Nested block system 00000000 One superblock 0000 Classification 00000 Bonus

Classification of P-oligomorphic permutation groups Conjectures of Cameron and Macpherson

Justine Falque joint work with Nicolas M. Thiéry

Laboratoire de Recherche en Informatique Université Paris-Sud (Orsay)

JCB, February 7th of 2020

Nested block syster 00000000 One superblock 0000 Classification 00000 Bonus

Profile of a permutation group, a finite example

• Permutation group G

Nested block system 00000000 One superblock 0000 Classification 00000 Bonus

Profile of a permutation group, a finite example

• Permutation group $G \rightarrow \text{induced action on } subsets$

Nested block system 00000000 One superblock 0000 Classificatio

Bonus

Profile of a permutation group, a finite example

- Permutation group $G \rightarrow$ induced action on *subsets*
- Orbit of *n*-subsets = orbit of *degree* n

Nested block system 00000000 One superblock 0000 Bonus

Profile of a permutation group, a finite example

- $\bullet \ {\rm Permutation \ group} \ G \quad \rightarrow \quad {\rm induced \ action \ on} \ subsets$
- Orbit of *n*-subsets = orbit of *degree n*

Profile of G

 $\varphi_G(n) = \# \text{ orbits of } degree \ n$

Nested block system 00000000 One superblock 0000 Bonus

Profile of a permutation group, a finite example

- $\bullet \ {\rm Permutation \ group} \ G \quad \rightarrow \quad {\rm induced \ action \ on} \ subsets$
- Orbit of *n*-subsets = orbit of *degree n*

Profile of G

 $\varphi_G(n) = \# \text{ orbits of } degree \ n$

Nested block system 00000000 One superblock 0000 Bonus

Profile of a permutation group, a finite example

- $\bullet \ {\rm Permutation \ group} \ G \quad \rightarrow \quad {\rm induced \ action \ on} \ subsets$
- Orbit of n-subsets = orbit of degree n

Profile of G

$$\varphi_G(n) = \# \text{ orbits of } degree \; n$$

Example

Nested block system 00000000 One superblock 0000 Bonus

Profile of a permutation group, a finite example

- $\bullet \ {\rm Permutation \ group} \ G \quad \rightarrow \quad {\rm induced \ action \ on} \ subsets$
- Orbit of n-subsets = orbit of degree n

Profile of G

$$\varphi_G(n) = \#$$
 orbits of degree n

Example

n	φ_G	n	φ_G
0		5	
1		6	
2		7	
3		8	
4		> 8	

Nested block system 00000000 One superblock 0000 Bonus

Profile of a permutation group, a finite example

- $\bullet \ {\rm Permutation \ group} \ G \quad \rightarrow \quad {\rm induced \ action \ on} \ subsets$
- Orbit of n-subsets = orbit of degree n

Profile of G

$$\varphi_G(n) = \#$$
 orbits of degree n

Example

n	φ_G	n	φ_G
0	1	5	
1		6	
2		7	
3		8	
4		> 8	

Nested block system 00000000 One superblock 0000 Bonus

Profile of a permutation group, a finite example

- $\bullet \ {\rm Permutation \ group} \ G \quad \rightarrow \quad {\rm induced \ action \ on} \ subsets$
- Orbit of n-subsets = orbit of degree n

Profile of G

$$\varphi_G(n) = \#$$
 orbits of degree n

Example

n	φ_G	n	φ_G
0	1	5	
1		6	
2		7	
3		8	
4		> 8	

Nested block system 00000000 One superblock 0000 Bonus

Profile of a permutation group, a finite example

- $\bullet \ {\rm Permutation \ group} \ G \quad \rightarrow \quad {\rm induced \ action \ on} \ subsets$
- Orbit of n-subsets = orbit of degree n

Profile of G

$$\varphi_G(n) = \#$$
 orbits of degree n

Example

n	φ_G	n	φ_G
0	1	5	
1	1	6	
2		7	
3		8	
4		> 8	

Nested block system 00000000 One superblock 0000 Bonus

Profile of a permutation group, a finite example

- $\bullet \ {\rm Permutation \ group} \ G \quad \rightarrow \quad {\rm induced \ action \ on} \ subsets$
- Orbit of n-subsets = orbit of degree n

Profile of G

$$\varphi_G(n) = \#$$
 orbits of degree n

Example

n	φ_G	n	φ_G
0	1	5	
1	1	6	
2		7	
3		8	
4		> 8	

Nested block system 00000000 One superblock 0000 Bonus

Profile of a permutation group, a finite example

- $\bullet \ {\rm Permutation \ group} \ G \quad \rightarrow \quad {\rm induced \ action \ on} \ subsets$
- Orbit of n-subsets = orbit of degree n

Profile of G

$$\varphi_G(n) = \#$$
 orbits of degree n

Example

n	φ_G	n	φ_G
0	1	5	
1	1	6	
2		7	
3		8	
4		> 8	

Nested block system 00000000 One superblock 0000 Bonus

Profile of a permutation group, a finite example

- $\bullet \ {\rm Permutation \ group} \ G \quad \rightarrow \quad {\rm induced \ action \ on} \ subsets$
- Orbit of n-subsets = orbit of degree n

Profile of G

$$\varphi_G(n) = \#$$
 orbits of degree n

Example

n	φ_G	n	φ_G
0	1	5	
1	1	6	
2		7	
3		8	
4		> 8	

Nested block system 00000000 One superblock 0000 Bonus

Profile of a permutation group, a finite example

- $\bullet \ {\rm Permutation \ group} \ G \quad \rightarrow \quad {\rm induced \ action \ on} \ subsets$
- Orbit of n-subsets = orbit of degree n

Profile of G

$$\varphi_G(n) = \#$$
 orbits of degree n

Example

n	φ_G	n	φ_G
0	1	5	
1	1	6	
2		7	
3		8	
4		> 8	

Nested block system 00000000 One superblock 0000 Bonus

Profile of a permutation group, a finite example

- $\bullet \ {\rm Permutation \ group} \ G \quad \rightarrow \quad {\rm induced \ action \ on} \ subsets$
- Orbit of n-subsets = orbit of degree n

Profile of G

$$\varphi_G(n) = \#$$
 orbits of degree n

Example

n	φ_G	n	φ_G
0	1	5	
1	1	6	
2	3	7	
3		8	
4		> 8	

Nested block system 00000000 One superblock 0000 Bonus

Profile of a permutation group, a finite example

- $\bullet \ {\rm Permutation \ group} \ G \quad \rightarrow \quad {\rm induced \ action \ on} \ subsets$
- Orbit of n-subsets = orbit of degree n

Profile of G

$$\varphi_G(n) = \#$$
 orbits of degree n

Example

n	φ_G	n	φ_G
0	1	5	
1	1	6	
2	3	7	
3		8	
4		> 8	

Nested block system 00000000 One superblock 0000 Bonus

Profile of a permutation group, a finite example

- $\bullet \ {\rm Permutation \ group} \ G \quad \rightarrow \quad {\rm induced \ action \ on} \ subsets$
- Orbit of n-subsets = orbit of degree n

Profile of G

$$\varphi_G(n) = \#$$
 orbits of degree n

Example

n	φ_G	n	φ_G
0	1	5	
1	1	6	
2	3	7	
3		8	
4		> 8	

Nested block system 00000000 One superblock 0000 Bonus

Profile of a permutation group, a finite example

- $\bullet \ {\rm Permutation \ group} \ G \quad \rightarrow \quad {\rm induced \ action \ on} \ subsets$
- Orbit of n-subsets = orbit of degree n

Profile of G

$$\varphi_G(n) = \#$$
 orbits of degree n

Example

n	φ_G	n	φ_G
0	1	5	
1	1	6	
2	3	7	
3		8	
4		> 8	

Nested block system 00000000 One superblock 0000 Bonus

Profile of a permutation group, a finite example

- $\bullet \ {\rm Permutation \ group} \ G \quad \rightarrow \quad {\rm induced \ action \ on} \ subsets$
- Orbit of n-subsets = orbit of degree n

Profile of G

$$\varphi_G(n) = \#$$
 orbits of degree n

Example

n	φ_G	n	φ_G
0	1	5	
1	1	6	
2	3	7	
3	3	8	
4		> 8	

Nested block system 00000000 One superblock 0000 Bonus

Profile of a permutation group, a finite example

- $\bullet \ {\rm Permutation \ group} \ G \quad \rightarrow \quad {\rm induced \ action \ on} \ subsets$
- Orbit of n-subsets = orbit of degree n

Profile of G

$$\varphi_G(n) = \#$$
 orbits of degree n

Example

n	φ_G	n	φ_G
0	1	5	
1	1	6	
2	3	7	
3	3	8	
4	6	> 8	

Nested block system 00000000 One superblock 0000 Bonus

Profile of a permutation group, a finite example

- $\bullet \ {\rm Permutation \ group} \ G \quad \rightarrow \quad {\rm induced \ action \ on} \ subsets$
- Orbit of n-subsets = orbit of degree n

