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Po,(2) =14 124322 + 323 + 624 + 32° + 326 + 127 + 128
G infinite —  Hg(z) =, va(n)z"

Hypothesis
G is P-oligomorphic: ¢g is bounded by a polynomial in n

Example
He (2) = 1+z2+22+ = &

Conjecture 1 - Cameron, 70’s

G P-oligomorphic = ¢g(n) ~ an®
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Orbit algebra (Cameron, 80’s)
Structure of graded algebra Ag = @,, A, on the orbits

e vector space formally spanned by the orbits of G
(i.e. of basis indexed by the orbits)

e combinatorial description of the product

e graded according to the orbital degree:
orby.orby = linear combination of orbits of degree dy + do

e dim(A,) = pg(n), so Ha(z) =73, dim(A,)z"

Hilbert series of the graded algebra
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Conjecture of Macpherson

Example. As.. ~ Q[X]

oo

Conjecture 2 (stronger) - Macpherson, 85
G P-oligomorphic = A is finitely generated

Theorem (Thiéry, F. 2018)

The orbit algebra of a P-oligomorphic group is finitely generated,
and Cohen-Macaulay.
In particular, its profile is polynomial in the strong sense.
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e Set partition of the domain into blocks

e such that G acts by permutation on the blocks

Example

4 1
Block systems of Cy -
Not a block system —
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The (closed) primitive P-oligomorphic groups

Macpherson:
G P-oligomorphic with no (non trivial) blocks = pg(n) =1 Vn

Soo

Theorem (Classification, Cameron)

Only 5 closed groups such that pg(n) =1 Vn
.
.

Aut(Q) : automorphisms of the rational chain
Rev(Q) : generated by Aut(Q) and one reflection
o Aut(Q/Z), preserving the circular order
Rev(

ev(Q/Z) : generated by Aut(Q/Z) and a reflection

o S, : the symmetric group

Well known, nice groups (called highly homogeneous).
In particular, their orbit algebra is finitely generated.
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An infinite example: G G3

S3

T
AL

Wreath product
600 i 63 ~ 620 X 63

Subset of “shape” 2,3,2 — a3 xy3

Orbits of subsets
<> symmetric polynomials in x1, 2, x3

As.s;, ~ SymglX] = Q[X]®

Examples
Integer partitions; combinations; P-partitions...
(with optional length and/or height restrictions)
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Further examples
For H subgroup of &,, :

e G=06G1H:
Ag ~ Q[X1,..., X.;n], the algebra of invariants of H

Ag is finitely generated by Hilbert’s theorem.

i
AR

Ac ~ Q[(Xo)o e orb(#r)] Polynomial algebra generated by orb(H)
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What block system to choose?

ujOOONOOO LG <ees

If G is P-oligomorphic, either:

o M < —  pg(n) > O

or

e N < o0 — wa(n) > O(mN—1)

Better have Dig finite blocks and /or “small” infinite ones...
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Lattices of block systems

Lattice of partitions — lattice on block systems

/\ (Ca X C2) 1B
g e

Non trivial fact

e {Systems with < oo blocks only} = sublattice with maximum

e {Systems with oo blocks only} = sublattice with minimum

Remark. If G is P-oligomorphic, both of them are actually finite !
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The nested block system

Idea

1. Take the mazximal system of finite blocks

2. Take the minimal system of infinite blocks of the action of G
on the maximal finite blocks

FEIOOREBEEDR -
36900000668

dOOOEOU000OE

Action on the maximal finite blocks... that has no finite blocks.
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2. Take the minimal system of infinite blocks of the action of G
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The nested block system
Idea

1. Take the mazximal system of finite blocks

2. Take the minimal system of infinite blocks of the action of G
on the maximal finite blocks — finitely many superblocks

THHIITITES

ECORRARAA000 )0 « Kema
0000600000 — )
(o ¢ o o o o o o o o o .- )

(. [ [ ] [ [ ] ([ ] [ [ [ [ [ ] e )

Action on the maximal finite blocks... that has no finite blocks.
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Notation: [Hy, H]
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Subdirect product and synchronization

How to handle synchronizations between blocks
Subdirect product of two groups, or actions

e Formalizes the synchronization between two actions

e For instance, the actions on two different blocks

Example

<(123),(12),(4 ),(456)> ~ G3x 63
<(123), (12)(45),(456)> =~ subdirect product of S3 x S3

Remark. The potential synchronizations of a group with another
one are linked to its normal subgroups
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The tower determines Stabg(blocks)

Fact. Stabg(blocks) = explicit subdirect product of the H;

00000000000

Hos
Ho.4 Hyqg .
N VN <—. Recursive
Ho Hs o Hyo Hg o subdirect product
/ N\ / N\ / N\ / N\ construction

Hon=HoH, H> Hs Hy Hs He¢Hr1 = Hr
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One superblock: classification

e The tower determines G (uses the subdirect product and some
technical lemmas)

e Computer exploration on finitely many blocks

— Observation: always some Hy, H, H, H, ... , H, Hg
Used the GAP database TransGrp 2.0.4 to browse transitive groups

