n>0 is non-erasing if all o, are
non-erasing.



Representability of S-adic shifts

A sequence of morphisms o is representable at level n if every point y
in X(" (o) has at least one o,-representation in X("*1)(5)(i.e. a point
x with y = §'(0,(x))).

A sequence of morphisms is representable if it is representable at each
level.

It is eventually representable if there is an integer M such that it is
representable at each level at least equal to M.



Representability of S-adic shifts

Erasing sequences of morphisms may not be representable:

On: X+ bax,a+»aa,b+— b, forn>1,

op:ar e, b— b x— e

One can check that the point y = - - - bbbb- - - belongs to X(%(¢) and
there is no point x in X(!)(o) such that op(x) = y.



Representability of S-adic shifts

Nevertheless each non-erasing sequence of morphisms is representable
(V. Berthé, W. Steiner, J. Thuswaldner, R. Yassawi 2019).

Proposition (B., D. Perrin, A. Restivo, W. Steiner, 2023 preprint)

Let o be a sequence of morphisms with alphabets A, such that
liminf,~o Card(A,) is finite. Then o is eventually representable.




Recognizability of S-adic shifts

A sequence of morphisms o is recognizable at level n (respectively
recognizable at level n for aperiodic points) in X" (5) if o, is
recognizable (respectively recognizable for aperiodic points) in
X+ (g).

A sequence of morphisms o is recognizable (respectively recognizable
for aperiodic points) in its shift spaces if it is recognizable (respectively
recognizable for aperiodic points) in its shift spaces at each level.

A sequence of morphisms is eventually recognizable (respectively
eventually recognizable for aperiodic points) in its shift spaces if there
is a nonnegative integer i such is recognizable in its shift spaces at each
level at least i.



Recognizability of S-adic shifts

A simple example of a sequence of non-erasing morphisms which is
eventually recognizable in its shift spaces for aperiodic points, but not
recognizable in its shift spaces for aperiodic points.

Let o be the sequence of morphisms such that o, = 7 for n > 1,
oo = ¢ with

T:aws bab,a — b'ab, b b b — b,
¢:arra,ad—ab— b b —b.
Then - - - bbbbb - abbbbb - - - is an aperiodic point of X(% (o) which has

the two centered representation - - - bbbbb - abbbbb - - - and
o WBYE - AYE DY - in XW(0).

Berthé et al. give another example which is moreover primitive.



Recognizability of S-adic shifts

A simple example of a sequence of non-erasing morphisms which is not
eventually recognizable in its shift spaces.

Let o be the sequence of morphisms such that A, = {ao, ... an+1} and
on: (Ant1)* = (An)* is defined by

Op: dg — Ao,
ai] — aoaidp, - -
ap4+1 > dodn+140,

an42 = dn+1.

en for each n > 0, --- apagagagao - an,+13030d0do - - - is an aperiodic
Then f hn>0 L period
point of X(" () which has the two centered representation
+++380a0d03040 * An+18040a0d0 - -+ and - - - 39apa0a0do * an+230303040 * * -
in X(mt1)(g).




Recognizability of S-adic shifts

Theorem (V. Berthé, W. Steiner, J. Thuswaldner, R. Yassawi 2019)

Let 0 = (0n)n>0 with on: (Ant1)* — (An)* be a non-erasing sequence
of morphisms such that liminf,>o Card(A,) is finite and

Card({Lx | x € X("(c)}) is bounded. Then o is eventually
recognizable for aperiodic points in its shift spaces.




Recognizability of S-adic shifts

Theorem (B., D. Perrin, A. Restivo, W. Steiner, 2023 preprint)

Let 0 = (0n)n>0 with on: (Ant1)* — (An)* be a sequence of
morphisms such that liminf,>o Card(A,) is finite. Then o is eventually
recognizable for aperiodic points in its shift spaces.

Further,

m The proof is very simple. It uses the full recognizability of
elementary morphisms for aperiodic points.

= We obtain a bound of liminf,>o Card(A,) — 2 for the number of
levels at which o is not recognizable in its shift spaces for
aperiodic points (improving the bound of Berthé et al. ).

m This bound is optimal.



