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Divided symmetrization

Let f(x1, . . . , xn) be a polynomial in Q[x1, · · · , xn], then its
divided symmetrization is defined by

〈
f(x1, . . . , xn)

〉
n

:=
∑
w∈Sn

w · f(x1, . . . , xn)∏
1≤i≤n−1

(xi − xi+1)
.
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〈
x2

1
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=
x2
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x1 − x2
+

x2
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(Proof: Symn( f
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) = Antin(f)
∆n

with ∆n =
∏
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Let Rn be the component of Q[x1, . . . , xn] of degree n− 1.

Let f be homogeneous of degree deg(f) = d. Then〈
f(x1, . . . , xn)

〉
n

= 0 if d < n− 1, while
〈
f(x1, . . . , xn)

〉
n

has
degree d− n+ 1 if d ≥ n− 1.



Origin story

The space Rn has a monomial basis given by xc := xc11 · · ·xcnn
where

∑
i ci = n− 1, thus has dimension

(
2n−2
n−1

)
.

From now on we study
〈
·
〉
n

: Rn → Q.
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to be the convex hull of all points (zσ(1), . . . , zσ(n)) with
σ ∈ Sn. Let Vn(z1, . . . , zn) be the (suitably normalized) volume of
Pn(z1, . . . , zn).

Theorem [Postnikov ’06]
Vn(z1, . . . , zn) =

〈
(z1x1 + z2x2 + · · ·+ znxn)n−1

〉
n

.

Expanding this, Vn(z1, . . . , zn) is thus a polynomial in
z1, . . . , zn with coefficients given by the

〈
xc
〉
n

.
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The evaluation of
〈
xc
〉
n

is also due to Postnikov. It was
reformulated and reproved by Petrov (2016), and we give this
version here:
Given c ∈ Nn s.t.

∑
i ci = n− 1, first attach to it a set

Sc ⊆ [n− 1] as follows: build a path by attaching to ci the step
(1, ci − 1), and record the points with negative y-coordinates.

Proposition
〈
xc
〉
n

= (−1)|Sc|βc.

c = (0, 3, 0, 0, 0, 1, 3, 0)

Sc = {1, 4, 5, 6}.

1 2 3 4 5 6 7

βc := # {w ∈ Sn such that for all i, wi > wi+1 iff i ∈ Sc}.

For c = (0, 2, 0), Sc = {1} and βc = #{213, 312} = 2, so
〈
x2

2

〉
3

= −2.
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Let f be a quasisymmetric function (f ∈ QSym). We denote
by f(x1, · · · , xm) the quasisymmetric polynomial obtained by
setting xi = 0 for i > m. We then denote by f(1j) the value
of f(x1, · · · , xj) at (1, . . . , 1).



Evaluation at quasisymmetric polynomials

Theorem [N.-Tewari ’19] For any f ∈ QSym(n−1),

∑
j≥0

f(1j)tj =

∑n−1
m=0

〈
f(x1, . . . , xm)

〉
n
tm

(1− t)n
.

Remark This gives an expression for
〈
f(x1, · · · , xm)

〉
n

as a

linear combination of the values f(1j) for j ≤ m.
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Remark This gives an expression for
〈
f(x1, · · · , xm)

〉
n

as a

linear combination of the values f(1j) for j ≤ m.

Proof sketch: 1) By linearity, it is enough to prove the
formula for f = Mα.
2) One can evaluate the l.h.s. and we get the following
identity, equivalent to the theorem:〈
Mα(x1, . . . , xm)

〉
n

= (−1)m−`(α)
(
n−1−`(α)
m−`(α)

)
3) To prove this identity, one shows first that the l.h.s. only
depends on `(α), and concludes by evaluating at a special α.



Evaluation at quasisymmetric polynomials

The preceding theorem is especially nice to apply in the case of
Fα, the fundamental quasisymmetric functions.

Corollary If |α| = n− 1, one has
〈
Fα(x1, . . . , xm)

〉
n

= 0 if
`(α) < m, and = 1 if m = `(α).
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Origin story (bis) Our study of
〈
·
〉
n

came from the
investigation of the cohomology class of the Peterson variety.
Its coefficient aw on the Schubert class σw is given precisely by〈
Sw

〉
n

, where Sw is a Schubert polynomial.
Now if w is a Grassmannian permutation, then Sw is a Schur
polynomial sλ(x1, . . . , xm). We can then apply the result
above to show that aw is the number of standard tableaux of
shape λ with m− 1 descents.
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is the ideal generated by homogeneous symmetric polynomials
in x1, . . . , xn of positive degree.
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Theorem [N.-Tewari ’19] The form
〈
·
〉
n

vanishes on Rn ∩ Jn
where the ideal Jn ⊂ Q[xn] is generated by homogeneous
quasisymmetric polynomials in x1, . . . , xn of positive degree.

Rn = (Rn ∩ Jn)⊕Vect (xc | Sc = ∅).

Corollary Write f ∈ Rn as f = g + h according to the
decomposition above. Then

〈
f
〉
n

= h(1, . . . , 1).

By the work of Aval-Bergeron-Bergeron (2004), one has
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