Universality for local limits of high genus maps

Baptiste Louf (IRIF Paris Diderot)
joint work with Thomas Budzinski

image: N. Curien

Work supported by the grant ERC - Stg 716083 - "CombiTop"

Definition : maps

Map $=$ gluing of polygons along their edges to create a (compact, connected, oriented) surface
Genus g of the map $=$ genus of the surface $=\#$ of handles Rooted $=$ an oriented edge is distinguished

Definition : triangulations and bipartite maps

Triangulations $=$ only triangles
Bipartite maps $=$ polygons have bicolored vertices

Asymptotic properties of random maps

What does a large, uniform random map look like?
Observable : local limit, i.e what does the neighborhood of the root look like?

Asymptotic properties of random maps

What does a large, uniform random map look like ?
Observable : local limit, i.e what does the neighborhood of the root look like ?
Map inclusion : $t \subset \mathbb{T}$

Asymptotic properties of random maps

What does a large, uniform random map look like ?
Observable : local limit, i.e what does the neighborhood of the root look like ?
Map inclusion : $t \subset \mathbb{T}$

Local limit:
$T_{n} \rightarrow \mathbb{T}$ iff for all finite $t: \mathbb{P}\left(t \subset T_{n}\right) \rightarrow \mathbb{P}(t \subset \mathbb{T})$

The UIPT

Let T_{n} be a random uniform triangulation of the sphere with $2 n$ triangles
[Angel, Schramm '02] : the sequence T_{n} converges to the Uniform Infinite Planar Triangulation (UIPT).

High genus triangulations

Let $\frac{g_{n}}{n} \rightarrow \theta$ with $\theta \in\left[0, \frac{1}{2}[\right.$.
Let $\left(T_{n}\right)$ be a sequence of random triangulations, such that T_{n} is drawn uniformly among all triangulations of genus g_{n} with $2 n$ triangles.

Average degree of a vertex $=\frac{6}{1-2 \theta}$ (asymptotically) vs 6 in triangulations of the sphere

High genus triangulations

Let $\frac{g_{n}}{n} \rightarrow \theta$ with $\theta \in\left[0, \frac{1}{2}[\right.$.
Let $\left(T_{n}\right)$ be a sequence of random triangulations, such that T_{n} is drawn uniformly among all triangulations of genus g_{n} with $2 n$ triangles.

Average degree of a vertex $=\frac{6}{1-2 \theta}$ (asymptotically) vs 6 in triangulations of the sphere
Conjecture [Benjamini, Curien '12]
$\left(T_{n}\right)$ converges locally to \mathbb{T}_{λ}, the Planar Stochastic infinite Hyperbolic Triangulation (PSHT), a one-parameter hyperbolic deformation of the UIPT.

High genus triangulations

Let $\frac{g_{n}}{n} \rightarrow \theta$ with $\theta \in\left[0, \frac{1}{2}[\right.$.
Let $\left(T_{n}\right)$ be a sequence of random triangulations, such that T_{n} is drawn uniformly among all triangulations of genus g_{n} with $2 n$ triangles.

Average degree of a vertex $=\frac{6}{1-2 \theta}$ (asymptotically) vs 6 in triangulations of the sphere
Conjecture [Benjamini, Curien '12]
$\left(T_{n}\right)$ converges locally to \mathbb{T}_{λ}, the Planar Stochastic infinite Hyperbolic Triangulation (PSHT), a one-parameter hyperbolic deformation of the UIPT.

Theorem [Budzinski, L. '18+] : the conjecture of Benjamini and Curien is true.

image: N. Curien

Universality

Universality: same phenomenon for different models
For maps, a good "universal" model is bipartite maps with prescribed degrees : for all i, a fraction α_{i} of the faces have size $2 i$.

Universality

Universality: same phenomenon for different models
For maps, a good "universal" model is bipartite maps with prescribed degrees : for all i, a fraction α_{i} of the faces have size $2 i$.

