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Does the Černý conjecture hold with high probability?

Topic of the talk

A synchronizing automaton with n states admits a synchroniz-
ing word of length at most (n − 1)2.

The Černý conjecture (1964)
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1. Automata & Synchronization



Deterministic and complete automata

A (complete and deterministic) automaton is a directed graph s.t.:
I vertices are called “states”, and edges are called “transitions”
I For each state and for each letter a of a fixed alphabet A, there is

exactly one outgoing transition labeled by a
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Synchronizing automata

I An automaton is synchronizing when there exists a word that
brings every state to one and the same state

I Such a word is a synchronizing word
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I aaaa is a synchronizing word
I aba is a smaller synchronizing word
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I This automaton is not synchronizing.



Pairwise Synchronization
I A pair of states (p,q) is synchronized when there exists a word u

such that p · u = q · u.

If every pair of states is synchronized, then the automaton is
synchronizing.
More precisely, is every pair is synchronized by a word of
length at most `, then the automaton is synchronized by a word
of length at most n(`− 1).
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Checking Synchronization: Square of an Automaton
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Checking Synchronization: Square of an Automaton
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I Synchronizing iff there is a path from every (p, q) to a state (x, x)
I Checked in O(n2)

I Using the lemma: synchronizing word of length at most n3



The Černý conjecture

A synchronizing automaton with n states admits a synchroniz-
ing word of length at most (n − 1)2.

Conjecture [Černý 64]

I (n − 1)2 is best possible
I n3 is trivial
I First (general) known bound [Frankl] [Pin 83]: 1

6 (n
3 − n).

I the conjecture holds for many families of automata
I [Szykuła 18] improve the coefficient of n3 to 114

685 = 1
6 − 1

4110



2. Settings



Deterministic and complete automata

A (complete and deterministic) automaton is a directed graph s.t.:
I vertices are called “states”, and edges are called “transitions”
I For each state and for each letter a of a fixed alphabet A, there is

exactly one outgoing transition labeled by a
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Random deterministic automata: some models

There are three main probabilistic models:
I Uniform deterministic and complete automata: the target of

each transition is chosen uniformly at random, independently
I Uniform accessible deterministic and complete automata
I Uniform minimal automata

For these models, we can instead consider that each state is final with
some fixed probability p ∈ (0, 1), independently.

In this talk : our model is the first one, the simplest.



Random automata vs random digraphs

For A = {a, b}.

I Random automata: each state has 2 outgoing transitions
I Random digraph (Erdős-Rényi): each edge has probability 2

n
I Let θ be the unique positive real solution of 1 − x = e−2x

(θ ≈ 0.79)

strongly
connected

79% 21%

Random automaton

strongly
connected

63% 16% 21%

Random digraph [Karp 90]



Probabilistic Černý conjecture

What is the probability that an automaton is synchronizing?

Question 1

Does the Černý conjecture hold with high probability?

Question 2



Experiments [Kisielewicz, Kowalski and Szykuła 13]

:

The graphic comes from [Kisielewicz, Kowalski and Szykuła 13]



Answer to Q1: Berlinkov’s theorem

For alphabets with at least two letters, deterministic automata
are synchronizing with high probability.

More precisely, a random automaton is not synchronizing with
probability O( 1

nk/2 ).

Theorem [Berlinkov’16]

I For k = 2, the bound is tight: Θ( 1
n ).



An answer to Q2: this talk

For alphabets with at least two letters, a random automaton
admits a synchronizing word of length at mostO(n log3 n) with
high probability.

Theorem [N. RANDOM’16]

I The proof is independent of Berlinkov’s proof
I It is more elementary
I The error term is not tight
I It provides information on the reset threshold

For alphabets with at least two letters, the Černý conjecture
holds with high probability.

Corollary



An algebraic version

I in an automaton, the action of each letter a on the set of states is a
mapping δa

I we are interested in the monoid generated by the δa’s

Let σ and τ be two uniform random permutations of size n.
With high probability, the group generated by σ and τ is either
the symmetric group or the alternating group.

Theorem (Dixon 69)

I An automaton is synchronized ⇔ the monoid contains a
constant map
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3. Proof sketch



Tuples of random mappings

I We consider uniform random mapping from [n] to itself
I Its functional graph is a set of cycles of trees
I The mapping below has height 3, and it has 6 cyclic points
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I A tuple of uniform random mappings defines a uniform random
automaton (one mapping for the action of each letter)



A property of random p-mappings

With high probability, a uniform random mapping has height
at most 2

√
n log n and has at most 2

√
n log n cyclic points. It

still holds for p-random mappings.

Lemma

I Proof: Birthday paradox.

I random p-mapping: the image of each element is taken
independently in [n], following the probability distribution p.



First step: a-transitions

I Main idea:
I Start from an automaton with no transitions
I Add random transitions as needed

I First, we add all the a-transitions
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Shrinking to a-cyclic points
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I Ca is the set of a-cyclic points

I W.h.p., |Ca| ≤ 2
√

n log n and u = a2
√

n log n maps [n] to Ca

all
states Ca

u
n Õ(

√
n)



Shrinking Ca

I We fix the a-transitions
I We now generate b-transitions starting from the states of Ca
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I We consider the map δv : Ca → Ca defined with v = bu

P (f (p) = q) =
number of preimages of q by u

n



Shrinking Ca

I δv is a random p-mapping on Ca

I Let w = vβn , with βn = 3n1/4(log n)3/4

I W.h.p |Cw| ≤ βn and δw maps Ca to Cw

all
states Ca Cv

u w
n Õ(n1/4)



Shrinking once more

I Using a third letter c, we can do the same trick once again
I If A = {a, b}, with some care, we can use c = bb

all
states Ca Cf C

u w x
n Õ(n1/8)

I W.h.p. the word s = uwx has length at most n7/8 log3 n and maps
the set of states to a set C of size Õ(n1/8).



Synchronizing C

I We synchronize every pair (p, q) of states of C

Repeatedly draw d-transitions starting from p and q:
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I if δs(pi) = δs(qi) the synchronization is a success
I if pi or qi already have a d-transition or if the sequence is too

long, it is a failure
I Proposition: w.h.p. this synchronization process is a success for

every pair of states of C.



Proof sketch

I Shrink the set of states three times to a set C of size ≈ n1/8

I Synchronize pairs of states of C using words of the form di · s
I (technical) adapt the proof to alphabets with two letters

For alphabets with at least two letters, a random automaton
admits a synchronizing word of length at mostO(n log3 n) with
high probability.

Theorem (N. 16)



Further directions

I The expected reset threshold in Θ(
√

n)
I The error term in Θ(1/n)

I Proof of the Černý conjecture ...



Thanks!


