Variations on meanders

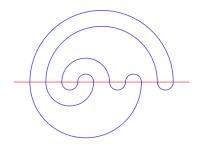
work in progress with V. Delecroix, A. Zorich, P. Zograf

Elise Goujard Journées de combinatoire de Bordeaux 2020

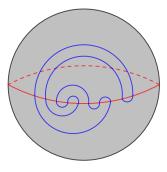
Institut de mathématiques de Bordeaux

Feb. 2020

Meanders



topological configuration of a line and a simple closed curve in the plane, intersecting transversally



topological configuration of a pair of tranverse simple closed curves on the 2-sphere (+ marking)

Conjectural asymptotics

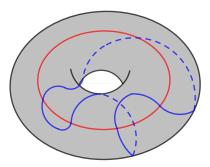
Conjecture (Di Francesco-Golinelli-Guitter, '97) The number of meanders with 2n crossings is

 $M_n \sim C R^n n^{-\alpha}$

with
$$C > 0, R \simeq 12.2628, \alpha = \frac{29 + \sqrt{145}}{12}$$
.

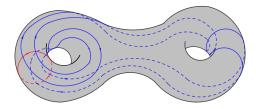
Jensen Guttman '00: extensive numerics non infirming the conjecture Albert-Paterson '05: 11.380 < R < 12.901

Higher genus meanders

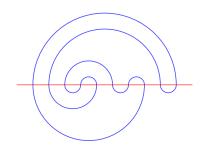


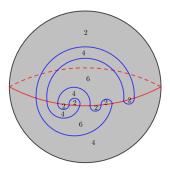
Topological configuration of a pair of tranverse simple closed curves on a higher genus surface, such that the corresponding faces are topological disks.

Oriented meander



Higher genus meander with a coherent orientation of the curves.





 $M_{n,p}$: Plane meanders with 2n crossings and p bigons

Theorem (DGZZ, '17)

$$\sum_{n \le N} M_{n,p} = A_p N^{2p-5} + o(N^{2p-5})$$

with

and

$$egin{split} {\cal A}_p &= rac{2}{p!(p-4)!(2p-5)} \left(rac{2}{\pi^2}
ight)^{p-3} \left(rac{2p-4}{p-2}
ight)^2 \ & {\cal A}_p \sim \left(rac{32e^2}{\pi^2p^2}
ight)^p \; {\it as} \; p o \infty. \end{split}$$

 $M_{n,p}^g$: Genus g meanders with 2n crossings and p bigons

Theorem (DGZZ, '20)

• Explicit formula for $\sum_{n \leq N} M_{n,p}^{g}$ in term of algebraic quantities

$$\sum_{n \le N} M_{n,p}^{g} = A_{g,p} N^{6g-5+2p} + o(N^{6g-6+2p})$$

with

٥

$$A_{g,p} \sim b_g \left(rac{32}{\pi^2}
ight)^p p^{7g/2-6}.$$
 as $p
ightarrow \infty$

 M_n^{g+} : Oriented genus g meanders with 2n crossings

Theorem (DGZZ, '20)

• Explicit formula for $\sum_{n \le N} M_n^{g^+}$ in term of algebraic quantities (+ recursion)

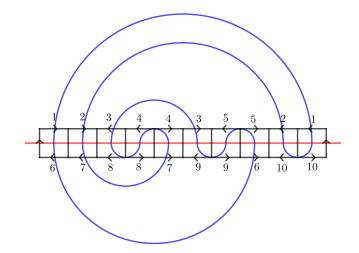
$$\sum_{n \le N} M_n^{g+} = A_g N^{4g-2} + o(N^{4g-2})$$

with

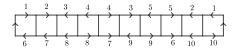
٠

$$A_g \sim \frac{1}{g^{7/2}} \left(\frac{e^2}{16g^2} \right)^g. \text{ as } g \to \infty.$$

Outline of the proof: meanders as square-tiled surfaces

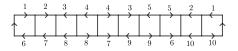


Outline of the proof: meanders as square-tiled surfaces



A square-tiled surface is a surface glued from squares (vertical \leftrightarrow vertical, horizontal \leftrightarrow horizontal). They form a special family of flat surfaces with conical singularities (half-translation surfaces).

Outline of the proof: meanders as square-tiled surfaces



A square-tiled surface is a surface glued from squares (vertical \leftrightarrow vertical, horizontal \leftrightarrow horizontal). They form a special family of flat surfaces with conical singularities (half-translation surfaces).

Meanders with 2n crossings correspond to marked square-tiled surfaces of genus 0 with 2n squares and exactly one horizontal cylinder, one vertical cylinder.

Bigons correspond to singularities of angle π .

Outline of the proof: square-tiled surfaces and volumes of moduli spaces

- Such square-tiled surfaces correspond to special points (integer points) in the family Q_{0,p} of flat surfaces of genus 0 with p singularities of angle π. (moduli space fo half-translation surfaces / quadratic differentials)
- Vol $Q_{0,p} = c \lim_{n \to \infty} \frac{\operatorname{Card} \{ \text{SQT with } \leq n \text{ squares, genus } 0 \text{ and } p \text{ angles } \pi \}}{n^{2p-6}}$
- Let cyl₁(0, p) be the same limit for SQT with one horizontal cylinder, and cyl_{1,1}(0, p) the same limit for SQT for one horizontal cylinder and one vertical cylinder.

Theorem (DGZZ '17)

$$\frac{cyl_{1,1}(0,p)}{cyl_1(0,p)} = \frac{cyl_1(0,p)}{\operatorname{Vol}\mathcal{Q}(0,p)}$$

Outline of the proof: computation of volumes and recent advances

- $\bullet\,$ Eskin-Okounkov $\sim\,$ '00: algorithm to compute volumes of moduli space of small dimension.
- Athreya-Eskin-Zorich '12: closed formulas for Vol Q_{0,p}
- DGZZ, Chen-Möller-Sauvaget '18-19: explicit formulas for volumes in terms of algebraic quantities
- Andersen-Borot-Charbonnier-Delecroix-Giacchetto-Lewanski-Wheeler '19: topological recursion for volumes
- Aggarwal, Sauvaget, Chen-Möller-Zagier, '18-19: Large genus asymptotics of volumes (oriented case)
- Chen-Möller-Sauvaget '19: asymptotics for fixed genus and $p
 ightarrow \infty$

O

Perspectives

- Meanders with fixed combinatorics (number of k-gons)
- Probability for a pair of arc systems to form a meander
- Conjectures on the number of connected components of random multicurves
- "4-meanders"