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Stanley’s invariant
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Definition (Stanley ’95)

Given a graph G , its chromatic symmetric function is:

XG (x) :=
∑
κ

∏
i∈N

x
#κ−1(i)
i ∈ Sym ⊊ Q[[x ]],

where x := {xi | i ∈ N} is a commutative alphabet, and the sum
ranges over all proper colorings of G .
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Stanley’s invariant

Obvious fact: G ∼ H ⇒ XG = XH .

Obvious non-fact: the converse is false.

Conjecture (Stanley ’95)

Chromatic symmetric functions distinguish trees.

Read "the restriction of the map G 7→ XG to trees is injective".
This conjecture spanned a lot of interest and is still open.
This is not its story.
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Oriented graphs
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Definition (Shareshian & Wachs ’16, Ellzey ’17)

Given an oriented graph G⃗ with no cycle, its chromatic
quasisymmetric function is:

X
G⃗
(x , t) :=

∑
κ

tasc(κ)
∏
i∈N

x
#κ−1(i)
i ∈ QSym[t] ⊊ Q[[x ]][t],

where asc(κ) denotes the number of naturally labeled edges in G⃗ ,
meaning that the orientation respects the natural order on the
colors.
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Oriented graphs

Conjecture (Alexandersson & Sulzgruber ’21)

Chromatic quasisymmetric functions distinguish directed trees.

Observation
This conjecture is neither stronger nor weaker than Stanley’s!

We will focus on a stronger conjecture, and look at the leading
coefficient of the chromatic quasisymmetric functions.
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Partition enumerators

Conjecture (TBD)

The leading coefficient of the chromatic quasisymmetric function
distinguishes some family of oriented graphs.

What does the leading coefficient in t of X
G⃗
(x , t) look like?

X
G⃗
(x , t) :=

∑
κ

tasc(κ)
∏
i∈N

x
#κ−1(i)
i ,

•

•

•

•

•

>

<

<
<

<

< •
•
•
•

[t6]X
G⃗
(x , t) =

∑
1≤i<j<k<l

xixjxkxl
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Partition enumerators
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K̄P(x) =

x1
1x

1
3x

1
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1
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+ x2
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6

+ . . .
∈ QSym.

Definition
Given a poset P , a strict P-partition is a map f : P 7→ N such
that i ≤P j ⇒ f (i) < f (j).
The strict P-partition enumerator is:

K̄P(x) :=
∑
f

∏
i∈N

x
#f −1(i)
i ,

where the sum ranges over all P-partitions

Doriann Albertin QSym poset invariant UB - LaBRI 7 / 32



Context QSym & FQSym Fair rooted trees Fair series-parallel posets Perspectives

Partition enumerators

•

•

• •

1

3

4 5

2

2

6 6

K̄P(x) = x1
1x

1
3x

1
4x

1
5

+ x2
2x

2
6

+ . . .
∈ QSym.

Definition
Given a poset P , a strict P-partition is a map f : P 7→ N such
that i ≤P j ⇒ f (i) < f (j).
The strict P-partition enumerator is:

K̄P(x) :=
∑
f

∏
i∈N

x
#f −1(i)
i ,

where the sum ranges over all P-partitions

Doriann Albertin QSym poset invariant UB - LaBRI 7 / 32



Context QSym & FQSym Fair rooted trees Fair series-parallel posets Perspectives

Partition enumerators

•

•

• •

1

3

4 5

2

2

6 6
K̄P(x) = x1

1x
1
3x

1
4x

1
5

+ x2
2x

2
6

+ . . .

∈ QSym.

Definition
Given a poset P , a strict P-partition is a map f : P 7→ N such
that i ≤P j ⇒ f (i) < f (j).
The strict P-partition enumerator is:

K̄P(x) :=
∑
f

∏
i∈N

x
#f −1(i)
i ,

where the sum ranges over all P-partitions

Doriann Albertin QSym poset invariant UB - LaBRI 7 / 32



Context QSym & FQSym Fair rooted trees Fair series-parallel posets Perspectives

Partition enumerators

•

•

• •

1

3

4 5

2

2

6 6

K̄P(x) = x1
1x

1
3x

1
4x

1
5

+ x2
2x

2
6

+ . . .
∈ QSym.

