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Definition : maps

Map = gluing of polygons along their edges to create a (compact, connected,
oriented) surface
Genus g of the map = genus of the surface = # of handles
Rooted = an oriented edge is distinguished



Definition : triangulations and bipartite maps

Triangulations = only triangles
Bipartite maps = polygons have bicolored vertices



Asymptotic properties of random maps

What does a large, uniform random map look like ?

Observable : local limit, i.e what does the neighborhood of the
root look like ?
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Asymptotic properties of random maps

What does a large, uniform random map look like ?

Observable : local limit, i.e what does the neighborhood of the
root look like ?

Map inclusion : t ⊂ T

⊂

Local limit:

Tn → T iff for all finite t : P(t ⊂ Tn)→ P(t ⊂ T)

t
T



Let Tn be a random uniform triangulation
of the sphere with 2n triangles

The UIPT

image : I.
Kortchemski

[Angel, Schramm ’02] : the sequence Tn
converges to the Uniform Infinite Planar
Triangulation (UIPT).



High genus triangulations

Let gn
n → θ with θ ∈ [0, 12 [.

Let (Tn) be a sequence of random triangulations, such that Tn is drawn uniformly
among all triangulations of genus gn with 2n triangles.

Average degree of a vertex = 6
1−2θ (asymptotically) vs 6 in triangulations of the sphere
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High genus triangulations

Let gn
n → θ with θ ∈ [0, 12 [.

Let (Tn) be a sequence of random triangulations, such that Tn is drawn uniformly
among all triangulations of genus gn with 2n triangles.

Average degree of a vertex = 6
1−2θ (asymptotically) vs 6 in triangulations of the sphere

Conjecture [Benjamini, Curien ’12]
(Tn) converges locally to Tλ, the Planar Stochastic infinite Hyperbolic Triangulation
(PSHT), a one-parameter hyperbolic deformation of the UIPT.

Theorem [Budzinski, L. ’18+] : the conjecture
of Benjamini and Curien is true.
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For maps, a good ”universal” model is bipartite maps with prescribed degrees :
for all i, a fraction αi of the faces have size 2i.
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Universality

Universality : same phenomenon for different models

For maps, a good ”universal” model is bipartite maps with prescribed degrees :
for all i, a fraction αi of the faces have size 2i.

In the planar case, local convergence by Budd ’15
Geometry of the limiting object studied by Budd-Curien ’16

High genus case : Budzinski-L. ’20+ (in progress)
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Obtain precise asymptotics for τ(n, g) (the number of maps of genus g
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n
→ θ (and same for bipartite maps)

The proof for the UIPT relies heavily on precise asymptotic enumeration of planar
triangulations
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Basic tools

Spatial Markov property of the PSHT : P(t ⊂ Tλ) = Cpλ
v

Peeling process : Discover a triangulation step by step, unveil
triangles.

= (x2)or

when peeling Tλ, we know the probability of each event occuring at each step !

For bipartite maps, a similar peeling algorithm/spatial Markov property exists

p = perimeter, v=volume



Basic tools II

Enumeration : recurrence formula for triangulations [Goulden-Jackson ’08]

(n+ 1)τ(n, g) = 4n(3n− 2)(3n− 4)τ(n− 2, g − 1) + 4(3n− 1)τ(n− 1, g)

+4
∑
i+j=n−2

∑
g1+g2=g

(3i+ 2)(3j + 2)τ(i, g1)τ(j, g2)



Basic tools II

Enumeration : recurrence formula for triangulations [Goulden-Jackson ’08]

(n+ 1)τ(n, g) = 4n(3n− 2)(3n− 4)τ(n− 2, g − 1) + 4(3n− 1)τ(n− 1, g)

+4
∑
i+j=n−2

∑
g1+g2=g

(3i+ 2)(3j + 2)τ(i, g1)τ(j, g2)

For bipartite maps with prescribed face degrees : [L. ’19]

(
n+ 1

2

)
Bg(f) =

∑
s+t=f
s,t6=0

g1+g2+g
∗=g

(1 + n1)

(
v2

2g∗ + 2

)
Bg1(s)Bg2(t) +

∑
g∗≥0

(
v + 2g∗

2g∗ + 2

)
Bg−g∗(f)

Bg(f)= number of bipartite maps of genus g with fi faces of size 2i,
f = (f1, f2, . . . )
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1) In every subsequence, there is a converging subsubsequence
(aka tightness)

2) What are the possible limits ?

3) There is only one possible limit



The proof

1) In every subsequence, there is a converging subsubsequence
(aka tightness)

2) What are the possible limits ?

3) There is only one possible limit

For bipartite maps : similar strategy of proof, but in HARD MODE
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As with the UIPT, equivalent to show that the degree of the root vertex is a.s.
finite

Key tool : bounded ratio lemma : for g
n <

1
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is a constant Cε s.t. :
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1) Tightness — how do we prove it ?

As with the UIPT, equivalent to show that the degree of the root vertex is a.s.
finite

Key tool : bounded ratio lemma : for g
n <

1
2 − ε, there

is a constant Cε s.t. :

τ(n, g)

τ(n− 1, g)
< Cε

For bipartite maps : for g
n <

1
2 − ε and fi

n > ε:

Bg(f)

Bg(f − 1i)
< C̃ε



The bounded ratio lemma
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The bounded ratio lemma

Thus εnτ(n, g) ≤ 6
ε
· 6nτ(n− 1, g)

There are n+ 2− 2g ≥ 2εn vertices,
and the average degree is

6n
n+2−2g ≤

3
ε

→ there are ≥ εn vertices of degree
≤ 6

ε

Pick such a vertex v, and contract
an adjacent edge

Remember deg(v) and an oriented
edge . . .

. . . only one way to go backwards

d

For g
n <

1
2 − ε, τ(n,g)

τ(n−1,g) < Cε

For bipartite maps : way more complicated, less local, more ”destructive”



One-endedness and planarity

Proven by using the recurrence formulas (and the bounded ratio lemma)

∞
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2) The potential limits

Weak spatial Markov property:
P(t ⊂ Tn) depends only on the perimeter and volume of t

Theorem: [Budzinski-L. ’19]
if T is a random infinite planar one ended triangulation satisfying the weak
Markov property, then T is a PSHT with a random parameter Λ

Proof involves the peeling algorithm and the Hausdorff moments method

For bipartite maps, same theorem, but this time we deal with an infinity of
parameters instead of just one.
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3) Unicity of the potential limit

Two holes argument :
The hyperbolicity is uniform all around the map

Finishing the proof with a local observable : the inverse root degree
(explicitly calculable in the PSHT and in high genus triangulations)

Two holes argument for bipartite maps :
The hyperbolicity and the proportion of faces of each size are uniform

Finishing the proof : completely different argument, way more complicated
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τ(n− 1, gn)
→ c(θ)

Bonus : asymptotics
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τ(n, gn)

τ(n− 1, gn)
→ c(θ)

Bonus : asymptotics

Bgn(f)

Bgn(f − 1i)
→ ci(θ, (αj)j≥0)

Bgn(f) = n2gn exp (nf(θ, (aj)j≥1 + o(n))



Thank you !


