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Stanley’s invariant

X6 = x2x3x3 + x2x3 x3 x@
+...
€ Sym.

Definition (Stanley '95)

Given a graph G, its chromatic symmetric function is:

Xe(x):= Y[ e sym c Qxl,

Kk ieIN

where x:= {x; | i € N} is a commutative alphabet, and the sum
ranges over all proper colorings of G.

Doriann Albertin QSym poset invariant UB - LaBRI 2/ 32



Context
oe

Stanley’s invariant

Obvious fact: G ~ H = X¢ = Xu.
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Stanley’s invariant

Obvious fact: G ~ H = Xg = Xy.
Obvious non-fact: the converse is false.

Conjecture (Stanley '95)

Chromatic symmetric functions distinguish trees.

Read "the restriction of the map G — X¢ to trees is injective".
This conjecture spanned a lot of interest and is still open.
This is not its story.
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Xe = t2 - x2x3x3 +

t4 . 12Xi}x31x61 +...
€ QSyml[t].

Definition (Shareshian & Wachs '16, Ellzey '17)

Given an oriented graph G with no cycle, its chromatic
quasisymmetric function is:

Xg(x.t)i= 3 = T € Qsymlt] € QL)1)

i€lN

where asc(k) denotes the number of naturally labeled edges in G,

meaning that the orientation respects the natural order on the
colors.
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Oriented graphs

Conjecture (Alexandersson & Sulzgruber '21)

Chromatic quasisymmetric functions distinguish directed trees.
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Chromatic quasisymmetric functions distinguish directed trees.

Observation

This conjecture is neither stronger nor weaker than Stanley's!
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Oriented graphs

Conjecture (Alexandersson & Sulzgruber '21)

Chromatic quasisymmetric functions distinguish directed trees.

Observation

This conjecture is neither stronger nor weaker than Stanley's!

We will focus on a stronger conjecture, and look at the leading
coefficient of the chromatic quasisymmetric functions.
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Conjecture (TBD)

The leading coefficient of the chromatic quasisymmetric function
distinguishes some family of oriented graphs.
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Conjecture (TBD)

The leading coefficient of the chromatic quasisymmetric function
distinguishes some family of oriented graphs.

What does the leading coefficient in t of Xz(x, t) look like?

G(x t Ztasc N)Hx#fi () 7

ielN

[t6]X (x,t) Zx,xjxkx/
1<i<j<k<!
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— y1,1,1.1
Kp(x) = xix3x5 X5
2 + X3x2

Doriann Albertin QSym poset invariant UB - LaBRI 7/ 32



Context
o] ]

Partition enumerators

Kp(x) = x{ x3x}x3
+ X22xg
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Kp(x) = x{ x3x}x3
+ X22xg
+ ...
€ QSym.

Definition

Given a poset P, a strict P-partition is a map f : P — IN such
that i <p j = f(i) < f(j).
The strict P-partition enumerator is:

Reb) = T4,
f

i€IN

where the sum ranges over all P-partitions
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Conjecture (Hasebe & Tsujie '17)

Strict partition enumerators distinguish trees.
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Partition enumerators

Conjecture (Hasebe & Tsujie '17)

Strict partition enumerators distinguish trees.

This conjecture is stronger than Alexandersson & Sulzgruber's.
We know strict partition enumerators distinguish:

bowtie and N-free posets (Hasebe & Tsujie '17),

width 2 posets (Liu & Weselcouch '20),

rooted trees (Hasebe & Tsujie '17, Zhou '20),
series-parallel posets (Liu & Weselcouch '21),
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Definition
Given a labeled poset (P,w), a (P,w)-partition is a map
f: P+ IN such that:

- ow(i) <w()
o { 505 ul)

The (P, w)-partition enumerator is:

K(Pw ZHX#fl )

f ielN

Ly
=
A
-
=

where the sum ranges over all (P,w)-partitions

\
A
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OO,
N~
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Partition enumerators don't distinguish trees: K~z = KA.
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Partition enumerators don't distinguish trees: K~z = KA.

Conjecture (Hasebe & Tsujie '17)

Partition enumerators distinguish rooted trees.
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ooe

Mixed P-partitions

Partition enumerators don't distinguish trees: K~z = KA.

Conjecture (Hasebe & Tsujie '17)

Partition enumerators distinguish rooted trees.

What other families of posets are characterized by their partition
enumerators?
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QSym

Definition

QSym C Q[[X]] is the Hopf algebra of formal power series over the
ordered commutative alphabet X such that for all 4 < ... < i,
Ji<...<jkand a=(oq,...,ck) Fn [Tpepg X, and Tloepg %,

have equal coefficients.
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QSym & FQSym
000
QSym

Definition

QSym C Q[[X]] is the Hopf algebra of formal power series over the
ordered commutative alphabet X such that for all 4 < ... < i,
Ji<...<jkand a=(oq,...,ck) Fn [Tpepg X, and Tloepg %,

have equal coefficients.