Definition
Given a poset P , a strict P-partition is a map f : P 7→ N such
that i ≤P j ⇒ f (i) < f (j).
The strict P-partition enumerator is:

K̄P(x) :=
∑
f

∏
i∈N

x
#f −1(i)
i ,

where the sum ranges over all P-partitions

Doriann Albertin QSym poset invariant UB - LaBRI 7 / 32



Context QSym & FQSym Fair rooted trees Fair series-parallel posets Perspectives

Partition enumerators

•

•

• •

1

3

4 5

2

2

6 6

K̄P(x) = x1
1x

1
3x

1
4x

1
5

+ x2
2x

2
6

+ . . .
∈ QSym.

Definition
Given a poset P , a strict P-partition is a map f : P 7→ N such
that i ≤P j ⇒ f (i) < f (j).
The strict P-partition enumerator is:

K̄P(x) :=
∑
f

∏
i∈N

x
#f −1(i)
i ,

where the sum ranges over all P-partitions

Doriann Albertin QSym poset invariant UB - LaBRI 7 / 32



Context QSym & FQSym Fair rooted trees Fair series-parallel posets Perspectives

Partition enumerators

Conjecture (Hasebe & Tsujie ’17)

Strict partition enumerators distinguish trees.

This conjecture is stronger than Alexandersson & Sulzgruber’s.
We know strict partition enumerators distinguish:

bowtie and N-free posets (Hasebe & Tsujie ’17),
width 2 posets (Liu & Weselcouch ’20),
rooted trees (Hasebe & Tsujie ’17, Zhou ’20),
series-parallel posets (Liu & Weselcouch ’21),
...
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Mixed P-partitions

Definition
Given a labeled poset (P, ω), a (P, ω)-partition is a map
f : P 7→ N such that:

∀i ⋖P j ,

{
ω(i) < ω(j) ⇒ f (i) ≤ f (j)
ω(i) > ω(j) ⇒ f (i) < f (j)

The (P, ω)-partition enumerator is:

K(P,ω)(x) :=
∑
f

∏
i∈N

x
#f −1(i)
i ,

where the sum ranges over all (P, ω)-partitions
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Mixed P-partitions
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Mixed P-partitions
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QSym

Definition
QSym ⊊ Q[[X ]] is the Hopf algebra of formal power series over the
ordered commutative alphabet X such that for all i1 < . . . < ik ,
j1 < . . . < jk and α = (α1, . . . , αk) ⊨ n,

∏
ℓ∈[k] x

αℓ
iℓ

and
∏

ℓ∈[k] x
αℓ
jℓ

have equal coefficients.

QSym ∋ x1
1x

3
2x

1
3 + . . .
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QSym

Proposition
QSym is spanned by the monomial basis, indexed by integer
compositions:

∀α ⊨ n, Mα :=
∑

i1<...<ik

∏
ℓ∈[k]

xαℓ
iℓ
.

Proposition
QSym is spanned by the fundamental basis, indexed by integer
compositions:

∀α ⊨ n, Fα :=
∑
β≤α

Mβ.
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QSym

Theorem (Stanley ’71)

K(P,ω) =
∑

σ∈L (P,ω)

Fdes(σ).

•

•

••

3

1

42

3

2

41

K(P,ω) = F22 + F31

Theorem (Hazewinkel ’01, Lam & Pylyavskyy ’08)

QSym is a unique factorization domain.
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FQSym

Proposition

The Hopf algebra FQSym ⊊ Q[[A]] admits a basis F indexed by
permutations with:

Fσ :=
∑

std(w)=σ

∏
i∈[n]

awi ,

Fσ · Fτ =
∑

ν∈σ�̄τ

Fν ,

where A is a non-commutative alphabet.

12 �̄ 21 = 12� 43 = 1243 + 1423 + 4123 + 1432 + 4132 + 4312.
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FQSym

Proposition
QSym ↪→ FQSym through the map

Fα 7→
∑

des(σ)=α

Fσ.

This is nice, because otherwise, computing products in QSym is
hard:
Fα · Fβ = KPα · KPβ

= KPα⊔Pβ
.