— Proof in the infinite case: always some Hy, H, H, H ---

Classification

One superblock = G = [Hy, Hy]
Ac =~ @[(XO)()Eorb(H)]HO
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End of the proof of the conjectures
In K, totally independent superblocks (and kernel)

Consequence of the lack of finite index subgroups of &,
Aut(...) and wreath products

= direct product of the restrictions K (%)
= AK = ®1 AK(i)

K@ = g &, wreath product with finite blocks
= Ar = &, QU(Xo)ocorb(r )] _
free algebra finitely generated by the orbits of the H()’s
(plus some 2-nilpotent elements brought by the kernel)

Fact: G acts by permutation on these generators
= Ag is the algebra of invariants of this finite action
(up to some nilpotents)

Hilbert’s theorem:
Ag finitely generated (and even Cohen-Macaulay)

Which ends the proof of the conjectures!



Classification
0000

Classification of P-oligomorphic groups
G a finite permutation group



k Classification Bonus
0000

superbloc

Classification of P-oligomorphic groups
G a finite permutation group, By a block system.

Q

0 .



Classification
0000

Classification of P-oligomorphic groups
Gy a finite permutation group, By a block system.

For each orbit of blocks

@9 @9 @9 @e99



Classification
0000

Classification of P-oligomorphic groups
Gy a finite permutation group, By a block system.

For each orbit of blocks, choose
1. One group of profile 1

@9 @9 @9 @e99
@
8



Classification
0000

Classification of P-oligomorphic groups
Gy a finite permutation group, By a block system.
For each orbit of blocks, choose

1. One group of profile 1
Has to be G if the blocks are singletons

@9 @9 @9
@
8



Classification
0000

Classification of P-oligomorphic groups
Gy a finite permutation group, By a block system.
For each orbit of blocks, choose
1. One group of profile 1

Has to be G if the blocks are singletons
Can alternatively be Id; for at most one orbit of one block

I

@9 @9 @9
@
8



Classification
0000

Classification of P-oligomorphic groups
Gy a finite permutation group, By a block system.

For each orbit of blocks, choose
1. One group of profile 1

Has to be G if the blocks are singletons
Can alternatively be Id; for at most one orbit of one block

I

V6« 1 ()



Classification
0000

Classification of P-oligomorphic groups
Gy a finite permutation group, By a block system.
For each orbit of blocks, choose
1. One group of profile 1

Has to be G if the blocks are singletons
Can alternatively be Id; for at most one orbit of one block

O[] 6« 1 ()



Profile, conjectures Nested block system One superblock Classification Bonus
0000000 00000000 0000 0000

Classification of P-oligomorphic groups
(G a finite permutation group, By a block system.

For each orbit of blocks, choose
1. One group of profile 1

* Has to be G if the blocks are singletons
o Can alternatively be Id; for at most one orbit of one block

EEEEEEEEEE

@O00Q0C0000Q )0
@EO00Q0CAC0000
(F o o o o o o o o o o

—/




Profile, conjectures Nested block system One superblock Classification
0000000 00000000 0000 0000

Classification of P-oligomorphic groups
G a finite permutation group, By a block system.
For each orbit of blocks, choose
1. One group of profile 1

o Has to be G if the blocks are singletons
e Can alternatively be Id; for at most one orbit of one block

2. One normal subgroup H of Hy = G p for B in the orbit

wio- GEEREEERAEE -

mee QOOOO0000000 )0
me- QOOOOOOO000C

IdYAut(Q) (¢ o o o o

—/

Bonus



Profile, conjectures Nested block system One superblock Classification
0000000 00000000 0000 0000

Classification of P-oligomorphic groups
G a finite permutation group, By a block system.
For each orbit of blocks, choose
1. One group of profile 1

o Has to be G if the blocks are singletons
e Can alternatively be Id; for at most one orbit of one block

2. One normal subgroup H of Hy = G p for B in the orbit

[Hé’w@@@@@@@@@@@ -

| i @OE00600600 )6
o) @OEEEEEE000 )

IdZAut( )Co e o o )

S )

B«

nus



Classification
00000

Consequences and perspectives

Finite encoding — ground for algorithmics



Classification
00000

Consequences and perspectives

Finite encoding — ground for algorithmics

e Implementation of P-oligomorphic groups (SageMath)



Classification
00000

Consequences and perspectives

Finite encoding — ground for algorithmics

e Implementation of P-oligomorphic groups (SageMath)

e count P-oligomorphic groups, per growth rate of the profile



Classification
00000

Consequences and perspectives

Finite encoding — ground for algorithmics

e Implementation of P-oligomorphic groups (SageMath)

e count P-oligomorphic groups, per growth rate of the profile
Transitive case:

9, 6, 14, 33, 32, 114, 47, 323, 260, 338, 50, 2108, 58, 430, ...