1,3,1 4 (1,3,1 1 1 .
QSym > xix3xd + xdxixd + xoxioxds 4+ ... = Mz
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QSym & FQSym S5 i llel posets
00®000 ‘

QSym is spanned by the monomial basis, indexed by integer
compositions:

VakEn, M,:= Z Hxij‘f.

i1 <...<ix L€[K]
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QSym & FQSym ir rooted trees i ies-parallel posets
00®000 I

QSym is spanned by the monomial basis, indexed by integer
compositions:

VYaEn, M,:= Z Hx;‘f.

i1 <...<ix L€[K]

QSym is spanned by the fundamental basis, indexed by integer
compositions:

VaEn, Fu=)» M;
BLa
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QSym

Theorem (Stanley '71)

Kipw) = Z Fdes(o)-

oeZ(P,w)
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N
)
@

Z(P,w) = {1324,1342}
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Theorem (Stanley '71)
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QSym

Theorem (Stanley '71)

Kipw) = Z Fdes(o)-

oeZ(P,w)

9\ (4)
Z(P,w) = {13]24,134|2}
e K(P,w)w: Foz + F31
O
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QSym

Theorem (Stanley '71)

Kipw) = Z Fdes(o)-

oeZ(P,w)

O
Z(P,w') = {23]14,234|1}
e K(P,w’;): F22 + Fa1
(2)
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QSym & FQSym
00e

QSym

Theorem (Stanley '71)

Kipw) = Z Fdes(o)-

oeZ(P,w)

\e ZL(P,w') = {23]14,234]1}
K(P,w’) = Fy+ F31

Theorem (Hazewinkel '01, Lam & Pylyavskyy '08)

QSym is a unique factorization domain.
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QSym & FQSym Fair rooted trees arallel posets
000000 000 I

The Hopf algebra FQSym C Q[[A]] admits a basis F' indexed by
permutations with:

]FG' = Z H aw;,

std(w)=0 i€[n]

F,-F, = Z FV,

veollT

where A is a non-commutative alphabet.

121121 =12 W43 = 1243 + 1423 + 4123 4 1432 + 4132 + 4312.
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-parallel posets

QSym — FQSym through the map

F, Z F,.

des(o)=a
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[e oce [

QSym — FQSym through the map

F, Z F,.

des(o)=a

This is nice, because otherwise, computing products in QSym is
hard:
Fo - Fg = Kp, - Kp, = Kp,LP,-
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QSym — FQSym through the map

F, Z F,.

des(o)=a

This is nice, because otherwise, computing products in QSym is
hard:
Fo - Fg = Kp, - Kp, = Kp,LP,-

P231
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Partition enumerators distinguish fair rooted forests.
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Fair rooted trees
[ ]
The Theorem

Theorem (Aval Djenabou McNamara '23+)

Partition enumerators distinguish fair rooted forests.

Recursive definition:
e c(,

fugec,

et felC,

ef feC(.

Lemma (Aval Djenabou & McNamara '23+)

The partition enumerator of a fair rooted tree is irreducible in
QSym.

Technical. Has a counterpart in most proof of similar results.
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Fair rooted trees
Parts of the proof

Theorem (Aval Djenabou McNamara '23+)

Partition enumerators distinguish fair rooted forests.
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Theorem (Aval Djenabou McNamara '23+)

Partition enumerators distinguish fair rooted forests.

Sketch of the proof of the Theorem:
Assume Kf = Kg. Use irreducibility and unique factorization in
QSym to assume f and g are connected.
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Fair rooted trees
Parts of the proof

Theorem (Aval Djenabou McNamara '23+)

Partition enumerators distinguish fair rooted forests.

Sketch of the proof of the Theorem:

Assume Kf = Kg. Use irreducibility and unique factorization in
QSym to assume f and g are connected.

If f = o1 f’, all linear extensions of f start with a descent:

K =Kg =), cafFi,a and so g can be written o {} g’
Furthermore, Kt = Kgr = ), caFa, and we iterate.

The case f = o 1 ' is similar. O
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Main result

Theorem (A. Aval & Mlodecki '23+)

Partition enumerators distinguish fair series-parallel posets.
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Fair series-parallel posets
[ Jelele]e]

Main result

Theorem (A. Aval & Mlodecki '23+)

Partition enumerators distinguish fair series-parallel posets.

Lemma (A. Aval & Mlodecki '23+)

The partition enumerator of a connected fair series-parallel poset is
irreducible in QSym.

The latter being a consequence of:

Lemma (A. Aval & Mlodecki '23+)

Let f be a homogeneous quasisymmetric function, such that all
elements of its support in the fundamental basis have a common
descent. Then f is irreducible in QSym.
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Main result

Sketch of the irreducibility proof:
Assume that Kp = fif.

(Z CaFa) =Kp=hHf = Z dgFg | - Z e Fy

aFn BENL YENZ
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Assume that Kp = fif.
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Fair series-parallel posets
o] Jelele]

Main result

Sketch of the irreducibility proof:
Assume that Kp = fif.

