Enumerating bicolored maps with an alternating boundary

Ariane Carrance (Laboratoire de Mathématiques d'Orsay) joint work with Jérémie Bouttier

Journées Combinatoires de Bordeaux - February $3^{\text {rd }} 2021$

Initial problem

Define Boltzmann Eulerian triangulations:

Initial problem

Define Boltzmann Eulerian triangulations:

- (Rooted) maps whose faces are all of degree 3

Initial problem
Define Boltzmann Eulerian triangulations:

- (Rooted) maps whose faces are all of degree 3, and can be properly bicolored in black and white

Initial problem

Define Boltzmann Eulerian triangulations:

- (Rooted) maps whose faces are all of degree 3, and can be properly bicolored in black and white
- Random planar maps with a boundary, (picked in a certain family of maps) with fixed perimeter p, sampled according to size:

$$
\mathbb{P}_{p}(\mathrm{~m})=c \cdot C^{-|\mathrm{m}|}
$$

Initial problem

Define Boltzmann Eulerian triangulations:

- (Rooted) maps whose faces are all of degree 3, and can be properly bicolored in black and white
- Random planar maps with a boundary, (picked in a certain family of maps) with fixed perimeter p, sampled according to size:

$$
\mathbb{P}_{p}(\mathrm{~m})=c \cdot C^{-|\mathrm{m}|}
$$

- Natural boundary condition for Boltzmann triangulations: alternating

Initial problem

Define Boltzmann Eulerian triangulations:

- (Rooted) maps whose faces are all of degree 3, and can be properly bicolored in black and white
- Random planar maps with a boundary, (picked in a certain family of maps) with fixed perimeter p, sampled according to size:

$$
\mathbb{P}_{p}(\mathrm{~m})=c \cdot C^{-|\mathrm{m}|}
$$

- Natural boundary condition for Boltzmann triangulations: alternating
- Necessary in particular to show convergence of Eulerian triangulations to Brownian map in [C., 2019]

Combinatorial formulation

- For the probability law \mathbb{P}_{p} to be well-defined:

$$
1=\sum_{n} \sum_{|m|=n} \mathbb{P}_{p}(\mathrm{~m})=c \sum_{n} C^{-n} A_{n, p}
$$

$A_{n, p}=\#$ maps with a boundary of perimeter p and size n (in the family)

Combinatorial formulation

- For the probability law \mathbb{P}_{p} to be well-defined:

$$
1=\sum_{n} \sum_{|m|=n} \mathbb{P}_{p}(\mathrm{~m})=c \sum_{n} C^{-n} A_{n, p}
$$

$A_{n, p}=\#$ maps with a boundary of perimeter p and size n (in the family)

- In fact: for all "nice" families of maps

$$
\begin{gathered}
A_{n, p} \underset{n \rightarrow \infty}{\sim} C(p) \rho^{n} n^{-5 / 2} \forall p \\
\Longrightarrow Z(p):=\sum_{n} A_{n, p} \rho^{-n}<\infty, \quad \mathbb{P}_{p}(\mathrm{~m})=\frac{\rho^{-n}}{Z(p)}
\end{gathered}
$$

Asymptotic results for Eulerian triangulations

Theorem (Bouttier-C. 2020+)

Let $A(t, w)=\sum_{n, p} A_{n, r} t^{n} w^{r}$ be the generating function for planar Eulerian triangulations with an alternating boundary, with t enumerating the vertices, and w the half-perimeter. Then:

$$
\begin{equation*}
\left[t^{n}\right] A(t, w) \underset{n \rightarrow \infty}{\sim} f(w) 8^{n} n^{-5 / 2} \quad \forall w \in\left[0, \frac{1}{4}\right) \tag{1}
\end{equation*}
$$

with f explicit. Consequently:

$$
\begin{equation*}
A_{n, r} \underset{n \rightarrow \infty}{\sim} C(r) 8^{n} n^{-5 / 2} \forall r \tag{2}
\end{equation*}
$$

with

$$
\begin{equation*}
C(r) \underset{p \rightarrow \infty}{\sim} c 4^{r} \sqrt{r} . \tag{3}
\end{equation*}
$$

Asymptotic results for Eulerian triangulations

Theorem (Bouttier-C. 2020+)