Profile of G

$$\varphi_G(n) = \#$$
 orbits of degree n

Example

n	φ_G	n	φ_G
0	1	5	3
1	1	6	
2	3	7	
3	3	8	
4	6	> 8	

Nested block system 00000000 One superblock 0000 Bonus

Profile of a permutation group, a finite example

- $\bullet \ {\rm Permutation \ group} \ G \quad \rightarrow \quad {\rm induced \ action \ on} \ subsets$
- Orbit of n-subsets = orbit of degree n

Profile of G

$$\varphi_G(n) = \#$$
 orbits of degree n

Example

n	φ_G	n	φ_G
0	1	5	3
1	1	6	3
2	3	7	
3	3	8	
4	6	> 8	

Nested block system 00000000 One superblock 0000 Bonus

Profile of a permutation group, a finite example

- $\bullet \ {\rm Permutation \ group} \ G \quad \rightarrow \quad {\rm induced \ action \ on} \ subsets$
- Orbit of n-subsets = orbit of degree n

Profile of G

$$\varphi_G(n) = \#$$
 orbits of degree n

Example

n	φ_G	n	φ_G
0	1	5	3
1	1	6	3
2	3	7	1
3	3	8	
4	6	> 8	

Nested block system 00000000 One superblock 0000 Bonus

Profile of a permutation group, a finite example

- $\bullet \ {\rm Permutation \ group} \ G \quad \rightarrow \quad {\rm induced \ action \ on} \ subsets$
- Orbit of n-subsets = orbit of degree n

Profile of G

$$\varphi_G(n) = \#$$
 orbits of degree n

Example

n	φ_G	n	φ_G
0	1	5	3
1	1	6	3
2	3	7	1
3	3	8	1
4	6	> 8	

Nested block system 00000000 One superblock 0000 Bonus

Profile of a permutation group, a finite example

- $\bullet \ {\rm Permutation \ group} \ G \quad \rightarrow \quad {\rm induced \ action \ on} \ subsets$
- Orbit of n-subsets = orbit of degree n

Profile of G

$$\varphi_G(n) = \#$$
 orbits of degree n

Example

n	φ_G	n	φ_G
0	1	5	3
1	1	6	3
2	3	7	1
3	3	8	1
4	6	> 8	0

Nested block system 00000000

One superblock 0000 Classification 00000 Bonus

Series of the profile

 $P_{G_3}(z) = 1 + 1z + 3z^2 + 3z^3 + 6z^4 + 3z^5 + 3z^6 + 1z^7 + 1z^8$

Nested block system 00000000 One superblock 0000 Classification 00000 Bonus

Series of the profile

 $P_{G_3}(z) = 1 + 1z + 3z^2 + 3z^3 + 6z^4 + 3z^5 + 3z^6 + 1z^7 + 1z^8$

G infinite $\rightarrow \mathcal{H}_G(z) = \sum_n \varphi_G(n) z^n$

Nested block system 00000000 One superblock

Classification 00000 Bonus

Series of the profile

$$P_{G_3}(z) = 1 + 1z + 3z^2 + 3z^3 + 6z^4 + 3z^5 + 3z^6 + 1z^7 + 1z^8$$

G infinite $\rightarrow \mathcal{H}_G(z) = \sum_n \varphi_G(n) z^n$

Hypothesis

G is P-oligomorphic: φ_G is bounded by a polynomial in n

Nested block system 00000000 One superblock

Classification 00000 Bonus

Series of the profile

$$P_{G_3}(z) = 1 + 1z + 3z^2 + 3z^3 + 6z^4 + 3z^5 + 3z^6 + 1z^7 + 1z^8$$

G infinite $\rightarrow \mathcal{H}_G(z) = \sum_n \varphi_G(n) z^n$

Hypothesis

G is *P*-oligomorphic : φ_G is bounded by a polynomial in *n*

Example

$$\mathcal{H}_{\mathfrak{S}_{\infty}}(z) = 1 + z + z^2 + \cdots = \frac{1}{1-z}$$

Nested block system 00000000 One superblock

Classification 00000 Bonus

Series of the profile

$$P_{G_3}(z) = 1 + 1z + 3z^2 + 3z^3 + 6z^4 + 3z^5 + 3z^6 + 1z^7 + 1z^8$$

G infinite $\rightarrow \mathcal{H}_G(z) = \sum_n \varphi_G(n) z^n$

Hypothesis

G is *P*-oligomorphic : φ_G is bounded by a polynomial in *n*

Example

$$\mathcal{H}_{\mathfrak{S}_{\infty}}(z) = 1 + z + z^2 + \cdots = \frac{1}{1-z}$$

Conjecture 1 - Cameron, 70's G P-oligomorphic $\Rightarrow \varphi_G(n) \sim an^k$

Nested block system 00000000

One superblock 0000 Classification 00000 Bonus

Orbit algebra

Orbit algebra (Cameron, 80's) Structure of graded algebra $\mathcal{A}_G = \bigoplus_n \mathcal{A}_n$ on the orbits

Nested block system

One superblock 0000 Classification 00000 Bonus

Orbit algebra

Orbit algebra (Cameron, 80's)

Structure of graded algebra $\mathcal{A}_G = \bigoplus_n \mathcal{A}_n$ on the orbits

• vector space formally spanned by the orbits of G (*i.e.* of basis indexed by the orbits)

Nested block system

One superblock 0000 Classification 00000 Bonus

Orbit algebra

Orbit algebra (Cameron, 80's)

Structure of graded algebra $\mathcal{A}_G = \bigoplus_n \mathcal{A}_n$ on the orbits

- vector space formally spanned by the orbits of G (*i.e.* of basis indexed by the orbits)
- combinatorial description of the product

Nested block system

One superblock 0000 Classification 00000 Bonus

Orbit algebra

Orbit algebra (Cameron, 80's)

Structure of graded algebra $\mathcal{A}_G = \bigoplus_n \mathcal{A}_n$ on the orbits

- vector space formally spanned by the orbits of G (*i.e.* of basis indexed by the orbits)
- combinatorial description of the product
- graded according to the orbital degree:

Nested block system

One superblock 0000 Classification 00000 Bonus

Orbit algebra

Orbit algebra (Cameron, 80's)

Structure of graded algebra $\mathcal{A}_G = \bigoplus_n \mathcal{A}_n$ on the orbits

- vector space formally spanned by the orbits of G (*i.e.* of basis indexed by the orbits)
- combinatorial description of the product
- graded according to the orbital degree: $orb_1.orb_2 =$ linear combination of orbits of degree $d_1 + d_2$
Nested block system 00000000 One superblock 0000 Classification 00000 Bonus

Orbit algebra

Orbit algebra (Cameron, 80's)

Structure of graded algebra $\mathcal{A}_G = \bigoplus_n \mathcal{A}_n$ on the orbits

- vector space formally spanned by the orbits of G (*i.e.* of basis indexed by the orbits)
- combinatorial description of the product
- graded according to the orbital degree: $orb_1.orb_2 =$ linear combination of orbits of degree $d_1 + d_2$
- $\dim(\mathcal{A}_n) = \varphi_G(n)$

Nested block system

One superblock 0000 Classification 00000 Bonus

Orbit algebra

Orbit algebra (Cameron, 80's)

Structure of graded algebra $\mathcal{A}_G = \bigoplus_n \mathcal{A}_n$ on the orbits

- vector space formally spanned by the orbits of G (*i.e.* of basis indexed by the orbits)
- combinatorial description of the product
- graded according to the orbital degree: $orb_1.orb_2 =$ linear combination of orbits of degree $d_1 + d_2$
- dim $(\mathcal{A}_n) = \varphi_G(n)$, so $\mathcal{H}_G(z) = \sum_n \dim(\mathcal{A}_n) z^n$

Nested block system 00000000 One superblock 0000 Classification 00000 Bonus

Orbit algebra

Orbit algebra (Cameron, 80's)

Structure of graded algebra $\mathcal{A}_G = \bigoplus_n \mathcal{A}_n$ on the orbits

- vector space formally spanned by the orbits of G (*i.e.* of basis indexed by the orbits)
- combinatorial description of the product
- graded according to the orbital degree: $orb_1.orb_2 =$ linear combination of orbits of degree $d_1 + d_2$
- dim $(\mathcal{A}_n) = \varphi_G(n)$, so $\mathcal{H}_G(z) = \sum_n \dim(\mathcal{A}_n) z^n$

Hilbert series of the graded algebra

Nested block system 00000000 One superblock 0000 Classification 00000 Bonus

Conjecture of Macpherson

Example.

 $\mathcal{A}_{\mathfrak{S}_{\infty}} \simeq \mathbb{Q}[X]$

Nested block system 00000000 One superblock 0000 Classification 00000 Bonus

Conjecture of Macpherson

Example. $\mathcal{A}_{\mathfrak{S}_{\infty}} \simeq \mathbb{Q}[X]$

Conjecture 2 (stronger) - Macpherson, 85 G P-oligomorphic $\Rightarrow \mathcal{A}_G$ is finitely generated

Nested block system 00000000 One superblock 0000 Classification 00000 Bonus

Conjecture of Macpherson

Example. $\mathcal{A}_{\mathfrak{S}_{\infty}} \simeq \mathbb{Q}[X]$

Conjecture 2 (stronger) - Macpherson, 85 G P-oligomorphic $\Rightarrow \mathcal{A}_G$ is finitely generated

Theorem (Thiéry, F. 2018)

The orbit algebra of a P-oligomorphic group is finitely generated, and Cohen-Macaulay.