•
•
•
•
•
•

P231
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Fair rooted trees
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The Theorem

Theorem (Aval Djenabou McNamara ’23+)

Partition enumerators distinguish fair rooted forests.

Recursive definition:
• ∈ C,

f ⊔ g ∈ C,
• ↑ f ∈ C,
• ⇑ f ∈ C.

•

•

• •
•

•
•

•
•
•

•

•
•
• •

•

•
•
•

Lemma (Aval Djenabou & McNamara ’23+)

The partition enumerator of a fair rooted tree is irreducible in
QSym.

Technical. Has a counterpart in most proof of similar results.
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Parts of the proof

Theorem (Aval Djenabou McNamara ’23+)

Partition enumerators distinguish fair rooted forests.

Sketch of the proof of the Theorem:
Assume Kf = Kg . Use irreducibility and unique factorization in
QSym to assume f and g are connected.
If f = • ⇑ f ′, all linear extensions of f start with a descent:
Kf = Kg =

∑
α cαF1,α and so g can be written • ⇑ g ′.

Furthermore, Kf ′ = Kg ′ =
∑

α cαFα, and we iterate.
The case f = • ↑ f ′ is similar. □
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Fair series-parallel posets
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Recursive definition:

• ∈ C,
P ⊔ Q ∈ C,
P ↑ Q ∈ C,
P ⇑ Q ∈ C.

• •

• •

•

•••

•

• •

• • •

• •

•

•

•

Doriann Albertin QSym poset invariant UB - LaBRI 22 / 32



Context QSym & FQSym Fair rooted trees Fair series-parallel posets Perspectives

Recursive definition:
• ∈ C,

P ⊔ Q ∈ C,
P ↑ Q ∈ C,
P ⇑ Q ∈ C.

• •

• •

•

•••

•

• •

•

• •

• •

•

•

•

Doriann Albertin QSym poset invariant UB - LaBRI 22 / 32



Context QSym & FQSym Fair rooted trees Fair series-parallel posets Perspectives

Recursive definition:
• ∈ C,
P ⊔ Q ∈ C,

P ↑ Q ∈ C,
P ⇑ Q ∈ C.

• •

• •

•

•••

•

• •

• • •

• •

•

•

•

Doriann Albertin QSym poset invariant UB - LaBRI 22 / 32



Context QSym & FQSym Fair rooted trees Fair series-parallel posets Perspectives

Recursive definition:
• ∈ C,
P ⊔ Q ∈ C,
P ↑ Q ∈ C,

P ⇑ Q ∈ C.
• •

• •

•

•••

•

• •

• • •

• •

•

•

•

Doriann Albertin QSym poset invariant UB - LaBRI 22 / 32



Context QSym & FQSym Fair rooted trees Fair series-parallel posets Perspectives

Recursive definition:
• ∈ C,
P ⊔ Q ∈ C,
P ↑ Q ∈ C,

P ⇑ Q ∈ C.
• •

• •

•

•••

•

• •

• • •

• •

•

•

•

Doriann Albertin QSym poset invariant UB - LaBRI 22 / 32



Context QSym & FQSym Fair rooted trees Fair series-parallel posets Perspectives

Recursive definition:
• ∈ C,
P ⊔ Q ∈ C,
P ↑ Q ∈ C,
P ⇑ Q ∈ C.

• •

• •

•

•••

•

• •

• • •

• •

•

•

•

Doriann Albertin QSym poset invariant UB - LaBRI 22 / 32



Context QSym & FQSym Fair rooted trees Fair series-parallel posets Perspectives

Recursive definition:
• ∈ C,
P ⊔ Q ∈ C,
P ↑ Q ∈ C,
P ⇑ Q ∈ C.

• •

• •

•

•••

•

• •

• • •

• •

•

•

•

Doriann Albertin QSym poset invariant UB - LaBRI 22 / 32



Context QSym & FQSym Fair rooted trees Fair series-parallel posets Perspectives

Main result

Theorem (A. Aval & Mlodecki ’23+)

Partition enumerators distinguish fair series-parallel posets.

Lemma (A. Aval & Mlodecki ’23+)

The partition enumerator of a connected fair series-parallel poset is
irreducible in QSym.