Let $A(t, w)=\sum_{n, p} A_{n, r} t^{n} w^{r}$ be the generating function for planar Eulerian triangulations with an alternating boundary, with t enumerating the vertices, and w the half-perimeter. Then:

$$
\begin{equation*}
\left[t^{n}\right] A(t, w) \underset{n \rightarrow \infty}{\sim} f(w) 8^{n} n^{-5 / 2} \quad \forall w \in\left[0, \frac{1}{4}\right) \tag{1}
\end{equation*}
$$

with f explicit. Consequently:

$$
\begin{equation*}
A_{n, r} \underset{n \rightarrow \infty}{\sim} C(r) 8^{n} n^{-5 / 2} \forall r \tag{2}
\end{equation*}
$$

with

$$
\begin{equation*}
C(r) \underset{p \rightarrow \infty}{\sim} c 4^{r} \sqrt{r} . \tag{3}
\end{equation*}
$$

- Same as other "classical" families of planar maps with boundaries

Asymptotic results for Eulerian triangulations

Theorem (Bouttier-C. 2020+)

Let $A(t, w)=\sum_{n, p} A_{n, r} t^{n} w^{r}$ be the generating function for planar Eulerian triangulations with an alternating boundary, with t enumerating the vertices, and w the half-perimeter. Then:

$$
\begin{equation*}
\left[t^{n}\right] A(t, w) \underset{n \rightarrow \infty}{\sim} f(w) 8^{n} n^{-5 / 2} \quad \forall w \in\left[0, \frac{1}{4}\right) \tag{1}
\end{equation*}
$$

with f explicit. Consequently:

$$
\begin{equation*}
A_{n, r} \underset{n \rightarrow \infty}{\sim} C(r) 8^{n} n^{-5 / 2} \forall r \tag{2}
\end{equation*}
$$

with

$$
\begin{equation*}
C(r) \underset{p \rightarrow \infty}{\sim} c 4^{r} \sqrt{r} . \tag{3}
\end{equation*}
$$

- Same as other "classical" families of planar maps with boundaries
- Explicit f in $(1) \Longrightarrow$ uniform bound by asymptotics (2):

$$
\begin{equation*}
c^{\prime} C(r) 8^{n} n^{-5 / 2} \leq A_{n, r} \leq c^{\prime \prime} C(r) 8^{n} n^{-5 / 2} \tag{4}
\end{equation*}
$$

(crucial for establishing convergence to Brownian map in [C., 2019])

More general result on constellations

- m-constellations: maps whose faces are properly colored in black and white, where all black faces have degree m and all white faces have degree some multiple of m
- A_{r} : GF of m-constellations with an alternating boundary of length $2 r$, with a weight t per vertex and a weight x_{i} per white inner face of degree mi for every $i \geq 1$.

More general result on constellations

Theorem (Bouttier-C. 2020+)

Let d be a positive integer and assume that $x_{i}=0$ for $i>d$. Then, $A(w):=\sum_{r \geq 0} A_{r} w^{r+1}$ is algebraic and admits a rational parametrization: for s a formal variable we have

$$
\begin{align*}
& A(w(s))=1-\frac{\left(1+\sum_{k=1}^{d} \alpha_{k} s^{k}\right)^{m-1}}{1+V s}, \quad w(s)=s \frac{\left(1+\sum_{k=1}^{d} \alpha_{k} s^{k}\right)^{m-2}}{(1+V s)^{2}} \tag{5}\\
& \text { where } V=t+\sum_{i=1}^{d}\binom{m i-1}{i} x_{i} V^{(m-1) i} \tag{6}\\
& \text { and } \alpha_{k}:=\sum_{i=k}^{d}\binom{m i-1}{i-k} x_{i} V^{(m-1) i+k-1}, \quad k=1, \ldots, d \tag{7}
\end{align*}
$$

More general result on constellations

Theorem (Bouttier-C. 2020+)

Let d be a positive integer and assume that $x_{i}=0$ for $i>d$. Then, $A(w):=\sum_{r \geq 0} A_{r} w^{r+1}$ is algebraic and admits a rational parametrization: for s a formal variable we have

$$
\begin{gather*}
A(w(s))=1-\frac{\left(1+\sum_{k=1}^{d} \alpha_{k} s^{k}\right)^{m-1}}{1+V s}, \quad w(s)=s \frac{\left(1+\sum_{k=1}^{d} \alpha_{k} s^{k}\right)^{m-2}}{(1+V s)^{2}} \tag{5}\\
\text { where } V=t+\sum_{i=1}^{d}\binom{m i-1}{i} x_{i} V^{(m-1) i} \tag{6}\\
\text { and } \alpha_{k}:=\sum_{i=k}^{d}\binom{m i-1}{i-k} x_{i} V^{(m-1) i+k-1}, \quad k=1, \ldots, d \tag{7}
\end{gather*}
$$