In particular, its profile is polynomial in the strong sense.

Nested block system

One superblock 0000 Classification 00000 Bonus

Block systems

Block system

• Set partition of the domain into blocks

Nested block system

One superblock 0000 Classification 00000 Bonus

Block systems

Block system

• Set partition of the domain into blocks

Nested block system

One superblock 0000 Classification 00000 Bonus

Block systems

Block system

- Set partition of the domain into blocks
- such that G acts by permutation on the blocks

Nested block system

One superblock 0000 Classification 00000 Bonus

Block systems

Block system

- Set partition of the domain into blocks
- such that G acts by permutation on the blocks

Example

Nested block system

One superblock 0000 Classification 00000 Bonus

Block systems

Block system

- Set partition of the domain into blocks
- such that G acts by permutation on the blocks

Example

Nested block system

One superblock 0000 Classification 00000 Bonus

Block systems

Block system

- Set partition of the domain into blocks
- such that G acts by permutation on the blocks

Example

Nested block system

One superblock 0000 Classification 00000 Bonus

Block systems

Block system

- Set partition of the domain into blocks
- such that G acts by permutation on the blocks

Example

Nested block system

One superblock 0000 Classification 00000 Bonus

Block systems

Block system

- Set partition of the domain into blocks
- such that G acts by permutation on the blocks

Example

Block systems of C_4 Not a block system \rightarrow 3 2

Nested block system 00000000

One superblock 0000 Classification 00000 Bonus

The (closed) primitive P-oligomorphic groups

Nested block system 00000000

One superblock 0000 Classificatio 00000 Bonus

The (closed) primitive P-oligomorphic groups

Macpherson:

G $P\text{-oligomorphic with no (non trivial) blocks <math display="inline">\Rightarrow \varphi_G(n) = 1 \ \forall n$

 \mathfrak{S}_{∞}

Nested block system

One superblock

Classificatio 00000 Bonus

The (closed) primitive P-oligomorphic groups

Macpherson:

G $P\text{-oligomorphic with no (non trivial) blocks <math display="inline">\Rightarrow \varphi_G(n) = 1 \ \forall n$

Theorem (Classification, Cameron) Only 5 closed groups such that $\varphi_G(n) = 1 \quad \forall n$

 \mathfrak{S}_∞

Nested block system

One superblock 0000 Bonus

The (closed) primitive *P*-oligomorphic groups Macpherson:

G P-oligomorphic with no (non trivial) blocks $\Rightarrow \varphi_G(n) = 1 \ \forall n$

Theorem (Classification, Cameron) Only 5 closed groups such that $\varphi_G(n) = 1 \quad \forall n$

- $\operatorname{Aut}({\mathbb Q})$: automorphisms of the rational chain
- $\operatorname{Rev}(\mathbb{Q})$: generated by $\operatorname{Aut}(\mathbb{Q})$ and one reflection
- $\operatorname{Aut}(\mathbb{Q}/\mathbb{Z})$, preserving the circular order
- $\operatorname{Rev}(\mathbb{Q}/\mathbb{Z})$: generated by $\operatorname{Aut}(\mathbb{Q}/\mathbb{Z})$ and a reflection
- \mathfrak{S}_{∞} : the symmetric group

Nested block system

One superblock 0000 Bonus

The (closed) primitive *P*-oligomorphic groups Macpherson:

G P-oligomorphic with no (non trivial) blocks $\Rightarrow \varphi_G(n) = 1 \ \forall n$

Theorem (Classification, Cameron) Only 5 closed groups such that $\varphi_G(n) = 1 \quad \forall n$

- $\operatorname{Aut}({\mathbb Q})$: automorphisms of the rational chain
- $\operatorname{Rev}(\mathbb{Q})$: generated by $\operatorname{Aut}(\mathbb{Q})$ and one reflection
- $\operatorname{Aut}(\mathbb{Q}/\mathbb{Z})$, preserving the circular order
- $\operatorname{Rev}(\mathbb{Q}/\mathbb{Z})$: generated by $\operatorname{Aut}(\mathbb{Q}/\mathbb{Z})$ and a reflection
- \mathfrak{S}_{∞} : the symmetric group

Well known, nice groups (called *highly homogeneous*). In particular, their orbit algebra is finitely generated.

Nested block system 00000000

One superblock

Classification 00000 Bonus

Nested block system 00000000

One superblock

Classification 00000 Bonus

Nested block system 00000000

One superblock

Classification 00000 Bonus

Nested block system 00000000

One superblock

Classification 00000 Bonus

Nested block system 00000000

One superbloc

Classification 00000 Bonus

An infinite example: $\mathfrak{S}_{\infty} \wr \mathfrak{S}_3$

 $\mathfrak{S}_{\infty}\wr\mathfrak{S}_{3}$

Wreath product

Nested block system 00000000

One superbloc

Classification 00000 Bonus

An infinite example: $\mathfrak{S}_{\infty} \wr \mathfrak{S}_3$

Wreath product

$$\mathfrak{S}_{\infty}\wr\mathfrak{S}_3 \simeq \mathfrak{S}_{\infty}^3\rtimes\mathfrak{S}_3$$

Nested block system 0000000

One superbloc

Classification 00000 Bonus

An infinite example: $\mathfrak{S}_{\infty} \wr \mathfrak{S}_3$

 \mathfrak{S}_3 \mathfrak{S}_∞ \mathfrak{S}_{∞} \mathfrak{S}_{∞} Wreath product

$$\mathfrak{S}_{\infty}\wr\mathfrak{S}_{3}\ \simeq\ \mathfrak{S}_{\infty}^{3}\rtimes\mathfrak{S}_{3}$$

Subset of "shape" 2, 3, 2

Nested block system

One superblock

Classification 00000 Bonus

An infinite example: $\mathfrak{S}_{\infty} \wr \mathfrak{S}_3$

 \mathfrak{S}_3 \mathfrak{S}_∞ \mathfrak{S}_{∞} \mathfrak{S}_{∞}

Wreath product

$$\mathfrak{S}_{\infty}\wr\mathfrak{S}_{3}\ \simeq\ \mathfrak{S}_{\infty}^{3}\rtimes\mathfrak{S}_{3}$$

Subset of "shape" 2, 3, 2 $\rightarrow x_1^2 x_2^3 x_3^2$

Nested block system

One superblock

Classification 00000 Bonus

An infinite example: $\mathfrak{S}_{\infty} \wr \mathfrak{S}_3$

 \mathfrak{S}_3 \mathfrak{S}_{∞} \mathfrak{S}_{∞} \mathfrak{S}_{∞}

Wreath product

$$\mathfrak{S}_{\infty}\wr\mathfrak{S}_3 \simeq \mathfrak{S}_{\infty}^3\rtimes\mathfrak{S}_3$$

Subset of "shape" 2,3,2 $\rightarrow x_1^2 x_2^3 x_3^2$

Orbits of subsets

 \leftrightarrow symmetric polynomials in x_1, x_2, x_3

Nested block system

One superblock

Classification 00000 Bonus

An infinite example: $\mathfrak{S}_{\infty} \wr \mathfrak{S}_3$

 \mathfrak{S}_3 \mathfrak{S}_{∞} \mathfrak{S}_{∞} \mathfrak{S}_{∞}

Wreath product

$$\mathfrak{S}_{\infty}\wr\mathfrak{S}_3 \simeq \mathfrak{S}_{\infty}^3\rtimes\mathfrak{S}_3$$

Subset of "shape" 2,3,2 $\rightarrow x_1^2 x_2^3 x_3^2$

Orbits of subsets \leftrightarrow symmetric polynomials in x_1, x_2, x_3

$$\mathcal{A}_{\mathfrak{S}_{\infty}\wr\mathfrak{S}_{3}} \simeq \operatorname{Sym}_{3}[X] = \mathbb{Q}[X]^{\mathfrak{S}_{3}}$$

Nested block system 00000000

An infinite example: $\mathfrak{S}_{\infty} \wr \mathfrak{S}_3$

 \mathfrak{S}_3 \mathfrak{S}_{∞} \mathfrak{S}_{∞}

Wreath product

$$\mathfrak{S}_{\infty}\wr\mathfrak{S}_3 \simeq \mathfrak{S}_{\infty}^3\rtimes\mathfrak{S}_3$$

Subset of "shape" 2, 3, 2 $\rightarrow x_1^2 x_2^3 x_3^2$

Orbits of subsets \leftrightarrow symmetric polynomials in x_1, x_2, x_3

$$\mathcal{A}_{\mathfrak{S}_{\infty}\wr\mathfrak{S}_3} \simeq \operatorname{Sym}_3[X] = \mathbb{Q}[X]^{\mathfrak{S}_3}$$

Examples

Integer partitions; combinations; P-partitions... (with optional length and/or height restrictions)

Nested block system

One superblock

Classification 00000 Bonus

Further examples

For H subgroup of \mathfrak{S}_m :

•
$$G = \mathfrak{S}_{\infty} \wr H$$
:
 $\mathcal{A}_G \simeq \mathbb{Q}[X_1, \dots, X_m]^H$, the algebra of invariants of H

Nested block system

One superblock

Classification 00000 Bonus

Further examples

For H subgroup of \mathfrak{S}_m :

• $G = \mathfrak{S}_{\infty} \wr H$: $\mathcal{A}_G \simeq \mathbb{Q}[X_1, \dots, X_m]^H$, the algebra of invariants of H

 \mathcal{A}_G is finitely generated by Hilbert's theorem.