In the planar case, local convergence by Budd '15 Geometry of the limiting object studied by Budd-Curien '16

Universality

Universality: same phenomenon for different models
For maps, a good "universal" model is bipartite maps with prescribed degrees : for all i, a fraction α_{i} of the faces have size $2 i$.

In the planar case, local convergence by Budd '15 Geometry of the limiting object studied by Budd-Curien '16

High genus case : Budzinski-L. '20+ (in progress)

How to not prove it

The proof for the UIPT relies heavily on precise asymptotic enumeration of planar triangulations

How to not prove it

The proof for the UIPT relies heavily on precise asymptotic enumeration of planar triangulations

Obtain precise asymptotics for $\tau(n, g)$ (the number of maps of genus g with $2 n$ triangles) as $\frac{g}{n} \rightarrow \theta$ (and same for bipartite maps)

How to not prove it

The proof for the UIPT relies heavily on precise asymptotic enumeration of planar triangulations

Obtain precise asymptotics for $\tau(n, g)$ (the number of maps of genus g with $2 n$ triangles) as $\frac{g}{n} \rightarrow \theta$ (and same for bipartite maps)

Basic tools

Spatial Markov property of the PSHT : $\mathbb{P}\left(t \subset \mathbb{T}_{\lambda}\right)=C_{p} \lambda^{v}$

$$
p=\text { perimeter, } v=\text { volume }
$$

Basic tools

Spatial Markov property of the PSHT : $\mathbb{P}\left(t \subset \mathbb{T}_{\lambda}\right)=C_{p} \lambda^{v}$

$$
p=\text { perimeter }, v=\text { volume }
$$

Peeling process: Discover a triangulation step by step, unveil triangles.

Basic tools

Spatial Markov property of the PSHT : $\mathbb{P}\left(t \subset \mathbb{T}_{\lambda}\right)=C_{p} \lambda^{v}$

$$
p=\text { perimeter, } v=\text { volume }
$$

Peeling process: Discover a triangulation step by step, unveil triangles.

Basic tools

Spatial Markov property of the PSHT : $\mathbb{P}\left(t \subset \mathbb{T}_{\lambda}\right)=C_{p} \lambda^{v}$

$$
p=\text { perimeter, } v=\text { volume }
$$

Peeling process: Discover a triangulation step by step, unveil triangles.

($\times 2$)

Basic tools

Spatial Markov property of the PSHT : $\mathbb{P}\left(t \subset \mathbb{T}_{\lambda}\right)=C_{p} \lambda^{v}$

$$
p=\text { perimeter, } v=\text { volume }
$$

Peeling process: Discover a triangulation step by step, unveil triangles.

$(\times 2)$
when peeling \mathbb{T}_{λ}, we know the probability of each event occuring at each step !

Basic tools

Spatial Markov property of the PSHT : $\mathbb{P}\left(t \subset \mathbb{T}_{\lambda}\right)=C_{p} \lambda^{v}$

$$
p=\text { perimeter, } v=\text { volume }
$$

Peeling process: Discover a triangulation step by step, unveil triangles.

when peeling \mathbb{T}_{λ}, we know the probability of each event occuring at each step !

For bipartite maps, a similar peeling algorithm/spatial Markov property exists

Basic tools II

Enumeration : recurrence formula for triangulations [Goulden-Jackson '08]

$$
\begin{aligned}
(n+1) \tau(n, g)= & 4 n(3 n-2)(3 n-4) \tau(n-2, g-1)+4(3 n-1) \tau(n-1, g) \\
& +4 \sum_{i+j=n-2} \sum_{g_{1}+g_{2}=g}(3 i+2)(3 j+2) \tau\left(i, g_{1}\right) \tau\left(j, g_{2}\right)
\end{aligned}
$$

