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Surfaces and embedded graphs

@ A surface is a space that looks locally like the plane.

@ In this talk we care about connected, orientable Surfaces, which are
classified by their number of holes (genus) and their number

of boundaries.
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o A closed curve on a surface S is a continuous map S' — S.

@ We consider closed curves in general position, e.g., with a
finite number of transverse intersections.
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Tightening curves

@ Given a family of closed curves on a surface, we want to
tighten them, i.e., deform them continuously until they have a
minimum number of crossings.

@ This can be done using isotopies and a finite set of homotopy
moves:
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Questions

@ How to compute the tightened curves? (minimal position)

@ How many moves are needed?

© s it ever needed to increase the number of crossings?
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Questions

@ How to compute the tightened curves? (minimal position)
@ How many moves are needed?

© s it ever needed to increase the number of crossings? No.

Theorem (Hass and Scott '94, de Graaf and Schrijver '97)

There exists a monotone sequence of homotopy moves to tighten
any collection of closed curves.
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Questions

@ How to compute the tightened curves? (minimal position)
@ How many monotone moves are needed?

© s it ever needed to increase the number of crossings? No.

Theorem (Hass and Scott '94, de Graaf and Schrijver '97)

There exists a monotone sequence of homotopy moves to tighten
any collection of closed curves.
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Some answers

Theorem (Chang, dM '20)

O(n°/g? + gn®) monotone homotopy moves are sufficient to
tighten any collection of curves with n crossings on a surface* of
genus g.

These moves can be computed in the same time, thus giving a
polynomial-time algorithm.
Previously known:

@ Exponential bound on monotone homotopy moves.

@ Polynomial-time algorithm to compute minimal position of a
single curve [Despré Lazarus '17].

@ Polynomial bound on homotopy moves for a single curve but
not monotone [Chang Erickson Letscher dM Schleimer
Sedgwick Tillmann Thurston '18].

*. except the torus (!)
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Why would | care about monotone homotopy moves for
multiple curves?
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Electrical moves

Take a graph G embedded on a surface. Allow it to be modified
with facial electrical moves:

ISP SO S
-
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Electrical moves

Take a graph G embedded on a surface. Allow it to be modified
with rcal electrical moves:

PR AT
YQ

@ These moves are useful for resistor networks [Kennelly 1899],
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Electrical moves

Take a graph G embedded on a surface. Allow it to be modified
with rcal electrical moves:

ISP SO UB S|
-

@ These moves are useful for polyhedra [Steinitz 1916],

QO
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Electrical moves

Take a graph G embedded on a surface. Allow it to be modified
with rcal electrical moves:

ISP SO UB S|
-

@ These moves are useful for structural graph theory
[Robertson Seymour Thomas 1993]...
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Minimizing graphs with electrical moves

How to make a graph as small as possible with electrical moves? )

Previous work: planar graphs with at most 4 terminals [Demasi
Mohar 2015].

Topological approach:

e Consider the medial graph.
@ Vertices have degree four — family of curves.

@ Almost like homotopy moves!

PRI S
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Minimizing graphs with electrical moves

How to make a graph as small as possible with electrical moves? )

Previous work: planar graphs with at most 4 terminals [Demasi
Mohar 2015].

Topological approach:
e Consider the medial graph.

@ Vertices have degree four — family of curves.
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Minimizing electrical graphs in polynomial time

One solution:
@ Use monotone homotopy moves to tighten the curves of the
medial graph,
but instead of <X —3 X do <X —> X

(2]
© restart the tightening with the new family of curves, loop to
(%)

(1),

end when the family of curves that is tight.

The number of crossings never increases, and, using our theorem,
step (1) is polynomially long,
— polynomial number of moves.

That would not work with a non-monotone sequence of moves.

Theorem (Chang Cossarini Erickson '19)

If a family of curves is tight for homotopy moves, it is also tight for
electrical moves.
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Back to tightening curves monotonically
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Friends...

@ When tightening curves, empty monogons X and bigons
can be removed instantly.

o But what if there is stuff inside?

Theorem (Steinitz 1916)

A minimal bigon always has a triangle incident to one of the two

curves, and thus can be emptied and removed in a linear number of
moves.
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and foes

But when the bigon is not embedded, things get tricky:
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Outside help: geometry

e A hyperbolic metric on a surface is a metric with constant
negative curvature, i.e., points are locally isometric to saddles.

Any surface of genus g with b boundaries such that 2g + b > 2 can
be endowed with a hyperbolic metric.

In this talk, we focus on those surfaces with 2g + b > 2.

e A geodesic is a closed curve minimizing lengths locally.
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Outside help

Hyperbolic geometry helps a lot because, with such a metric

@ Every closed curve is homotopic to a unique geodesic, and
@ primitive Geodesics are in minimal position.

Our first step is thus to endow S with a (well chosen) hyperbolic
metric and straighten the curves for that metric.

Pushing all the way to geodesics is too expensive but we can push
curves to a small neighborhood of the geodesics.

e Everything outside of this small neighborhood will never be
needed in the homotopy. — Surface with boundary.
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Pushing to geodesics [Hass Scott 94, de Graaf Schrijver 97]

To push the curves towards their geodesics, we straighten paths
iteratively in disks.

XXX

Theorem (Ringel 1956)

Paths in a Euclidean or hyperbolic disk can be straightened in a
polynomial number of monotone homotopy moves.
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Straightening

Disks well chosen + hyperbolic computations

— polynomial number of rounds to get to a small neighborhood of
the geodesics that does not cover the whole surface.

— Reduction to the case of a surface with boundary.

Does not work for the torus. \
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Hyperbolic considerations

- — = — = -

In hyperbolic geometry, a curve equidistant to a geodesic is not a
geodesic. This is what allows us to quantify our progress.
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Straightening

Disks well chosen + hyperbolic computations

— polynomial number of rounds to get to a small neighborhood of
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Surfaces with boundary

Topologically, a surface with boundary is like the neighborhood of a
graph.

@ Curves on the surface correspond to walks on the graph.

@ We can tinker the curves so that the walks contain no spurs
and all the crossings happen in the clusters (=vertices) of the
graph.

These walks are topological invariants of the curves.

Cluster and pipe expansions from graph drawing [Cortese di
Battista Patrignani Pizzonia '09]
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Cluster expansions

Straighten the curve in the clusters, and expand the clusters.

-
.

Morally, it is safe to do so because the walks force the situation at
the cluster.
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Pipe expansions

Then expand the pipes (=edges).

Some potential drops at each step...
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Braids

...and after a polynomial number of rounds, the curves do not
branch at the clusters anymore, i.e., look like braids.

.

) Q)
)
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Now, the situation is roughly the same as for curves in an annulus,
for which a quadratic bound exists [Geck and Pfeiffer '93, de Graaf
and Schrijver '97].
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Concluding words

Monster in the closet: terminal-leaf reductions

Two open problems:

@ Solve the case of the torus.
@ Obtain tight bounds, notably:

Feo-Provan Conjecture

In the plane, the number of monotone homotopy moves to tighten
a collection of closed curves/electrical moves to reduce a graph to a
point is ©(n%/?).

The non-monotone lower bound and upper bound are known
[Chang Erickson "17].
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Thank you! Questions?
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