Nested block system

One superblock

Classification 00000 Bonus

Further examples

For H subgroup of \mathfrak{S}_m :

• $G = \mathfrak{S}_{\infty} \wr H$: $\mathcal{A}_G \simeq \mathbb{Q}[X_1, \dots, X_m]^H$, the algebra of invariants of H

 \mathcal{A}_G is finitely generated by Hilbert's theorem.

 \cdots ()()()()() \cdots

• $G = H \wr \mathfrak{S}_{\infty}$: $\mathcal{A}_G \simeq \mathbb{Q}[(X_o)_{o \in \operatorname{orb}(H)}]$ polynomial algebra generated by $\operatorname{orb}(H)$

One superblock

Classification 00000 Bonus

What block system to choose?

. . . N
One superblock

Classification 00000 Bonus

What block system to choose?

 $M \left[\left(\right) \left(\left(\right) \left(\right) \left(\right) \left(\right) \left(\right) \left(\left(\right) \left(\right) \left(\right) \left(\right) \left(\left($. . . N

 $\implies G \leq \mathfrak{S}_M \wr \mathfrak{S}_N$

Nested block system

One superblock

Classification 00000 Bonus

What block system to choose?

 $\implies G \leq \mathfrak{S}_M \wr \mathfrak{S}_N$

If G is P-oligomorphic, either:

Nested block system

One superblock

Classification 00000 Bonus

What block system to choose?

 $\implies G \leq \mathfrak{S}_M \wr \mathfrak{S}_N$

If G is P-oligomorphic, either:

Nested block system

One superblock

Classification 00000 Bonus

What block system to choose?

 $\implies G \leq \mathfrak{S}_M \wr \mathfrak{S}_N$

If G is P-oligomorphic, either:

• $M < \infty$

Nested block system

One superblock

Classification 00000 Bonus

What block system to choose?

 $\implies G \leq \mathfrak{S}_M \wr \mathfrak{S}_N$

If G is P-oligomorphic, either:

• $M < \infty$

or

• $N < \infty$

Nested block system

One superblock

Classification 00000 Bonus

What block system to choose?

 $\implies G \leq \mathfrak{S}_M \wr \mathfrak{S}_N$

If G is P-oligomorphic, either:

• $M < \infty$ $\longrightarrow \varphi_G(n) \ge O(n^{M-1})$

or

• $N < \infty$

Nested block system

One superblock

Classification 00000 Bonus

What block system to choose?

 $\implies G \leq \mathfrak{S}_M \wr \mathfrak{S}_N$

If G is P-oligomorphic, either:

- $M < \infty$ $\longrightarrow \varphi_G(n) \ge O(n^{M-1})$ or
- $N < \infty$ $\longrightarrow \varphi_G(n) \ge O(n^{N-1})$

Nested block system

One superblock

Classification 00000 Bonus

What block system to choose?

 $\implies G \leq \mathfrak{S}_M \wr \mathfrak{S}_N$

If G is P-oligomorphic, either:

- $M < \infty$ $\longrightarrow \varphi_G(n) \ge O(n^{M-1})$ or
- $N < \infty$ $\longrightarrow \varphi_G(n) \ge O(n^{N-1})$

Better have big finite blocks and/or "small" infinite ones...

Profile, conjectures 0000000	Nested block system 00000000	One superblock 0000	Classification 00000	Bonus	
	Lat	tices			

Partially ordered set (poset) with notions of join \lor and meet \land : any subset has a unique supremum (resp. infimum).

Profile, conjectures ooooooo	Nested block system 00000000	One superblock 0000	Classification 00000	Bonus	
	Lat	tices			

Partially ordered set (poset) with notions of join \lor and meet \land : any subset has a unique supremum (resp. infimum).

Not a lattice:

Profile, conjectures 0000000	Nested block system 00000000	One superblock 0000	Classification 00000	Bonus	
	Lat	tices			

Partially ordered set (poset) with notions of join \lor and meet \land : any subset has a unique supremum (resp. infimum).

Not a lattice:

Profile, conjectures	Nested block system	One superblock	Classification	Bonus	
0000000	○○○○○●○○	0000	00000		
	Lat	tices			

Partially ordered set (poset) with notions of join \lor and meet \land : any subset has a unique supremum (resp. infimum).

Not a lattice:

Profile, conjectures	Nested block system	One superblock	Classification	Bonus	
0000000	○○○○○●○○	0000	00000		
	Lat	tices			

Partially ordered set (poset) with notions of join \lor and meet \land : any subset has a unique supremum (resp. infimum).

Not a lattice:

Profile, conjectures	Nested block system	One superblock	Classification	Bonus	
0000000	○○○○○●○○	0000	00000		
	Lat	tices			

Partially ordered set (poset) with notions of join \lor and meet \land : any subset has a unique supremum (resp. infimum).

Not a lattice:

Nested block system 00000000

One superblock

Classificatio

Bonus

Lattices of block systems

Lattice of partitions \rightarrow lattice on block systems

Nested block system

One superblock

Classification 00000 Bonus

Lattices of block systems

Nested block system

One superblock

Classification 00000 Bonus

Lattices of block systems

Non trivial fact

- {Systems with $< \infty$ blocks only} = sublattice with maximum
- {Systems with ∞ blocks only} = sublattice with minimum

Nested block system

One superblock

Classification 00000 Bonus

Lattices of block systems

Non trivial fact

- {Systems with $< \infty$ blocks only} = sublattice with maximum
- {Systems with ∞ blocks only} = sublattice with minimum

Remark. If G is P-oligomorphic, both of them are actually finite!

Nested block system 0000000

One superblock 0000 Classification 00000 Bonus

The nested block system

Idea

•	•	•	•	•	•	•	•	•	•	•	
•	•	•	•	•	•	•	•	•	•	•	• • •
•	•	•	•	•	•	•	•	•	•	•	
•	•	•	•	•	•	•	•	•	•	•	
•	•	•	•	•	•	•	•	•	•	•	
•	•	•	•	•	•	•	•	•	•	•	
•	•	•	•	•	•	•	•	•	•	•	
•	•	•	•	•	•	•	•	•	•	•	• • •
•	•	•	•	•	•	•	•	•	•	•	

Nested block system 0000000

One superblock 0000 Classification 00000 Bonus

The nested block system

Idea

1. Take the *maximal* system of finite blocks

•	•					•		•	•	•	
•	•	•	•	•	•	•	•	•	•	•	
•	•	•	•	•	•	•		•	•	•	
•	•	•	•	•	•	•	•	•	•	•	
•	•	•	•	•	•	•	•	•	•	•	
•	•	•	•	•	•	•	•	•	•	•	
•	•	•	•	•	•	•	•	•	•	•	
•	•	•	•	•	•	•	•	•	•	•	• • •
•	•		•	•	•	•	•	•	•	•	

Nested block system

One superblock 0000 Classification 00000 Bonus

The nested block system

Idea

1. Take the *maximal* system of finite blocks

Nested block system

One superblock 0000 Classification 00000 Bonus

The nested block system

Idea

1. Take the *maximal* system of finite blocks

Action on the maximal finite blocks...

Nested block system

One superblock 0000 Classification 00000 Bonus

The nested block system

Idea

1. Take the *maximal* system of finite blocks

Nested block system

One superblock 0000 Classification 00000 Bonus

The nested block system

Idea

- 1. Take the *maximal* system of finite blocks
- 2. Take the minimal system of infinite blocks of the action of G on the maximal finite blocks

Nested block system

One superblock 0000 Classification 00000 Bonus

The nested block system

Idea

- 1. Take the *maximal* system of finite blocks
- 2. Take the *minimal* system of infinite blocks of the action of G on the maximal finite blocks \rightarrow finitely many superblocks

Nested block system

One superblock 0000 Classification 00000 Bonus

The nested block system

Idea

- 1. Take the *maximal* system of finite blocks
- 2. Take the *minimal* system of infinite blocks of the action of G on the maximal finite blocks \rightarrow finitely many superblocks

Nested block system 00000000

One superblock $\bullet \circ \circ \circ$

Classificatio

Bonus

Nested block system 00000000

One superblock $\bullet \circ \circ \circ$

Classificatio 00000

• • •

Bonus

One superblock: examples

Nested block system 00000000

One superblock $\bullet \circ \circ \circ$

Classificatio 00000 Bonus

Nested block system 00000000 One superblock $\bullet \circ \circ \circ$

Classificatio 00000 Bonus

Nested block system 00000000 One superblock $\bullet \circ \circ \circ$

Classificatio 00000 Bonus

Nested block system 00000000 One superblock $\bullet \circ \circ \circ$

Classificatio 00000 Bonus

Nested block system 00000000 One superblock $\bullet \circ \circ \circ$

Classificatio 00000 Bonus

One superblock: examples

 $G_{|B_0} = H_0$

Nested block system 00000000 One superblock $\bullet \circ \circ \circ$

Classificatio 00000 Bonus

One superblock: examples

 $G_{|B_0} = H_0 , \quad \operatorname{Fix}(B_0)$

Nested block system 00000000 One superblock $\bullet \circ \circ \circ$

Classificatio

Bonus

One superblock: examples

 $G_{|B_0} = H_0$, $\operatorname{Fix}(B_0)_{|B_1} = H_1$

Nested block system 00000000 One superblock $\bullet \circ \circ \circ$

Classification 00000 Bonus

 H_0 , H_1
Nested block system 00000000 One superblock $\bullet \circ \circ \circ$