Basic tools II

Enumeration : recurrence formula for triangulations [Goulden-Jackson '08]

$$
\begin{aligned}
(n+1) \tau(n, g)= & 4 n(3 n-2)(3 n-4) \tau(n-2, g-1)+4(3 n-1) \tau(n-1, g) \\
& +4 \sum_{i+j=n-2} \sum_{g_{1}+g_{2}=g}(3 i+2)(3 j+2) \tau\left(i, g_{1}\right) \tau\left(j, g_{2}\right)
\end{aligned}
$$

For bipartite maps with prescribed face degrees: [L. '19]

$$
\binom{n+1}{2} B_{g}(\mathbf{f})=\sum_{\substack{\mathbf{s}+\mathbf{t}=\mathbf{f} \\ \mathbf{s}, \mathbf{f}=\mathbf{0} \\ g_{1}+g_{2}+g^{*}=g}}\left(1+n_{1}\right)\binom{v_{2}}{2 g^{*}+2} B_{g_{1}}(\mathbf{s}) B_{g_{2}}(\mathbf{t})+\sum_{g^{*} \geq 0}\binom{v+2 g^{*}}{2 g^{*}+2} B_{g-g *}(\mathbf{f})
$$

$B_{g}(\mathbf{f})=$ number of bipartite maps of genus g with f_{i} faces of size $2 i$, $\mathbf{f}=\left(f_{1}, f_{2}, \ldots\right)$

The proof

1) In every subsequence, there is a converging subsubsequence (aka tightness)
2) What are the possible limits ?
3) There is only one possible limit

The proof

1) In every subsequence, there is a converging subsubsequence (aka tightness)
2) What are the possible limits ?
3) There is only one possible limit

For bipartite maps : similar strategy of proof, but in HARD MODE

1) Tightness - how do we prove it ?

As with the UIPT, equivalent to show that the degree of the root vertex is a.s. finite

Key tool : bounded ratio lemma : for $\frac{g}{n}<\frac{1}{2}-\varepsilon$, there is a constant C_{ε} s.t. :

$$
\frac{\tau(n, g)}{\tau(n-1, g)}<C_{\varepsilon}
$$

1) Tightness - how do we prove it ?

As with the UIPT, equivalent to show that the degree of the root vertex is a.s. finite

Key tool : bounded ratio lemma : for $\frac{g}{n}<\frac{1}{2}-\varepsilon$, there is a constant C_{ε} s.t. :

$$
\frac{\tau(n, g)}{\tau(n-1, g)}<C_{\varepsilon}
$$

For bipartite maps: for $\frac{g}{n}<\frac{1}{2}-\varepsilon$ and $\frac{f_{i}}{n}>\varepsilon$:

$$
\frac{B_{g}(\mathbf{f})}{B_{g}\left(\mathbf{f}-\mathbf{1}_{i}\right)}<\tilde{C}_{\varepsilon}
$$

The bounded ratio lemma

For $\frac{g}{n}<\frac{1}{2}-\varepsilon, \frac{\tau(n, g)}{\tau(n-1, g)}<C_{\varepsilon}$
There are $n+2-2 g \geq 2 \varepsilon n$ vertices, and the average degree is
$\frac{6 n}{n+2-2 g} \leq \frac{3}{\varepsilon}$
\rightarrow there are $\geq \varepsilon n$ vertices of degree
$\leq \frac{6}{\varepsilon}$

The bounded ratio lemma

For $\frac{g}{n}<\frac{1}{2}-\varepsilon, \frac{\tau(n, g)}{\tau(n-1, g)}<C_{\varepsilon}$

There are $n+2-2 g \geq 2 \varepsilon n$ vertices, and the average degree is
$\frac{6 n}{n+2-2 g} \leq \frac{3}{\varepsilon}$
\rightarrow there are $\geq \varepsilon n$ vertices of degree
$\leq \frac{6}{\varepsilon}$
Pick such a vertex v, and contract an adjacent edge

The bounded ratio lemma

For $\frac{g}{n}<\frac{1}{2}-\varepsilon, \frac{\tau(n, g)}{\tau(n-1, g)}<C_{\varepsilon}$