Classification
00000

Consequences and perspectives

Finite encoding — ground for algorithmics

e Implementation of P-oligomorphic groups (SageMath)

e count P-oligomorphic groups, per growth rate of the profile
Transitive case:
5, 6, 14, 33, 32, 114, 47, 323, 260, 338, 50, 2108, 58, 430, ...

“General case”? (kernel-free)



Classification
00000

Consequences and perspectives

Finite encoding — ground for algorithmics

e Implementation of P-oligomorphic groups (SageMath)

e count P-oligomorphic groups, per growth rate of the profile
Transitive case:
5, 6, 14, 33, 32, 114, 47, 323, 260, 338, 50, 2108, 58, 430, ...

“General case”? (kernel-free)



Classification
00000

Consequences and perspectives

Finite encoding — ground for algorithmics

e Implementation of P-oligomorphic groups (SageMath)

e count P-oligomorphic groups, per growth rate of the profile
Transitive case:

9, 6, 14, 33, 32, 114, 47, 323, 260, 338, 50, 2108, 58, 430, ...

“General case”? (kernel-free)

Still on the plate: explore higher growths



Classification
00000

Consequences and perspectives

Finite encoding — ground for algorithmics

e Implementation of P-oligomorphic groups (SageMath)

e count P-oligomorphic groups, per growth rate of the profile
Transitive case:

9, 6, 14, 33, 32, 114, 47, 323, 260, 338, 50, 2108, 58, 430, ...

“General case”? (kernel-free)

Still on the plate: explore higher growths

e Bounded: classified before



Classification
00000

Consequences and perspectives

Finite encoding — ground for algorithmics

e Implementation of P-oligomorphic groups (SageMath)

e count P-oligomorphic groups, per growth rate of the profile
Transitive case:

9, 6, 14, 33, 32, 114, 47, 323, 260, 338, 50, 2108, 58, 430, ...

“General case”? (kernel-free)

Still on the plate: explore higher growths
e Bounded: classified before

e Polynomial: classified now



Classification
00000

Consequences and perspectives

Finite encoding — ground for algorithmics

e Implementation of P-oligomorphic groups (SageMath)

e count P-oligomorphic groups, per growth rate of the profile
Transitive case:

9, 6, 14, 33, 32, 114, 47, 323, 260, 338, 50, 2108, 58, 430, ...

“General case”? (kernel-free)

Still on the plate: explore higher growths
e Bounded: classified before
e Polynomial: classified now

e Subexponential: some properties remain true, to investigate



Classification
00000

Consequences and perspectives

Finite encoding — ground for algorithmics

e Implementation of P-oligomorphic groups (SageMath)

e count P-oligomorphic groups, per growth rate of the profile
Transitive case:
5, 6, 14, 33, 32, 114, 47, 323, 260, 338, 50, 2108, 58, 430, ...

“General case”? (kernel-free)

Still on the plate: explore higher growths
e Bounded: classified before
e Polynomial: classified now
e Subexponential: some properties remain true, to investigate

e Exponential: wilder primitive groups appear...
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Thank you for your attention !
Context

e (G permutation group of a countably infinite set E

Profile pg: counts the orbits of subsets of E

Hypothesis: ¢ (n) bounded by a polynomial
k

Conjecture (Cameron): ¢g(n) ~ an

Conjecture (Macpherson): finite generation of the orbit algebra

Results

e Both conjectures hold !
e (lassification of P-oligomorphic permutation groups

e The orbit algebra is an algebra of invariants (up to some
2-nilpotents)
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The tower determines the group (0): “straight &..”

G contains a set of “straight” swaps of blocks

Tii Tl

5 O e o
T,iT1,5 Ty e o e
5
[ @] [
B
B; By B,

O«——>0«—0O >Q«—>0 O
O«——>0«—0 >Q<«—>0 (@)
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Subdirect product

Subdirect product of G; and G5

e Formalizes the synchronization between G1 and Go
e Subgroup of G; x Gy (with canonical projections G; and G2)
e E = E) U Ej stable = G subdirect product of G|g, and G|g,

Synchronization in a subdirect product
Let N7 = Fixg(Ez) and Ny = Fixg(El).
G _G &
N1 B N1 X N2 o N2
A subdirect product with explicit N;’s is explicit.

Remark. N7 and Ns are normal in G and Go, so the possibilities
of synchronization of a group is linked to its normal subgroups.
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The tower has shape Hy, H, H, H ---

Lemma to prove
G has tower HO H, Hy H3 = Hy{ = Hy

Proof.

An element s € G stabilizing the blocks <> a quadruple

ge Hi — 3(,9,hk), h ke H.

Let o be an element of G that permutes “straightforwardly” the
first two blocks and fixes the other two.

Conjugation of z by c in G —  y=(g,1,h,k)

Then: 2~ 'y = (¢,97%,1,1)

By arguing that the tower does not depend on the ordering of the
blocks, ¢g~! and therefore g are in Hs.

In the infinite case, apply to each restriction to four consecutive
blocks of the fixator of the previous ones in G.
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