Classification 00000 Bonus

Nested block system 00000000 One superblock $\bullet \circ \circ \circ$

Classification 00000 Bonus

One superblock: examples

 $H_0 \ , \ H_1 \ , \ H_2 \ , \ H_3$

Nested block system 00000000 One superblock $\bullet \circ \circ \circ$

Classification 00000 Bonus

One superblock: examples

 $H_0 , H_1 , H_2 , H_3 , H_4$

Nested block system 00000000 One superblock $\bullet \circ \circ \circ$

Classification 00000 Bonus

Nested block system 00000000 One superblock $\bullet \circ \circ \circ$

Classification 00000 Bonus

Nested block system 00000000 One superblock $\bullet \circ \circ \circ$

Classification 00000 Bonus

One superblock 0000

- " $H_0 \times \mathfrak{S}_{\infty}$ "
- $\rightarrow H_0$, Id , Id , Id , Id , Id . . .

Nested block system 00000000 One superblock $\bullet \circ \circ \circ$

Classification 00000 Bonus

- " $H_0 \times \mathfrak{S}_{\infty}$ " $\rightarrow H_0$, Id , Id , Id , Id , Id ...
- < " $H_0 \times \mathfrak{S}_{\infty}$ ", $H \wr \mathfrak{S}_{\infty} >$

Nested block system 00000000 One superblock $\bullet \circ \circ \circ$

Classification 00000 Bonus

One superblock: examples

• $< "H_0 \times \mathfrak{S}_\infty", H \wr \mathfrak{S}_\infty >$

 $H_0 \triangleright H$ w.l.o.g

Nested block system 00000000 One superblock $\bullet \circ \circ \circ$

Classification 00000 Bonus

One superblock: examples

Notation: $[H_0, H_\infty]$

Nested block system 00000000 One superblock $\circ \bullet \circ \circ$

Classification 00000 Bonus

Subdirect product and synchronization

How to handle synchronizations between blocks ?

Nested block systen 00000000 One superblock $\circ \bullet \circ \circ$

Classificatio 00000 Bonus

Subdirect product and synchronization

How to handle synchronizations between blocks ?

Subdirect product of two groups, or actions

Subdirect product and synchronization

How to handle synchronizations between blocks ?

Subdirect product of two groups, or actions

• Formalizes the *synchronization* between two actions

Subdirect product and synchronization

How to handle synchronizations between blocks ?

Subdirect product of two groups, or actions

- Formalizes the *synchronization* between two actions
- For instance, the actions on two different blocks

Subdirect product and synchronization

How to handle synchronizations between blocks ?

Subdirect product of two groups, or actions

- Formalizes the *synchronization* between two actions
- For instance, the actions on two different blocks

Example

Subdirect product and synchronization

How to handle synchronizations between blocks ?

Subdirect product of two groups, or actions

- Formalizes the *synchronization* between two actions
- For instance, the actions on two different blocks

Example $< (1\ 2\ 3), (1\ 2), (4\ 5), (4\ 5\ 6) > \simeq \mathfrak{S}_3 \times \mathfrak{S}_3$

Subdirect product and synchronization

How to handle synchronizations between blocks ?

Subdirect product of two groups, or actions

- Formalizes the *synchronization* between two actions
- For instance, the actions on two different blocks

Example $< (1\ 2\ 3), (1\ 2), (4\ 5), (4\ 5\ 6) > \simeq \mathfrak{S}_3 \times \mathfrak{S}_3$ $< (1\ 2\ 3), (1\ 2)(4\ 5), (4\ 5\ 6) > \simeq$ subdirect product of $\mathfrak{S}_3 \times \mathfrak{S}_3$

Subdirect product and synchronization

How to handle synchronizations between blocks ?

Subdirect product of two groups, or actions

- Formalizes the *synchronization* between two actions
- For instance, the actions on two different blocks

Example $< (1\ 2\ 3), (1\ 2), (4\ 5), (4\ 5\ 6) > \simeq \mathfrak{S}_3 \times \mathfrak{S}_3$ $< (1\ 2\ 3), (1\ 2)(4\ 5), (4\ 5\ 6) > \simeq \text{ subdirect product of } \mathfrak{S}_3 \times \mathfrak{S}_3$

Remark. The potential synchronizations of a group with another one are linked to its normal subgroups.

Nested block system 00000000 One superblock $\circ \circ \bullet \circ$

Classification 00000 Bonus

The tower determines $\operatorname{Stab}_G(\operatorname{blocks})$

Nested block system 00000000 One superblock $\circ \circ \bullet \circ$

Classification 00000 Bonus

The tower determines $\operatorname{Stab}_G(\operatorname{blocks})$

Nested block system 00000000 One superblock $\circ \circ \bullet \circ$

Classification 00000 Bonus

The tower determines $\operatorname{Stab}_G(\operatorname{blocks})$

Nested block system 00000000 One superblock $\circ \circ \bullet \circ$

Classification 00000 Bonus

The tower determines $\operatorname{Stab}_G(\operatorname{blocks})$

Nested block system

One superblock $000 \bullet$

Classification 00000 Bonus

One superblock: classification

• The tower determines G (uses the subdirect product and some technical lemmas)

Nested block system

One superblock $000 \bullet$

Classification 00000 Bonus

One superblock: classification

- The tower determines G (uses the subdirect product and some technical lemmas)
- Computer exploration on finitely many blocks

Nested block system

One superblock $\circ \circ \circ \bullet$

Classification 00000 Bonus

One superblock: classification

- The tower determines G (uses the subdirect product and some technical lemmas)
- Computer exploration on finitely many blocks
 - $\rightarrow\,$ Observation: always some $H_0,\ H,\ H,\ H,\ \dots,\ H,\ H_s$ Used the GAP database TransGrp 2.0.4 to browse transitive groups

Nested block system

Bonus

One superblock: classification

- The tower determines G (uses the subdirect product and some technical lemmas)
- Computer exploration on finitely many blocks
 - $\rightarrow\,$ Observation: always some $H_0,\ H,\ H,\ H,\ \dots,\ H,\ H_s$ Used the GAP database TransGrp 2.0.4 to browse transitive groups
 - \rightarrow Proof in the infinite case: always some $H_0, H, H, H \cdots$

Nested block system

Bonus

One superblock: classification

- The tower determines G (uses the subdirect product and some technical lemmas)
- Computer exploration on finitely many blocks
 - \rightarrow Observation: always some H_0 , H, H, H, \dots , H, H_s Used the GAP database TransGrp 2.0.4 to browse transitive groups
 - \rightarrow Proof in the infinite case: always some $H_0, H, H, H \cdots$

Classification

One superblock \Rightarrow $G = [H_0, H_\infty]$

Nested block system

Bonus

One superblock: classification

- The tower determines G (uses the subdirect product and some technical lemmas)
- Computer exploration on finitely many blocks
 - \rightarrow Observation: always some H_0 , H, H, H, \dots , H, H_s Used the GAP database TransGrp 2.0.4 to browse transitive groups
 - \rightarrow Proof in the infinite case: always some $H_0, H, H, H \cdots$

Classification

One superblock $\Rightarrow G = [H_0, H_\infty]$ $\mathbb{Q}[(X_o)_{o \in \operatorname{orb}(H)}]$

Nested block system

Bonus

One superblock: classification

- The tower determines G (uses the subdirect product and some technical lemmas)
- Computer exploration on finitely many blocks
 - \rightarrow Observation: always some H_0 , H, H, H, \dots , H, H_s Used the GAP database TransGrp 2.0.4 to browse transitive groups
 - \rightarrow Proof in the infinite case: always some $H_0, H, H, H \cdots$

Classification

One superblock \Rightarrow $G = [H_0, H_\infty]$

 $\mathcal{A}_G \simeq \mathbb{Q}[(X_o)_{o \in \operatorname{orb}(H)}]^{H_0}$

Nested block systen 00000000 One superblock 0000 Bonus

General case: minimal subgroup of finite index

Nested block systen 00000000 One superblock 0000 Classification •0000 Bonus

General case: minimal subgroup of finite index Normal subgroup K of G

Nested block systen 00000000 One superblock 0000 Classification •0000 Bonus

General case: minimal subgroup of finite index

Normal subgroup K of ${\cal G}$

• that fixes the kernel

Nested block systen 00000000 One superblock 0000 Classification •0000 Bonus

General case: minimal subgroup of finite index

Normal subgroup K of ${\cal G}$

• that fixes the kernel

Nested block systen 00000000 One superblock 0000 Classification •0000 Bonus

General case: minimal subgroup of finite index

Normal subgroup K of G

• that fixes the kernel

Nested block systen 00000000 One superblock 0000 Classification •0000 Bonus

General case: minimal subgroup of finite index

Normal subgroup K of ${\cal G}$

- that fixes the kernel
- that stabilizes the superblocks

Nested block system 00000000 One superblock 0000 Classification •0000 Bonus

General case: minimal subgroup of finite index

Normal subgroup K of ${\cal G}$

- that fixes the kernel
- that stabilizes the superblocks

One superblock 0000 Bonus

General case: minimal subgroup of finite index

Normal subgroup K of G

- that fixes the kernel
- that stabilizes the superblocks
- of restrictions wreath products onto the superblocks

General case: minimal subgroup of finite index

Normal subgroup K of G

- that fixes the kernel
- that stabilizes the superblocks
- of restrictions wreath products onto the superblocks

General case: minimal subgroup of finite index

Normal subgroup K of ${\cal G}$

- that fixes the kernel
- that stabilizes the superblocks
- of restrictions wreath products onto the superblocks

General case: minimal subgroup of finite index

Normal subgroup K of ${\cal G}$

- that fixes the kernel
- that stabilizes the superblocks
- of restrictions wreath products onto the superblocks
- in which Rev(...) are reduced down to Aut(...)