(Z CaFa) =Kp=hHf = Z dgFg | - Z e Fy

BENL YENZ

akFn

Z CdeS(O')]FO' = Z ( Z ddes(T) ’ edes(u)) Fo.

ceS, ceS, \cerlv
- Z ddES(UHl’"l]) ’ edes(o-|["1+1,n]) ]Fo'-
ceG,
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Fair series-parallel posets
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Main result

> Ches)Fo = Y dyeg(olitml) * Eges(olim 1) Fo.
0'66;1 Ue@n

Assume P = Q ft R. Then all linear extensions of P have a descent
in position g:=#Q.
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Assume P = Q ft R. Then all linear extensions of P have a descent
in position g:=#Q.
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Fair series-parallel posets
(e]e] le]e]

Main result

> Ches)Fo = Y dyeg(olitml) * Eges(olim 1) Fo.
G’G@n Ue@n

Assume P = Q ft R. Then all linear extensions of P have a descent
in position g:=#Q.

Vo € &,,q9¢ des(a) = Cdes(o) = 0.

Let 8= ny and v F ny such that dg # 0. It is easy to build og
such that :

q ¢ deS(O'ﬁ"y),

des(cr‘[lvnl]) =0,

des(ollm+Lnly = 4,

So that any product dge, with dg # 0 is null. Which is absurd. [J
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Fair series-parallel posets
00080

Main result

Theorem (A. Aval & Mlodecki '23+)

Partition enumerators distinguish fair series-parallel posets.

Sketch of the Theorem's proof:

Suppose Kp = Kp:. As before, use irreducibility and unique
factorization to assume P and P’ are connected.
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Main result

Theorem (A. Aval & Mlodecki '23+)

Partition enumerators distinguish fair series-parallel posets.

Sketch of the Theorem's proof:

Suppose Kp = Kp:. As before, use irreducibility and unique
factorization to assume P and P’ are connected.

Assume P = Q 1} R, then Kp has a global descent in ¢, and so
does Kpr.

This implies that P’ is of the form Q" 1/} R’, with #Q' = q.

Indeed, all linear extensions of P’ have the same first g values.
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Fair series-parallel posets
Q000e

Main result

By contradiction, let o,v € Z(P’), i € oyjq \ V|jq] and
J € Va1 \ lla)

Pick i and j to minimize their distance to position ¢ in o.
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Main result

By contradiction, let o,v € Z(P’), i € oyjq \ V|jq] and
J € Va1 \ lla)

Pick i and j to minimize their distance to position ¢ in o.
o = ki | j
v= j | i

k £priand k #pri,s0o o’ € L(P).
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Fair series-parallel posets
Q000e

Main result

By contradiction, let o,v € Z(P’), i € oyjq \ V|jq] and
J € Va1 \ lla)

Pick i and j to minimize their distance to position ¢ in o.

o = ki | j
v= j | i
k £priand k £pi i, s0 0’ € L(P).
In the end, we have two linear extensions of the form :

T1 = I|_j
T = Jli
and one of them has an ascent in g, which is absurd. O
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Perspectives
°
A conjecture

Recall:

Theorem (Hasebe & Tsujie '17)

Strict partition enumerators distinguish rooted forests.

and

Theorem (Stanley '71)
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Perspectives
°
A conjecture

Recall:

Theorem (Hasebe & Tsujie '17)

Strict partition enumerators distinguish rooted forests.

and

Theorem (Stanley '71)

Conjecture (A., Aval & Mlodecki 23+)

Y. Fdes(o) distinguishes naturally labeled rooted forests.
ceL (P,w)

We checked this for forests with up to 15 inner nodes
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Perspectives
(3]
On binary trees

The partition enumerator of a connected binary tree is irreducible in
QSym.

This was checked up to 11 inner nodes.
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Perspectives
(3]
On binary trees

The partition enumerator of a connected binary tree is irreducible in

QSym.

This was checked up to 11 inner nodes.
We can try to mimic the previous proofs. From Kt we recover
K1, - KT,, but if the root is unfair, we can't distinguish which tree

goes where.
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Perspectives
oce
On binary trees

Other method: "Zhou-like".
In his '20 paper, Zhou proves injectivity of T — Kt by making
explicit the reverse bijection.
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explicit the reverse bijection.
From the partition enumerator of a (mixed) binary tree, we can
recover:

@ the number of nodes,
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On binary trees

Other method: "Zhou-like".
In his '20 paper, Zhou proves injectivity of T — K7 by making
explicit the reverse bijection.
From the partition enumerator of a (mixed) binary tree, we can
recover:
@ the number of nodes,
@ the nature of the root,
@ the enumerator of the child forest,
@ the shape of the tree obtained by contracting all simple edges
(provided irreducibility),
@ the number of leaves and the number of double edges
separating them from the root,
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Perspectives
oe
On binary trees

Other method: "Zhou-like".
In his '20 paper, Zhou proves injectivity of T — K7 by making
explicit the reverse bijection.
From the partition enumerator of a (mixed) binary tree, we can
recover:
@ the number of nodes,
@ the nature of the root,
@ the enumerator of the child forest,
@ the shape of the tree obtained by contracting all simple edges
(provided irreducibility),
@ the number of leaves and the number of double edges
separating them from the root,
° ...

but this is still not enough.
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Thank
\/ \/ you!
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