- Eulerian triangulations: $m=3$ and $x_{i}=0$ for $i>1$

More general result on constellations

Theorem (Bouttier-C. 2020+)

Let d be a positive integer and assume that $x_{i}=0$ for $i>d$. Then, $A(w):=\sum_{r \geq 0} A_{r} w^{r+1}$ is algebraic and admits a rational parametrization: for s a formal variable we have

$$
\begin{gather*}
A(w(s))=1-\frac{\left(1+\sum_{k=1}^{d} \alpha_{k} s^{k}\right)^{m-1}}{1+V s}, \quad w(s)=s \frac{\left(1+\sum_{k=1}^{d} \alpha_{k} s^{k}\right)^{m-2}}{(1+V s)^{2}} \tag{5}\\
\text { where } V=t+\sum_{i=1}^{d}\binom{m i-1}{i} x_{i} V^{(m-1) i} \tag{6}\\
\text { and } \alpha_{k}:=\sum_{i=k}^{d}\binom{m i-1}{i-k} x_{i} V^{(m-1) i+k-1}, \quad k=1, \ldots, d \tag{7}
\end{gather*}
$$

- Eulerian triangulations: $m=3$ and $x_{i}=0$ for $i>1$
- Asymptotic results obtained by application of the transfer theorem [Flajolet-Odlyzko 1990]

General framework

- Families \mathscr{F} of planar bicolored maps with an alternating boundary:

General framework

- Families \mathscr{F} of planar bicolored maps with an alternating boundary: characterized by possible degrees for black and white faces, enumerated respectively by variables $\left\{t_{i}\right\}$ and $\left\{\tilde{t}_{i}\right\}$
- Generating function $A\left(t,\left\{t_{i}\right\},\left\{\tilde{t}_{i}\right\} ; w\right):=\sum_{r \geq 0} A_{r} w^{r+1}$

Looking for a recurrence equation

- Strategy: peel the root edge, to get recurrence equation [Tutte 60 's,...]

$$
4
$$

Looking for a recurrence equation

- Strategy: peel the root edge, to get recurrence equation [Tutte 60's,...]
- Problem: alternating boundary is not stable under peeling!

Looking for a recurrence equation

- Strategy: peel the root edge, to get recurrence equation [Tutte 60's,...]
- Problem: alternating boundary is not stable under peeling!
- Solution: start from more general boundary condition

New boundary condition

- Mixed boundary condition: monochromatic + alternating

New boundary condition

- Mixed boundary condition: monochromatic + alternating

New boundary condition

- Mixed boundary condition: monochromatic + alternating
- Monochromatic boundary: well known [Bousquet-Mélou-Schaeffer 2000, Albenque-Bouttier 2012]

Notation

- F_{p} : GF of maps in \mathscr{F} with a monochromatic border of length p

Notation

- F_{p} : GF of maps in \mathscr{F} with a monochromatic border of length p
- $M_{p, r}$: GF of maps in \mathscr{F} with a border made of a monochromatic part of length p, and an alternating part of length $2 r$

$$
\begin{align*}
W(x) & =\sum_{p \geq 0} \frac{F_{p}}{x^{p+1}} \tag{8}\\
A(w) & =\sum_{r \geq 0} A_{r} w^{r+1} \tag{9}\\
M(x, w) & =\sum_{r \geq 1, p \geq 0} \frac{M_{p, r}}{x^{p+1}} w^{r} . \tag{10}
\end{align*}
$$

Recursion for mixed boundary

$M_{p, r}=$

Recursion for mixed boundary

$$
M_{p, r}=\sum_{i \geq 1} t_{i} M_{p+i, r-1}
$$

Recursion for mixed boundary

$$
M_{p, r}=\sum_{i \geq 1} t_{i} M_{p+i, r-1}
$$

Recursion for mixed boundary

$$
M_{p, r}=\sum_{i \geq 1} t_{i} M_{p+i, r-1}+\sum_{p^{\prime}=0}^{p} W_{p^{\prime}} M_{p-p^{\prime}, r-1}
$$