General case: minimal subgroup of finite index

Normal subgroup K of G

- that fixes the kernel
- that stabilizes the superblocks
- of restrictions wreath products onto the superblocks
- in which Rev(...) are reduced down to Aut(...)

 $\operatorname{Rev}(\mathbb{Q})$

General case: minimal subgroup of finite index

Normal subgroup K of G

- that fixes the kernel
- that stabilizes the superblocks
- of restrictions wreath products onto the superblocks
- in which Rev(...) are reduced down to Aut(...)

 $\operatorname{Aut}(\mathbb{Q})$

Nested block system 00000000 One superblock 0000 Classification 00000

Bonus

End of the proof of the conjectures

• In K, totally independent superblocks (and kernel)

Nested block system 00000000 One superblock

Classification 00000 Bonus

End of the proof of the conjectures

• In K, totally independent superblocks (and kernel) Consequence of the lack of finite index subgroups of \mathfrak{S}_{∞} , Aut(...) and wreath products

Nested block system 00000000 One superblock

Classification 00000

Bonus

End of the proof of the conjectures

 In K, totally independent superblocks (and kernel)
 Consequence of the lack of finite index subgroups of 𝔅_∞, Aut(...) and wreath products

 \Rightarrow direct product of the restrictions $K^{(i)}$

Nested block system 00000000 One superblock

Classification 00000 Bonus

End of the proof of the conjectures

• In K, totally independent superblocks (and kernel) Consequence of the lack of finite index subgroups of \mathfrak{S}_{∞} , Aut(...) and wreath products

 \Rightarrow direct product of the restrictions $K^{(i)}$ $\Rightarrow A = \Theta A$

 $\Rightarrow \mathcal{A}_K = \bigotimes_i \mathcal{A}_{K^{(i)}}$

Nested block system 00000000 Bonus

End of the proof of the conjectures

• In K, totally independent superblocks (and kernel) Consequence of the lack of finite index subgroups of \mathfrak{S}_{∞} , Aut(...) and wreath products

 \Rightarrow direct product of the restrictions $K^{(i)}$

 $\Rightarrow \mathcal{A}_K = \bigotimes_i \mathcal{A}_{K^{(i)}}$

• $K^{(i)} = H^{(i)} \wr \mathfrak{S}_{\infty}$ wreath product with finite blocks

Nested block system 00000000 One superblock

Bonus

End of the proof of the conjectures

• In K, totally independent superblocks (and kernel) Consequence of the lack of finite index subgroups of \mathfrak{S}_{∞} , Aut(...) and wreath products

 \Rightarrow direct product of the restrictions $K^{(i)}$

 $\Rightarrow \mathcal{A}_K = \bigotimes_i \mathcal{A}_{K^{(i)}}$

• $K^{(i)} = H^{(i)} \wr \mathfrak{S}_{\infty}$ wreath product with finite blocks $\Rightarrow \mathcal{A}_K \simeq \bigotimes_i \mathbb{Q}[(X_o)_{o \in \operatorname{orb}(H^{(i)})}]$

free algebra finitely generated by the orbits of the $H^{(i)}$'s

Nested block system 00000000 One superblock

Bonus

End of the proof of the conjectures

• In K, totally independent superblocks (and kernel) Consequence of the lack of finite index subgroups of \mathfrak{S}_{∞} , Aut(...) and wreath products

 \Rightarrow direct product of the restrictions $K^{(i)}$

 $\Rightarrow \mathcal{A}_K = \bigotimes_i \mathcal{A}_{K^{(i)}}$

• $K^{(i)} = H^{(i)} \wr \mathfrak{S}_{\infty}$ wreath product with finite blocks $\Rightarrow \mathcal{A}_K \simeq \bigotimes_i \mathbb{Q}[(X_o)_{o \in \operatorname{orb}(H^{(i)})}]$

free algebra finitely generated by the orbits of the $H^{(i)}$'s (plus some 2-nilpotent elements brought by the kernel)

Nested block system 00000000 One superblock

Bonus

End of the proof of the conjectures

• In K, totally independent superblocks (and kernel) Consequence of the lack of finite index subgroups of \mathfrak{S}_{∞} , Aut(...) and wreath products

 \Rightarrow direct product of the restrictions $K^{(i)}$

 $\Rightarrow \mathcal{A}_K = \bigotimes_i \mathcal{A}_{K^{(i)}}$

• $K^{(i)} = H^{(i)} \wr \mathfrak{S}_{\infty}$ wreath product with finite blocks $\Rightarrow \mathcal{A}_K \simeq \bigotimes_i \mathbb{Q}[(X_o)_{o \in \operatorname{orb}(H^{(i)})}]$

free algebra finitely generated by the orbits of the $H^{(i)}$'s (plus some 2-nilpotent elements brought by the kernel)

• Fact: G acts by permutation on these generators

Nested block system 00000000 One superblock

Bonus

End of the proof of the conjectures

• In K, totally independent superblocks (and kernel) Consequence of the lack of finite index subgroups of \mathfrak{S}_{∞} , Aut(...) and wreath products

 \Rightarrow direct product of the restrictions $K^{(i)}$

 $\Rightarrow \mathcal{A}_K = \bigotimes_i \mathcal{A}_{K^{(i)}}$

• $K^{(i)} = H^{(i)} \wr \mathfrak{S}_{\infty}$ wreath product with finite blocks $\Rightarrow \mathcal{A}_K \simeq \bigotimes_i \mathbb{Q}[(X_o)_{o \in \operatorname{orb}(H^{(i)})}]$

free algebra finitely generated by the orbits of the $H^{(i)}$'s (plus some 2-nilpotent elements brought by the kernel)

Fact: G acts by permutation on these generators
 ⇒ A_G is the algebra of invariants of this finite action (up to some nilpotents)

Nested block system 00000000 One superblock

Classification 00000 Bonus

End of the proof of the conjectures

• In K, totally independent superblocks (and kernel) Consequence of the lack of finite index subgroups of \mathfrak{S}_{∞} , Aut(...) and wreath products

 \Rightarrow direct product of the restrictions $K^{(i)}$

 $\Rightarrow \mathcal{A}_K = \bigotimes_i \mathcal{A}_{K^{(i)}}$

• $K^{(i)} = H^{(i)} \wr \mathfrak{S}_{\infty}$ wreath product with finite blocks $\Rightarrow \mathcal{A}_K \simeq \bigotimes_i \mathbb{Q}[(X_o)_{o \in \operatorname{orb}(H^{(i)})}]$

free algebra finitely generated by the orbits of the $H^{(i)}$'s (plus some 2-nilpotent elements brought by the kernel)

- Fact: G acts by permutation on these generators
 ⇒ A_G is the algebra of invariants of this finite action (up to some nilpotents)
- Hilbert's theorem:

 \mathcal{A}_G finitely generated (and even *Cohen-Macaulay*)

Nested block system 00000000 One superblock

Bonus

End of the proof of the conjectures

- In K, totally independent superblocks (and kernel) Consequence of the lack of finite index subgroups of \mathfrak{S}_{∞} , Aut(...) and wreath products
 - \Rightarrow direct product of the restrictions $K^{(i)}$

 $\Rightarrow \mathcal{A}_K = \bigotimes_i \mathcal{A}_{K^{(i)}}$

• $K^{(i)} = H^{(i)} \wr \mathfrak{S}_{\infty}$ wreath product with finite blocks $\Rightarrow \mathcal{A}_K \simeq \bigotimes_i \mathbb{Q}[(X_o)_{o \in \operatorname{orb}(H^{(i)})}]$

free algebra finitely generated by the orbits of the $H^{(i)}$'s (plus some 2-nilpotent elements brought by the kernel)

- Fact: G acts by permutation on these generators
 ⇒ A_G is the algebra of invariants of this finite action (up to some nilpotents)
- Hilbert's theorem:

 \mathcal{A}_G finitely generated (and even *Cohen-Macaulay*)

Which ends the proof of the conjectures!