There are $n+2-2 g \geq 2 \varepsilon n$ vertices, and the average degree is

$$
\frac{6 n}{n+2-2 g} \leq \frac{3}{\varepsilon}
$$

\rightarrow there are $\geq \varepsilon n$ vertices of degree
$\leq \frac{6}{\varepsilon}$
Pick such a vertex v, and contract an adjacent edge

The bounded ratio lemma

For $\frac{g}{n}<\frac{1}{2}-\varepsilon, \frac{\tau(n, g)}{\tau(n-1, g)}<C_{\varepsilon}$

There are $n+2-2 g \geq 2 \varepsilon n$ vertices, and the average degree is
$\frac{6 n}{n+2-2 g} \leq \frac{3}{\varepsilon}$
\rightarrow there are $\geq \varepsilon n$ vertices of degree
$\leq \frac{6}{\varepsilon}$
Pick such a vertex v, and contract an adjacent edge

Remember $\operatorname{deg}(v)$ and an oriented edge...

The bounded ratio lemma

For $\frac{g}{n}<\frac{1}{2}-\varepsilon, \frac{\tau(n, g)}{\tau(n-1, g)}<C_{\varepsilon}$

There are $n+2-2 g \geq 2 \varepsilon n$ vertices, and the average degree is
$\frac{6 n}{n+2-2 g} \leq \frac{3}{\varepsilon}$
\rightarrow there are $\geq \varepsilon n$ vertices of degree
$\leq \frac{6}{\varepsilon}$
Pick such a vertex v, and contract an adjacent edge

Remember $\operatorname{deg}(v)$ and an oriented edge...
... only one way to go backwards

The bounded ratio lemma

For $\frac{g}{n}<\frac{1}{2}-\varepsilon, \frac{\tau(n, g)}{\tau(n-1, g)}<C_{\varepsilon}$

There are $n+2-2 g \geq 2 \varepsilon n$ vertices, and the average degree is
$\frac{6 n}{n+2-2 g} \leq \frac{3}{\varepsilon}$
\rightarrow there are $\geq \varepsilon n$ vertices of degree
$\leq \frac{6}{\varepsilon}$
Pick such a vertex v, and contract an adjacent edge

Remember $\operatorname{deg}(v)$ and an oriented edge...
... only one way to go backwards

The bounded ratio lemma

For $\frac{g}{n}<\frac{1}{2}-\varepsilon, \frac{\tau(n, g)}{\tau(n-1, g)}<C_{\varepsilon}$

There are $n+2-2 g \geq 2 \varepsilon n$ vertices, and the average degree is
$\frac{6 n}{n+2-2 g} \leq \frac{3}{\varepsilon}$
\rightarrow there are $\geq \varepsilon n$ vertices of degree
$\leq \frac{6}{\varepsilon}$
Pick such a vertex v, and contract an adjacent edge

Remember $\operatorname{deg}(v)$ and an oriented edge...
... only one way to go backwards

The bounded ratio lemma

For $\frac{g}{n}<\frac{1}{2}-\varepsilon, \frac{\tau(n, g)}{\tau(n-1, g)}<C_{\varepsilon}$

There are $n+2-2 g \geq 2 \varepsilon n$ vertices, and the average degree is
$\frac{6 n}{n+2-2 g} \leq \frac{3}{\varepsilon}$
\rightarrow there are $\geq \varepsilon n$ vertices of degree
$\leq \frac{6}{\varepsilon}$
Pick such a vertex v, and contract an adjacent edge

Remember $\operatorname{deg}(v)$ and an oriented edge
... only one way to go backwards

Thus $\varepsilon n \tau(n, g) \leq \frac{6}{\varepsilon} \cdot 6 n \tau(n-1, g)$

The bounded ratio lemma

For $\frac{g}{n}<\frac{1}{2}-\varepsilon, \frac{\tau(n, g)}{\tau(n-1, g)}<C_{\varepsilon}$

