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Surfaces and embedded graphs

A surface is a space that looks locally like the plane.
In this talk we care about connected, orientable surfaces, which are
classified by their number of holes (genus) and their number
of boundaries.

A closed curve on a surface S is a continuous map S1 → S .
We consider closed curves in general position, e.g., with a
finite number of transverse intersections.
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Tightening curves

Given a family of closed curves on a surface, we want to
tighten them, i.e., deform them continuously until they have a
minimum number of crossings.

This can be done using isotopies and a finite set of homotopy
moves:
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Questions

Questions
1 How to compute the tightened curves? (minimal position)
2 How many moves are needed?
3 Is it ever needed to increase the number of crossings?

No.

Theorem (Hass and Scott ’94, de Graaf and Schrijver ’97)

There exists a monotone sequence of homotopy moves to tighten
any collection of closed curves.
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Some answers

Theorem (Chang, dM ’20)

Õ(n5/g2 + gn3) monotone homotopy moves are sufficient to
tighten any collection of curves with n crossings on a surface* of
genus g .

These moves can be computed in the same time, thus giving a
polynomial-time algorithm.
Previously known:

Exponential bound on monotone homotopy moves.
Polynomial-time algorithm to compute minimal position of a
single curve [Despré Lazarus ’17].
Polynomial bound on homotopy moves for a single curve but
not monotone [Chang Erickson Letscher dM Schleimer
Sedgwick Tillmann Thurston ’18].

*: except the torus (!)

14 / 46



Why would I care about monotone homotopy moves for
multiple curves?
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Electrical moves

Take a graph G embedded on a surface. Allow it to be modified
with facial electrical moves:
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Electrical moves

Take a graph G embedded on a surface. Allow it to be modified
with facial electrical moves:

These moves are useful for structural graph theory
[Robertson Seymour Thomas 1993]...
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Minimizing graphs with electrical moves

How to make a graph as small as possible with electrical moves?

Previous work: planar graphs with at most 4 terminals [Demasi
Mohar 2015].

Topological approach:

Consider the medial graph.
Vertices have degree four → family of curves.
Almost like homotopy moves!
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Minimizing electrical graphs in polynomial time

One solution:
1 Use monotone homotopy moves to tighten the curves of the

medial graph,
2 but instead of , do ,
3 restart the tightening with the new family of curves, loop to

(1),
4 end when the family of curves that is tight.

Complexity
The number of crossings never increases, and, using our theorem,
step (1) is polynomially long,
→ polynomial number of moves.

That would not work with a non-monotone sequence of moves.

Theorem (Chang Cossarini Erickson ’19)

If a family of curves is tight for homotopy moves, it is also tight for
electrical moves.
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Back to tightening curves monotonically
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Friends...

When tightening curves, empty monogons and bigons
can be removed instantly.

But what if there is stuff inside?

Theorem (Steinitz 1916)

A minimal bigon always has a triangle incident to one of the two
curves, and thus can be emptied and removed in a linear number of
moves.
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... and foes

But when the bigon is not embedded, things get tricky:

27 / 46



Outside help: geometry

A hyperbolic metric on a surface is a metric with constant
negative curvature, i.e., points are locally isometric to saddles.

Theorem
Any surface of genus g with b boundaries such that 2g + b > 2 can
be endowed with a hyperbolic metric.

In this talk, we focus on those surfaces with 2g + b > 2.

A geodesic is a closed curve minimizing lengths locally.
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Outside help

Hyperbolic geometry helps a lot because, with such a metric

Every closed curve is homotopic to a unique geodesic, and
primitive Geodesics are in minimal position.

Our first step is thus to endow S with a (well chosen) hyperbolic
metric and straighten the curves for that metric.

Pushing all the way to geodesics is too expensive but we can push
curves to a small neighborhood of the geodesics.

Everything outside of this small neighborhood will never be
needed in the homotopy. → Surface with boundary.
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Pushing to geodesics [Hass Scott 94, de Graaf Schrijver 97]

To push the curves towards their geodesics, we straighten paths
iteratively in disks.

Theorem (Ringel 1956)

Paths in a Euclidean or hyperbolic disk can be straightened in a
polynomial number of monotone homotopy moves.

30 / 46



Straightening

Disks well chosen + hyperbolic computations
→ polynomial number of rounds to get to a small neighborhood of
the geodesics that does not cover the whole surface.
→ Reduction to the case of a surface with boundary.

Caveat
Does not work for the torus.
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Hyperbolic considerations

In hyperbolic geometry, a curve equidistant to a geodesic is not a
geodesic. This is what allows us to quantify our progress.
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Surfaces with boundary

Topologically, a surface with boundary is like the neighborhood of a
graph.

=

Curves on the surface correspond to walks on the graph.
We can tinker the curves so that the walks contain no spurs
and all the crossings happen in the clusters (=vertices) of the
graph.

These walks are topological invariants of the curves.

Main tool
Cluster and pipe expansions from graph drawing [Cortese di
Battista Patrignani Pizzonia ’09]
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Cluster expansions

Straighten the curve in the clusters, and expand the clusters.

Morally, it is safe to do so because the walks force the situation at
the cluster.
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Pipe expansions

Then expand the pipes (=edges).

Some potential drops at each step...

43 / 46



Braids

...and after a polynomial number of rounds, the curves do not
branch at the clusters anymore, i.e., look like braids.

Now, the situation is roughly the same as for curves in an annulus,
for which a quadratic bound exists [Geck and Pfeiffer ’93, de Graaf
and Schrijver ’97].
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Concluding words

Monster in the closet: terminal-leaf reductions

Two open problems:
1 Solve the case of the torus.
2 Obtain tight bounds, notably:

Feo-Provan Conjecture
In the plane, the number of monotone homotopy moves to tighten
a collection of closed curves/electrical moves to reduce a graph to a
point is Θ(n3/2).

The non-monotone lower bound and upper bound are known
[Chang Erickson ’17].
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Thank you! Questions?
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