Nested block system

One superblock 0000 Classification 00000

Bonus

Classification of P-oligomorphic groups

G_0 a finite permutation group

Nested block system 00000000 One superblock 0000 Classification 00000

Bonus

Classification of *P*-oligomorphic groups

G_0 a finite permutation group, \mathcal{B}_0 a block system.

Nested block system 00000000 One superblock 0000 Classification 00000

Bonus

Classification of P-oligomorphic groups

G_0 a finite permutation group, \mathcal{B}_0 a block system.

For each orbit of blocks

Nested block system 00000000 One superblock 0000 Classification 00000

Bonus

Classification of *P*-oligomorphic groups

 G_0 a finite permutation group, \mathcal{B}_0 a block system.

For each orbit of blocks, choose

1. One group of profile 1

Nested block system 00000000 One superblock 0000 Classification 00000

Bonus

Classification of P-oligomorphic groups

 G_0 a finite permutation group, \mathcal{B}_0 a block system.

- 1. One group of profile 1
 - Has to be \mathfrak{S}_{∞} if the blocks are singletons

Nested block system 00000000 One superblock

Classification 00000

Bonus

Classification of P-oligomorphic groups

 G_0 a finite permutation group, \mathcal{B}_0 a block system.

- 1. One group of profile 1
 - Has to be \mathfrak{S}_{∞} if the blocks are singletons
 - Can alternatively be Id_1 for at most one orbit of one block

Nested block system 00000000 One superblock 0000 Classification 00000

Bonus

Classification of P-oligomorphic groups

 G_0 a finite permutation group, \mathcal{B}_0 a block system.

- 1. One group of profile 1
 - Has to be \mathfrak{S}_{∞} if the blocks are singletons
 - Can alternatively be Id_1 for at most one orbit of one block

Nested block system 00000000 One superblock 0000 Classification 00000

Bonus

Classification of P-oligomorphic groups

 G_0 a finite permutation group, \mathcal{B}_0 a block system.

- 1. One group of profile 1
 - Has to be \mathfrak{S}_{∞} if the blocks are singletons
 - Can alternatively be Id_1 for at most one orbit of one block

Nested block system 00000000 One superblock 0000 Classification 00000

Bonus

Classification of P-oligomorphic groups

 G_0 a finite permutation group, \mathcal{B}_0 a block system.

- 1. One group of profile 1
 - Has to be \mathfrak{S}_{∞} if the blocks are singletons
 - Can alternatively be Id_1 for at most one orbit of one block

Nested block system 00000000 One superblock 0000 Classification 00000

Bonus

Classification of P-oligomorphic groups

 G_0 a finite permutation group, \mathcal{B}_0 a block system.

For each orbit of blocks, choose

- 1. One group of profile 1
 - Has to be \mathfrak{S}_{∞} if the blocks are singletons
 - Can alternatively be Id_1 for at most one orbit of one block

2. One normal subgroup H of $H_0 = G_{0|B}$ for B in the orbit

Nested block system 00000000 One superblock

Classification 00000

Bonus

Classification of P-oligomorphic groups

 G_0 a finite permutation group, \mathcal{B}_0 a block system.

For each orbit of blocks, choose

- 1. One group of profile 1
 - Has to be \mathfrak{S}_{∞} if the blocks are singletons
 - Can alternatively be Id_1 for at most one orbit of one block

2. One normal subgroup H of $H_0 = G_{0|B}$ for B in the orbit

Nested block system 00000000 One superblock 0000 $\begin{array}{c} {\rm Classification} \\ {\scriptstyle 000 \bullet 0} \end{array}$

Bonus

Consequences and perspectives

Finite encoding \rightarrow ground for algorithmics

Nested block system 00000000 One superblock

Classification 00000

Bonus

Consequences and perspectives

Finite encoding \rightarrow ground for algorithmics

• Implementation of *P*-oligomorphic groups (SageMath)

Nested block system 00000000 One superblock

Classification 00000

Bonus

Consequences and perspectives

Finite encoding \rightarrow ground for algorithmics

- Implementation of P-oligomorphic groups (SageMath)
- count *P*-oligomorphic groups, per growth rate of the profile

Nested block system 00000000 One superblock

Classification 00000 Bonus

Consequences and perspectives

Finite encoding \rightarrow ground for algorithmics

- Implementation of *P*-oligomorphic groups (SageMath)
- count *P*-oligomorphic groups, per growth rate of the profile Transitive case:

 $5,\, 6,\, 14,\, 33,\, 32,\, 114,\, 47,\, 323,\, 260,\, 338,\, 50,\, 2108,\, 58,\, 430,\, \dots$

Bonus

Consequences and perspectives

Finite encoding \rightarrow ground for algorithmics

- Implementation of *P*-oligomorphic groups (SageMath)
- count *P*-oligomorphic groups, per growth rate of the profile Transitive case:

5, 6, 14, 33, 32, 114, 47, 323, 260, 338, 50, 2108, 58, 430, ... "General case"? (kernel-free)

Bonus

Consequences and perspectives

Finite encoding \rightarrow ground for algorithmics

- Implementation of *P*-oligomorphic groups (SageMath)
- count *P*-oligomorphic groups, per growth rate of the profile Transitive case:

5, 6, 14, 33, 32, 114, 47, 323, 260, 338, 50, 2108, 58, 430, ... "General case"? (kernel-free)

• ...

Bonus

Consequences and perspectives

Finite encoding \rightarrow ground for algorithmics

- Implementation of *P*-oligomorphic groups (SageMath)
- count *P*-oligomorphic groups, per growth rate of the profile Transitive case:

5, 6, 14, 33, 32, 114, 47, 323, 260, 338, 50, 2108, 58, 430, ... "General case"? (kernel-free)

• ...

Still on the plate: explore higher growths

Bonus

Consequences and perspectives

Finite encoding \rightarrow ground for algorithmics

- Implementation of *P*-oligomorphic groups (SageMath)
- count *P*-oligomorphic groups, per growth rate of the profile Transitive case:

5, 6, 14, 33, 32, 114, 47, 323, 260, 338, 50, 2108, 58, 430, ... "General case"? (kernel-free)

• ...

Still on the plate: explore higher growths

• Bounded: classified before
Nested block system 00000000 One superblock

Classification 00000

Bonus

Consequences and perspectives

Finite encoding \rightarrow ground for algorithmics

- Implementation of *P*-oligomorphic groups (SageMath)
- count *P*-oligomorphic groups, per growth rate of the profile Transitive case:

5, 6, 14, 33, 32, 114, 47, 323, 260, 338, 50, 2108, 58, 430, ... "General case"? (kernel-free)

• ...

Still on the plate: explore higher growths

- Bounded: classified before
- Polynomial: classified now

Nested block system 00000000 Bonus

Consequences and perspectives

Finite encoding \rightarrow ground for algorithmics

- Implementation of *P*-oligomorphic groups (SageMath)
- count *P*-oligomorphic groups, per growth rate of the profile Transitive case:

5, 6, 14, 33, 32, 114, 47, 323, 260, 338, 50, 2108, 58, 430, ... "General case"? (kernel-free)

• ...

Still on the plate: explore higher growths

- Bounded: classified before
- Polynomial: classified now
- Subexponential: some properties remain true, to investigate

Nested block system 00000000 Bonus

Consequences and perspectives

Finite encoding \rightarrow ground for algorithmics

- Implementation of *P*-oligomorphic groups (SageMath)
- count *P*-oligomorphic groups, per growth rate of the profile Transitive case:

5, 6, 14, 33, 32, 114, 47, 323, 260, 338, 50, 2108, 58, 430, ... "General case"? (kernel-free)

• ...

Still on the plate: explore higher growths

- Bounded: classified before
- Polynomial: classified now
- Subexponential: some properties remain true, to investigate
- Exponential: wilder primitive groups appear...

Bonus

Thank you for your attention !

Context

- G permutation group of a countably infinite set E
- Profile φ_G : counts the orbits of subsets of E
- Hypothesis: $\varphi_G(n)$ bounded by a polynomial
- Conjecture (Cameron): $\varphi_G(n) \sim an^k$
- Conjecture (Macpherson): finite generation of the orbit algebra

Results

- Both conjectures hold !
- Classification of *P*-oligomorphic permutation groups
- The orbit algebra is an algebra of invariants (up to some 2-nilpotents)

Nested block system

One superblock 0000 Classification 00000 Bonus

Example of a product in the cyclic group C_5

Nested block systen 00000000 One superblock 0000 Classification 00000 Bonus

Nested block system 00000000 One superblock 0000 Classification 00000 Bonus

Nested block system 00000000 One superblock 0000 Classification 00000 Bonus

Nested block system

One superblock 0000 Classification 00000 Bonus

Nested block system 00000000 One superblock 0000 Classification 00000 Bonus

Example of a product in the cyclic group \mathcal{C}_5

= 0

Nested block system 00000000 One superblock 0000 Classification 00000 Bonus

Example of a product in the cyclic group \mathcal{C}_5

= 0 + 0

Nested block system 00000000 One superblock 0000 Classification 00000 Bonus

Nested block system 00000000 One superblock 0000 Classification 00000 Bonus

Nested block system 00000000 One superblock 0000 Classification 00000 Bonus

Nested block system 00000000 One superblock 0000 Classification 00000 Bonus

Nested block system 00000000 One superblock 0000 Classification 00000 Bonus

Nested block systen 00000000 One superblock 0000 Classification 00000 Bonus

Nested block system 00000000 One superblock 0000 Classification 00000 Bonus

Nested block system 00000000 One superblock 0000 Classification 00000 Bonus

Nested block systen 00000000 One superblock 0000 Classification 00000 Bonus

Nested block systen 00000000 One superblock 0000 Classification 00000 Bonus

The tower determines the group (0): "straight \mathfrak{S}_{∞} "

 ${\cal G}$ contains a set of "straight" swaps of blocks

Nested block system 00000000 One superblock 0000 Classification 00000 Bonus

Subdirect product

Subdirect product of G_1 and G_2

- Formalizes the synchronization between G_1 and G_2
- Subgroup of $G_1 \times G_2$ (with canonical projections G_1 and G_2)
- $E = E_1 \sqcup E_2$ stable $\Rightarrow G$ subdirect product of $G_{|E_1}$ and $G_{|E_2}$

Synchronization in a subdirect product

Let $N_1 = \operatorname{Fix}_G(E_2)$ and $N_2 = \operatorname{Fix}_G(E_1)$.

$$\frac{G_1}{N_1} \simeq \frac{G}{N_1 \times N_2} \simeq \frac{G_2}{N_2}$$

A subdirect product with explicit N_i 's is explicit.