There are $n+2-2 g \geq 2 \varepsilon n$ vertices, and the average degree is
$\frac{6 n}{n+2-2 g} \leq \frac{3}{\varepsilon}$
\rightarrow there are $\geq \varepsilon n$ vertices of degree
$\leq \frac{6}{\varepsilon}$
Pick such a vertex v, and contract an adjacent edge

Remember $\operatorname{deg}(v)$ and an oriented edge...
... only one way to go backwards

Thus $\varepsilon n \tau(n, g) \leq \frac{6}{\varepsilon} \cdot 6 n \tau(n-1, g)$
For bipartite maps : way more complicated, less local, more "destructive"

One-endedness and planarity

Proven by using the recurrence formulas (and the bounded ratio lemma)

2) The potential limits

Weak spatial Markov property:
$\mathbb{P}\left(t \subset T_{n}\right)$ depends only on the perimeter and volume of t

2) The potential limits

Weak spatial Markov property:
$\mathbb{P}\left(t \subset T_{n}\right)$ depends only on the perimeter and volume of t

Theorem: [Budzinski-L. '19]

if \mathbb{T} is a random infinite planar one ended triangulation satisfying the weak Markov property, then \mathbb{T} is a PSHT with a random parameter Λ

Proof involves the peeling algorithm and the Hausdorff moments method

2) The potential limits

Weak spatial Markov property:
$\mathbb{P}\left(t \subset T_{n}\right)$ depends only on the perimeter and volume of t

Theorem: [Budzinski-L. '19]

if \mathbb{T} is a random infinite planar one ended triangulation satisfying the weak Markov property, then \mathbb{T} is a PSHT with a random parameter Λ

Proof involves the peeling algorithm and the Hausdorff moments method

For bipartite maps, same theorem, but this time we deal with an infinity of parameters instead of just one.

3) Unicity of the potential limit

Two holes argument :
The hyperbolicity is uniform all around the map

3) Unicity of the potential limit

Two holes argument :
The hyperbolicity is uniform all around the map

3) Unicity of the potential limit

Two holes argument :
The hyperbolicity is uniform all around the map

Finishing the proof with a local observable : the inverse root degree (explicitly calculable in the PSHT and in high genus triangulations)

3) Unicity of the potential limit

Two holes argument:
The hyperbolicity is uniform all around the map

Finishing the proof with a local observable : the inverse root degree (explicitly calculable in the PSHT and in high genus triangulations)

Two holes argument for bipartite maps :
The hyperbolicity and the proportion of faces of each size are uniform

Finishing the proof : completely different argument, way more complicated

Bonus: asymptotics

$$
\frac{\tau\left(n, g_{n}\right)}{\tau\left(n-1, g_{n}\right)} \rightarrow c(\theta)
$$

Bonus: asymptotics

$$
\begin{gathered}
\frac{\tau\left(n, g_{n}\right)}{\tau\left(n-1, g_{n}\right)} \rightarrow c(\theta) \\
\tau\left(n, g_{n}\right)=n^{2 g_{n}} \exp (n f(\theta)+o(n))
\end{gathered}
$$

Bonus: asymptotics

$$
\begin{gathered}
\frac{\tau\left(n, g_{n}\right)}{\tau\left(n-1, g_{n}\right)} \rightarrow c(\theta) \\
\tau\left(n, g_{n}\right)=n^{2 g_{n}} \exp (n f(\theta)+o(n)) \\
\frac{B_{g_{n}}(\mathbf{f})}{B_{g_{n}}\left(\mathbf{f}-\mathbf{1}_{i}\right)} \rightarrow c_{i}\left(\theta,\left(\alpha_{j}\right)_{j \geq 0}\right) \\
B_{g_{n}}(\mathbf{f})=n^{2 g_{n}} \exp \left(n f\left(\theta,\left(a_{j}\right)_{j \geq 1}+o(n)\right)\right.
\end{gathered}
$$

Thank you!