The latter being a consequence of:

Lemma (A. Aval & Mlodecki ’23+)

Let f be a homogeneous quasisymmetric function, such that all
elements of its support in the fundamental basis have a common
descent. Then f is irreducible in QSym.
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Main result

Sketch of the irreducibility proof:
Assume that KP = f1f2.(∑

α⊨n

cαFα

)
:=KP = f1f2 =:

∑
β⊨n1

dβFβ

 ·

∑
γ⊨n2

eγFγ

 .

∑
σ∈Sn

cdes(σ)Fσ =
∑
σ∈Sn

( ∑
σ∈τ�̄ν

ddes(τ) · edes(ν)

)
Fσ.

=
∑
σ∈Sn

ddes(σ|[1,n1]) · edes(σ|[n1+1,n])Fσ.
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Main result

∑
σ∈Sn

cdes(σ)Fσ =
∑
σ∈Sn

ddes(σ|[1,n1]) · edes(σ|[n1+1,n])Fσ.

Assume P = Q ⇑ R . Then all linear extensions of P have a descent
in position q :=#Q.

∀σ ∈ Sn, q ̸∈ des(σ) ⇒ cdes(σ) = 0.

Let β ⊨ n1 and γ ⊨ n2 such that dβ ̸= 0. It is easy to build σβ,γ
such that : 

q ̸∈ des(σβ,γ),

des(σ|[1,n1]) = β,

des(σ|[n1+1,n]) = γ.

So that any product dβeγ with dβ ̸= 0 is null. Which is absurd. □
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Main result

Theorem (A. Aval & Mlodecki ’23+)

Partition enumerators distinguish fair series-parallel posets.

Sketch of the Theorem’s proof:

Suppose KP = KP′ . As before, use irreducibility and unique
factorization to assume P and P ′ are connected.

Assume P = Q ⇑ R , then KP has a global descent in q, and so
does KP′ .

This implies that P ′ is of the form Q ′ ⇑ R ′, with #Q ′ = q.

Indeed, all linear extensions of P ′ have the same first q values.
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Main result

By contradiction, let σ, ν ∈ L (P ′), i ∈ σ|[q] \ ν|[q] and
j ∈ ν|[q] \ σ|[q].

Pick i and j to minimize their distance to position q in σ.

σ = ik | j

ν = j | i

k ̸<P′ i and k ̸>P′ i , so σ′ ∈ L (P ′).
In the end, we have two linear extensions of the form :

τ1 = i |j
τ2 = j |i

and one of them has an ascent in q, which is absurd. □
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Perspectives
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A conjecture

Recall:

Theorem (Hasebe & Tsujie ’17)

Strict partition enumerators distinguish rooted forests.

and

Theorem (Stanley ’71)

K(P,ω) =
∑

σ∈L (P,ω)

Fdes(σ).

Conjecture (A., Aval & Mlodecki 23+)∑
σ∈L1(P,ω)

Fdes(σ) distinguishes naturally labeled rooted forests.

We checked this for forests with up to 15 inner nodes
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On binary trees

Conjecture
The partition enumerator of a connected binary tree is irreducible in
QSym.

This was checked up to 11 inner nodes.

We can try to mimic the previous proofs. From KT we recover
KT1 · KT2 , but if the root is unfair, we can’t distinguish which tree
goes where.

•
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On binary trees

Conjecture
The partition enumerator of a connected binary tree is irreducible in
QSym.

This was checked up to 11 inner nodes.
We can try to mimic the previous proofs. From KT we recover
KT1 · KT2 , but if the root is unfair, we can’t distinguish which tree
goes where.

•

T1 T2
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On binary trees

Conjecture
The partition enumerator of a connected binary tree is irreducible in
QSym.

This was checked up to 11 inner nodes.
We can try to mimic the previous proofs. From KT we recover
KT1 · KT2 , but if the root is unfair, we can’t distinguish which tree
goes where.

•

T2 T1
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On binary trees

Other method: "Zhou-like".
In his ’20 paper, Zhou proves injectivity of T 7→ K̄T by making
explicit the reverse bijection.