Recursion for mixed boundary

$$
M_{p, r}=\sum_{i \geq 1} t_{i} M_{p+i, r-1}+\sum_{p^{\prime}=0}^{p} W_{p^{\prime}} M_{p-p^{\prime}, r-1}
$$

Recursion for mixed boundary

$$
M_{p, r}=\sum_{i \geq 1} t_{i} M_{p+i, r-1}+\sum_{p^{\prime}=0}^{p} W_{p^{\prime}} M_{p-p^{\prime}, r-1}+\sum_{r^{\prime}=0}^{r-2} A_{r^{\prime}} M_{p, r-r^{\prime}-1},
$$

Recursion for mixed boundary

$M_{p, r}=\sum_{i \geq 1} t_{i} M_{p+i, r-1}+\sum_{p^{\prime}=0}^{p} W_{p^{\prime}} M_{p-p^{\prime}, r-1}+\sum_{r^{\prime}=0}^{r-2} A_{r^{\prime}} M_{p, r-r^{\prime}-1}$,
i.e.
$M(x, w)=w\left(\sum_{i \geq 1} t_{i}\left[x^{i}(M(x, w)+W(x))\right]_{x<0}+x W(x)(M(x, w)+W(x))\right)+A(w) M(x, w)$

Solving the recurrence equation

- Linear equation in M : amenable to the kernel method:

Solving the recurrence equation

- Linear equation in M : amenable to the kernel method:
- Rewritten as: $K(x, w) M(x, w)=R(x, w)$,

$$
\text { where } \begin{aligned}
K(x, w) & =1-A(w)-w x Y(x) \\
R(x, w) & =w x W(x) Y(x)-w \sum_{i \geq 1} t_{i}\left[x^{i}(M(x, w)+W(x))\right]_{x \geq 0} \\
Y(x) & =\sum_{k} t_{k} x^{k-1}+W(x)
\end{aligned}
$$

Solving the recurrence equation

- Linear equation in M : amenable to the kernel method:
- Rewritten as: $K(x, w) M(x, w)=R(x, w)$,

$$
\text { where } \begin{aligned}
K(x, w) & =1-A(w)-w x Y(x) \\
R(x, w) & =w x W(x) Y(x)-w \sum_{i \geq 1} t_{i}\left[x^{i}(M(x, w)+W(x))\right]_{x \geq 0} \\
Y(x) & =\sum_{k} t_{k} x^{k-1}+W(x)
\end{aligned}
$$

- If we find parametrization $\omega(x)$ such that $K(x, \omega(x))=0$, then $R(x, \omega(x))=0$ as well
\rightarrow system of two equations for the two unknowns $\omega(x), A(\omega(x))$

Solving the recurrence equation

- Linear equation in M : amenable to the kernel method:
- Rewritten as: $K(x, w) M(x, w)=R(x, w)$,

$$
\text { where } \begin{aligned}
K(x, w) & =1-A(w)-w x Y(x) \\
R(x, w) & =w x W(x) Y(x)-w \sum_{i \geq 1} t_{i}\left[x^{i}(M(x, w)+W(x))\right]_{x \geq 0} \\
Y(x) & =\sum_{k} t_{k} x^{k-1}+W(x)
\end{aligned}
$$

- If we find parametrization $\omega(x)$ such that $K(x, \omega(x))=0$, then $R(x, \omega(x))=0$ as well
\rightarrow system of two equations for the two unknowns $\omega(x), A(\omega(x))$
- In full generality: second term in R is hard to deal with, but we still have algebraicity of $M(x, w)$ in $w, x, W(x), t_{i}$ [Bousquet-Mélou-Jehanne 2006]

Parametrization for constellations

Parametrization for constellations

- Face weights specialization: $t_{m}=1, \tilde{t}_{k m}=x_{k}$

Parametrization for constellations

- Face weights specialization: $t_{m}=1, \tilde{t}_{k m}=x_{k}$
- Fact: $M_{p, r}=0$ unless m divides p, so that

Parametrization for constellations

- Face weights specialization: $t_{m}=1, \tilde{t}_{k m}=x_{k}$
- Fact: $M_{p, r}=0$ unless m divides p, so that $R(x, w)=w x W(x) Y(x)-x^{m-1} A(w)$.

