Variations on meanders

work in progress with V. Delecroix, A. Zorich, P. Zograf

Elise Goujard Journées de combinatoire de Bordeaux 2020

Institut de mathématiques de Bordeaux

Feb. 2020

Meanders

topological configuration of a line and a simple closed curve in the plane, intersecting transversally

topological configuration of a pair of tranverse simple closed curves on the 2-sphere (+ marking)

Conjectural asymptotics

Conjecture (Di Francesco-Golinelli-Guitter, '97)
The number of meanders with $2 n$ crossings is

$$
M_{n} \sim C R^{n} n^{-\alpha}
$$

with $C>0, R \simeq 12.2628, \alpha=\frac{29+\sqrt{145}}{12}$.
Jensen Guttman '00: extensive numerics non infirming the conjecture Albert-Paterson '05: $11.380<R<12.901$

Higher genus meanders

Topological configuration of a pair of tranverse simple closed curves on a higher genus surface, such that the corresponding faces are topological disks.

Oriented meander

Higher genus meander with a coherent orientation of the curves.

Results: counting for a fixed number of bigons

Results: counting for a fixed number of bigons

$M_{n, p}$: Plane meanders with $2 n$ crossings and p bigons
Theorem (DGZZ, '17)

$$
\sum_{n \leq N} M_{n, p}=A_{p} N^{2 p-5}+o\left(N^{2 p-5}\right)
$$

with

$$
A_{p}=\frac{2}{p!(p-4)!(2 p-5)}\left(\frac{2}{\pi^{2}}\right)^{p-3}\binom{2 p-4}{p-2}^{2}
$$

and

$$
A_{p} \sim\left(\frac{32 e^{2}}{\pi^{2} p^{2}}\right)^{p} \text { as } p \rightarrow \infty
$$

Results: counting for a fixed number of bigons

$M_{n, p}^{g}$: Genus g meanders with $2 n$ crossings and p bigons
Theorem (DGZZ, '20)

- Explicit formula for $\sum_{n \leq N} M_{n, p}^{g}$ in term of algebraic quantities

$$
\sum_{n \leq N} M_{n, p}^{g}=A_{g, p} N^{6 g-5+2 p}+o\left(N^{6 g-6+2 p}\right)
$$

with

$$
A_{g, p} \sim b_{g}\left(\frac{32}{\pi^{2}}\right)^{p} p^{7 g / 2-6} \text {. as } p \rightarrow \infty
$$

Results: counting for a fixed number of bigons

M_{n}^{g+} : Oriented genus g meanders with $2 n$ crossings
Theorem (DGZZ, '20)

- Explicit formula for $\sum_{n \leq N} M_{n}^{g+}$ in term of algebraic quantities (+ recursion)

$$
\sum_{n \leq N} M_{n}^{g+}=A_{g} N^{4 g-2}+o\left(N^{4 g-2}\right)
$$

with

$$
A_{g} \sim \frac{1}{g^{7 / 2}}\left(\frac{e^{2}}{16 g^{2}}\right)^{g} . \text { as } g \rightarrow \infty
$$

Outline of the proof: meanders as square-tiled surfaces

Outline of the proof: meanders as square-tiled surfaces

A square-tiled surface is a surface glued from squares (vertical \leftrightarrow vertical, horizontal \leftrightarrow horizontal). They form a special family of flat surfaces with conical singularities (half-translation surfaces).

Outline of the proof: meanders as square-tiled surfaces

A square-tiled surface is a surface glued from squares (vertical \leftrightarrow vertical, horizontal \leftrightarrow horizontal). They form a special family of flat surfaces with conical singularities (half-translation surfaces).

Meanders with $2 n$ crossings correspond to marked square-tiled surfaces of genus 0 with $2 n$ squares and exactly one horizontal cylinder, one vertical cylinder.

Bigons correspond to singularities of angle π.

Outline of the proof: square-tiled surfaces and volumes of

 moduli spaces- Such square-tiled surfaces correspond to special points (integer points) in the family $\mathcal{Q}_{0, p}$ of flat surfaces of genus 0 with p singularities of angle π. (moduli space fo half-translation surfaces / quadratic differentials)
- Vol $\mathcal{Q}_{0, p}=c \lim _{n \rightarrow \infty} \frac{\text { Card }\{\text { SQT with } \leq n \text { squares, genus } 0 \text { and } p \text { angles } \pi\}}{n^{2 p-6}}$
- Let $c y l_{1}(0, p)$ be the same limit for SQT with one horizontal cylinder, and $c y l_{1,1}(0, p)$ the same limit for SQT for one horizontal cylinder and one vertical cylinder.

Theorem (DGZZ '17)

$$
\frac{c y l_{1,1}(0, p)}{c y l_{1}(0, p)}=\frac{c y l_{1}(0, p)}{\operatorname{Vol} \mathcal{Q}(0, p)}
$$

Outline of the proof: computation of volumes and recent advances

- Eskin-Okounkov ~ '00: algorithm to compute volumes of moduli space of small dimension.
- Athreya-Eskin-Zorich '12: closed formulas for Vol $\mathcal{Q}_{0, p}$
- DGZZ, Chen-Möller-Sauvaget '18-19: explicit formulas for volumes in terms of algebraic quantities
- Andersen-Borot-Charbonnier-Delecroix-Giacchetto-Lewanski-Wheeler '19: topological recursion for volumes
- Aggarwal, Sauvaget, Chen-Möller-Zagier, '18-19: Large genus asymptotics of volumes (oriented case)
- Chen-Möller-Sauvaget '19: asymptotics for fixed genus and $p \rightarrow \infty$

Perspectives

- Meanders with fixed combinatorics (number of k-gons)
- Probability for a pair of arc systems to form a meander
- Conjectures on the number of connected components of random multicurves
- "4-meanders"