From the partition enumerator of a (mixed) binary tree, we can
recover:

the number of nodes,
the nature of the root,
the enumerator of the child forest,
the shape of the tree obtained by contracting all simple edges
(provided irreducibility),
the number of leaves and the number of double edges
separating them from the root,
...

but this is still not enough.

Doriann Albertin QSym poset invariant UB - LaBRI 31 / 32



Context QSym & FQSym Fair rooted trees Fair series-parallel posets Perspectives

On binary trees

Other method: "Zhou-like".
In his ’20 paper, Zhou proves injectivity of T 7→ K̄T by making
explicit the reverse bijection.
From the partition enumerator of a (mixed) binary tree, we can
recover:

the number of nodes,

the nature of the root,
the enumerator of the child forest,
the shape of the tree obtained by contracting all simple edges
(provided irreducibility),
the number of leaves and the number of double edges
separating them from the root,
...

but this is still not enough.

Doriann Albertin QSym poset invariant UB - LaBRI 31 / 32



Context QSym & FQSym Fair rooted trees Fair series-parallel posets Perspectives

On binary trees

Other method: "Zhou-like".
In his ’20 paper, Zhou proves injectivity of T 7→ K̄T by making
explicit the reverse bijection.
From the partition enumerator of a (mixed) binary tree, we can
recover:

the number of nodes,
the nature of the root,

the enumerator of the child forest,
the shape of the tree obtained by contracting all simple edges
(provided irreducibility),
the number of leaves and the number of double edges
separating them from the root,
...

but this is still not enough.

Doriann Albertin QSym poset invariant UB - LaBRI 31 / 32



Context QSym & FQSym Fair rooted trees Fair series-parallel posets Perspectives

On binary trees

Other method: "Zhou-like".
In his ’20 paper, Zhou proves injectivity of T 7→ K̄T by making
explicit the reverse bijection.
From the partition enumerator of a (mixed) binary tree, we can
recover:

the number of nodes,
the nature of the root,
the enumerator of the child forest,

the shape of the tree obtained by contracting all simple edges
(provided irreducibility),
the number of leaves and the number of double edges
separating them from the root,
...

but this is still not enough.

Doriann Albertin QSym poset invariant UB - LaBRI 31 / 32



Context QSym & FQSym Fair rooted trees Fair series-parallel posets Perspectives

On binary trees

Other method: "Zhou-like".
In his ’20 paper, Zhou proves injectivity of T 7→ K̄T by making
explicit the reverse bijection.
From the partition enumerator of a (mixed) binary tree, we can
recover:

the number of nodes,
the nature of the root,
the enumerator of the child forest,
the shape of the tree obtained by contracting all simple edges
(provided irreducibility),

the number of leaves and the number of double edges
separating them from the root,
...

but this is still not enough.

Doriann Albertin QSym poset invariant UB - LaBRI 31 / 32



Context QSym & FQSym Fair rooted trees Fair series-parallel posets Perspectives

On binary trees

Other method: "Zhou-like".
In his ’20 paper, Zhou proves injectivity of T 7→ K̄T by making
explicit the reverse bijection.
From the partition enumerator of a (mixed) binary tree, we can
recover:

the number of nodes,
the nature of the root,
the enumerator of the child forest,
the shape of the tree obtained by contracting all simple edges
(provided irreducibility),
the number of leaves and the number of double edges
separating them from the root,

...
but this is still not enough.

Doriann Albertin QSym poset invariant UB - LaBRI 31 / 32



Context QSym & FQSym Fair rooted trees Fair series-parallel posets Perspectives

On binary trees

Other method: "Zhou-like".
In his ’20 paper, Zhou proves injectivity of T 7→ K̄T by making
explicit the reverse bijection.
From the partition enumerator of a (mixed) binary tree, we can
recover:

the number of nodes,
the nature of the root,
the enumerator of the child forest,
the shape of the tree obtained by contracting all simple edges
(provided irreducibility),
the number of leaves and the number of double edges
separating them from the root,
...

but this is still not enough.

Doriann Albertin QSym poset invariant UB - LaBRI 31 / 32



Context QSym & FQSym Fair rooted trees Fair series-parallel posets Perspectives

Thank
you!
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