Parametrization for constellations

- Face weights specialization: $t_{m}=1, \tilde{t}_{k m}=x_{k}$
- Fact: $M_{p, r}=0$ unless m divides p, so that $R(x, w)=w x W(x) Y(x)-x^{m-1} A(w)$.
By the kernel method:

$$
\left\{\begin{array}{l}
w=\frac{Y^{2}}{x^{m-2}} \tag{12}\\
A=1-\frac{x^{m-1}}{Y}
\end{array}\right.
$$

Parametrization for constellations

- Face weights specialization: $t_{m}=1, \tilde{t}_{k m}=x_{k}$
- Fact: $M_{p, r}=0$ unless m divides p, so that $R(x, w)=w x W(x) Y(x)-x^{m-1} A(w)$.
By the kernel method:

$$
\left\{\begin{align*}
w & =\frac{Y^{2}}{x^{m-2}} \tag{12}\\
A & =1-\frac{x^{m-1}}{Y}
\end{align*}\right.
$$

- Rational parametrization of the spectral curve $(x, Y(x))$ (reformulation of a special case of the general results of [Eynard 2016]):

Proposition (Bouttier-C., 2020+)

Let d be a positive integer and assume that $x_{i}=0$ for $i>d$, then, for some formal variable ζ :

$$
\begin{gather*}
\qquad\left\{\begin{array}{l}
x(\zeta)=\zeta+\sum_{k \geq 1} \alpha_{k} \zeta^{k m-1} \\
y(\zeta) \\
=\frac{V}{\zeta}+\zeta^{m-1}
\end{array}\right. \tag{13}\\
\text { where } V=t+\sum_{i=1}^{d}\binom{m i-1}{i} x_{i} V^{(m-1) i} \tag{14}\\
\qquad \alpha_{k}=\sum_{i=k}^{d}\binom{m i-1}{i-k} x_{i} V^{(m-1) i+k-1}, \quad k=1, \ldots, d . \tag{15}
\end{gather*}
$$

Parametrization for constellations

- Combining system $(w(x, Y), A(x, Y))$ and parametrization $(x(\zeta), Y(\zeta))$ yields:

$$
A(w(s))=1-\frac{\left(1+\sum_{k=1}^{d} \alpha_{k} s^{k}\right)^{m-1}}{1+V s}, \quad w(s)=s \frac{\left(1+\sum_{k=1}^{d} \alpha_{k} s^{k}\right)^{m-2}}{(1+V s)^{2}}
$$

where $s=\zeta^{-m}$

Parametrization for constellations

- Combining system $(w(x, Y), A(x, Y))$ and parametrization $(x(\zeta), Y(\zeta))$ yields:

$$
A(w(s))=1-\frac{\left(1+\sum_{k=1}^{d} \alpha_{k} s^{k}\right)^{m-1}}{1+V s}, \quad w(s)=s \frac{\left(1+\sum_{k=1}^{d} \alpha_{k} s^{k}\right)^{m-2}}{(1+V s)^{2}}
$$

where $s=\zeta^{-m}$

- [Eynard 2016]: very general algebraic results for enumeration of bicolored maps with boundaries, but recurrence on the number of monochromatic parts of the boundary: alternating case is of maximal complexity, not really tractable

Perspectives

Perspectives

- More complex boundary conditions: eg. needed for Boltzmann Eulerian quadrangulations

Perspectives

- More complex boundary conditions: eg. needed for Boltzmann Eulerian quadrangulations
- Includes Ising quadrangulations: extract critical exponents?
digon weight τ

$$
\text { coupling } \frac{1}{1-\tau^{2}}
$$

$$
2 k+1
$$

$$
\text { coupling } \frac{\tau}{1-\tau^{2}}
$$

Perspectives

- More complex boundary conditions: eg. needed for Boltzmann Eulerian quadrangulations
- Includes Ising quadrangulations: extract critical exponents?
- Wealth of asymptotic results if needed for other probabilistic works

Perspectives

- More complex boundary conditions: eg. needed for Boltzmann Eulerian quadrangulations
- Includes Ising quadrangulations: extract critical exponents?
- Wealth of asymptotic results if needed for other probabilistic works
- Bijective approach (slices [Bouttier-Guitter 2014, ...])

Thank you for your attention!