Recognizability of one morphism

We obtain a simple proof of:

Theorem (B., D. Perrin, A. Restivo 2022)

Any morphism o is recognizable for aperiodic points in X(c).

proof B., D. Perrin, A. Restivo, W. Steiner, 2023.
» Let 0: A* — A* and K = Card(A). Assume that o is not
recognizable for aperiodic points in X(o).

m Then o it is not elementary. Choose a decomposition 0 = a1 o 31
with f1: A* — (B1)* and a;: (B1)* — A* and Card(B;) minimal.

v




Recognizability of one morphism

We obtain a simple proof of:

Theorem (B., D. Perrin, A. Restivo 2022)

Any morphism o is recognizable for aperiodic points in X (o).

proof B., D. Perrin, A. Restivo, W. Steiner, 2023.
m Then o o a3 is not elementary.
Indeed, let x be an aperiodic point in X(c) with two centered
o-representations (y, k), (v, k') of x in X(o). Let (z,4), (2, ¢)
be two centered o-representations of y and y’ in X(¢). This gives
two centered o o ay-representations (51(z), m) and (51(2"), m')
of x.




Recognizability of one morphism

We obtain a simple proof of:

Theorem (B., D. Perrin, A. Restivo 2022)

Any morphism o is recognizable for aperiodic points in X (o).

proof B., D. Perrin, A. Restivo, W. Steiner, 2023.
= Choose a decomposition o o a1 = ap o B2 with By (B1)* — (B2)*
and ap: (B2)* — A* and Card(By) minimal.
One has Card(B,) < Card(B;) < Card(A).




Recognizability of one morphism

proof B., D. Perrin, A. Restivo, W. Steiner, 2023.

B B a2|
b B3 | a3|

Bs

lwal

m Foreach2 < k < K—1, Then oo a_1 is not elementary. Choose
a decomposition o o ak—1 = a o Sk with Bx_1: (Bxk-1)* — (Bk)*
and ay: (Bk)* — A* and Card(Bg) minimal.

o



Recognizability of one morphism

proof B., D. Perrin, A. Restivo, W. Steiner, 2023.

B B a2|
b B3 | a3|

Bs

lwal

» Card(Bk_1) < Card(Bk_2) < --- < Card(B;) < K = Card(A).

= One may assume that Card(By) > 2 (otherwise o is recognizable
for aperiodic points in X(c)). Hence the contradiction.




Recognizability in dimension 2

Considered by S. Mozes in 1989 where the recognizability property is
used to prove that some 2D substitution shift are sofic.

A generalization of Mossé's Theorem is proved for self-similar tilings by
B. Solomyak in 1998.

A proof of the recognizability in the 2D case has been obtained by M.
Sablik (unpublished).

The property is also used by N. Aubrun and M. Sablik in 2013 and
2014 to simulate an effective subshift by a sofic.



Decidable properties of substitution shifts

Proposition

It can be checked in quadratic time in the size of c(A) whether an
injective morphism o : A* — B* is recognizable on AZ for aperiodic
points.

\.

Proposition

Let o be a morphism. It is decidable in linear time whether a letter
belongs to L(X(c)).

Proposition

For every morphism o: A* — A*, the language L(X(0)) is decidable.




Decidable properties of substitution shifts

Theorem (J. J. Pansiot 1983, T. Harju and M. Linna 1983, for

primitive morphisms)

It is decidable whether a morphism is aperiodic. The set of periodic
points in X (o) is finite and their periods are effectively bounded in
terms of .

It is decidable whether a morphism is periodic (formed of periodic
points).

A morphism o: A* — A* is minimal if X(0o) is a minimal shift space.

It is decidable whether a morphism is minimal. I




Open problems

Theorem (F. Durand, J. Leroy 2021)

It is decidable whether two minimal substitution shifts are conjugate.

Is conjugay decidable for all substitution shifts? J

Is the inclusion problem X (o) C X(7) decidable?

It is decidable for automatic shifts, i.e. substitution shifts defined by a
constant-length morphism (. Fagnot 1997).

It is decidable for minimal substitution shifts (F. Durand, J. Leroy
2021).

What is the situation of all decidability results in 2D7 J




Thank you for your attention