Remark. N_1 and N_2 are *normal* in G_1 and G_2 , so the possibilities of synchronization of a group is linked to its normal subgroups.

Nested block system 00000000 One superblock 0000 Classification 00000 Bonus

Direct product in the case of finite blocks

"Speak, friend..."

Nested block system 00000000 One superblock 0000 Classificatio 00000 Bonus

Direct product in the case of finite blocks

"Speak, friend..."

Example 3

 $C_3\times \mathfrak{S}_\infty$ acting on blocks of size 3

0

Nested block system 00000000 One superblock 0000 Classificatio 00000 Bonus

Direct product in the case of finite blocks

"Speak, friend..."

Example 3

Nested block system 00000000 One superblock 0000 Classificatio 00000 Bonus

Direct product in the case of finite blocks

"Speak, friend..."

Example 3

Nested block system 00000000 One superblock 0000 Classificatio 00000 Bonus

Direct product in the case of finite blocks

"Speak, friend..."

Example 3

Nested block system 00000000 One superblock 0000 Classificatio 00000 Bonus

Direct product in the case of finite blocks

"Speak, friend..."

Example 3

Nested block system 00000000 One superblock 0000 Classificatio 00000 Bonus

Direct product in the case of finite blocks

"Speak, friend..."

Example 3

Nested block system 00000000 One superblock 0000 Classificatio 00000 Bonus

Direct product in the case of finite blocks

"Speak, friend..."

Example 3

Nested block system 00000000 One superblock 0000 Classificatio 00000 Bonus

Direct product in the case of finite blocks

"Speak, friend..."

Example 3

Nested block system 00000000 One superblock 0000 Classificatio 00000 Bonus

Direct product in the case of finite blocks

"Speak, friend..."

Example 3

Nested block system 00000000 One superblock 0000 Classificatio 00000 Bonus

Direct product in the case of finite blocks

"Speak, friend..."

Example 3

Nested block system 00000000 One superblock 0000 Classificatio 00000 Bonus

Direct product in the case of finite blocks

"Speak, friend..."

Example 3

Nested block system 00000000 One superblock 0000 Classificatio 00000 Bonus

Direct product in the case of finite blocks

"Speak, friend..."

Example 3

Nested block system 00000000 One superblock 0000 Classificatio 00000 Bonus

Direct product in the case of finite blocks

"Speak, friend..."

Example 3

Nested block syster 00000000 One superblock 0000 Classificatio 00000 Bonus

Direct product in the case of finite blocks

"Speak, friend..."

Example 3

Nested block system 00000000 One superblock 0000 Classificatio 00000 Bonus

Direct product in the case of finite blocks

"Speak, friend..."

Example 3

Nested block system 00000000 One superblock 0000 Classificatio 00000

. .

Bonus

Direct product in the case of finite blocks

"Speak, friend..."

Example 3

 $C_3\times \mathfrak{S}_\infty$ acting on blocks of size 3

Nested block system 00000000 One superblock 0000 Classificatio 00000

. .

Bonus

Direct product in the case of finite blocks

"Speak, friend..."

Example 3

 $C_3\times \mathfrak{S}_\infty$ acting on blocks of size 3

Nested block system 00000000 One superblock 0000 Classificatio

. .

Bonus

Direct product in the case of finite blocks

"Speak, friend..."

Example 3

 $C_3\times \mathfrak{S}_\infty$ acting on blocks of size 3

Nested block system 00000000 One superblock 0000 Classificatio

. .

Bonus

Direct product in the case of finite blocks

"Speak, friend..."

Example 3

 $C_3\times \mathfrak{S}_\infty$ acting on blocks of size 3

Nested block system 00000000 One superblock 0000 Classificatio 00000

. .

Bonus

Direct product in the case of finite blocks

"Speak, friend..."

Example 3

 $C_3\times \mathfrak{S}_\infty$ acting on blocks of size 3

$$\begin{array}{c} \mathrm{O}(\begin{array}{c} x \\ & \\ \end{array}) \\ \mathrm{O}(\begin{array}{c} x \\ & \\ \\ \end{array}) \end{array}$$

Nested block system

One superblock 0000 Classificatio

. .

Bonus

Direct product in the case of finite blocks

"Speak, friend..."

Example 3

 $C_3\times \mathfrak{S}_\infty$ acting on blocks of size 3

 $G' = C_3 \ acting \ on \ (non \ empty) \ subsets$ $\mathbb{K}[x]^{G'} \longleftrightarrow$ Orbit algebra of $C_3 \times \mathfrak{S}_{\infty}$?

 $\mathcal{O}(\ x \underset{\bigotimes}{\bullet}).\mathcal{O}(\ x \underset{\bigotimes}{\bullet})$

Nested block system 00000000 One superblock 0000 Classificatio

. .

Bonus

Direct product in the case of finite blocks

"Speak, friend..."

Example 3

 $C_3\times \mathfrak{S}_\infty$ acting on blocks of size 3

$$\mathcal{O}(x_{\textcircled{O}}) \mathcal{O}(x_{\textcircled{O}}) = \mathcal{O}(x_{\textcircled{O}}x_{\textcircled{O}})$$

Nested block syster 00000000 One superblock 0000 Classificatio 00000

. .

Bonus

Direct product in the case of finite blocks

"Speak, friend..."

Example 3

 $C_3\times \mathfrak{S}_\infty$ acting on blocks of size 3

$$O(x_{0}) O(x_{0}) = O(x_{0} x_{0}) + O(x_{0} x_{0})$$

Nested block syster 00000000 One superblock 0000 Classificatio 00000

. .

Bonus

Direct product in the case of finite blocks

"Speak, friend..."

Example 3

 $C_3\times \mathfrak{S}_\infty$ acting on blocks of size 3

$$O(x_{\bigcirc}) O(x_{\bigcirc}) = O(x_{\bigcirc} x_{\bigcirc}) + O(x_{\bigcirc} x_{\bigcirc}) + O(x_{\bigcirc} x_{\bigcirc})$$

Nested block system 00000000 One superblock 0000 Classificatio 00000

. .

Bonus

Direct product in the case of finite blocks

"Speak, friend..."

Example 3

$$G' = C_3 \ acting \ on \ (non \ empty) \ subsets$$

 $\mathbb{K}[x]^{G'} \longleftrightarrow \text{Orbit algebra of } C_3 \times \mathfrak{S}_{\infty}$?

$$O(x_{0}) \cdot O(x_{0}) = O(x_{0} \cdot x_{0}) + O(x_{0} \cdot x_{0}) + O(x_{0} \cdot x_{0}) + O(x_{0} \cdot x_{0})$$
$$O(x_{0}) \cdot O(x_{0}) + O(x_{0} \cdot x_{0}) + O(x_{0} \cdot x_{0})$$

Nested block system 00000000 One superblock 0000 Classificatio 00000

. .

Bonus

Direct product in the case of finite blocks

"Speak, friend..."

Example 3

$$G' = C_3 \ acting \ on \ (non \ empty) \ subsets$$

 $\mathbb{K}[x]^{G'} \longleftrightarrow \text{Orbit algebra of } C_3 \times \mathfrak{S}_{\infty}$?

$$O(x_{0}) \cdot O(x_{0}) = O(x_{0} \cdot x_{0}) + O(x_{0} \cdot x_{0}) + O(x_{0} \cdot x_{0})$$
$$O(x_{0}) \cdot O(x_{0}) = O(x_{0} \cdot x_{0})$$

Nested block system 00000000 One superblock 0000 Classificatio 00000

. .

Bonus

Direct product in the case of finite blocks

"Speak, friend..."

Example 3

$$G' = C_3 \ acting \ on \ (non \ empty) \ subsets$$

 $\mathbb{K}[x]^{G'} \longleftrightarrow \text{Orbit algebra of } C_3 \times \mathfrak{S}_{\infty}$?

$$O(x_{0}) O(x_{0}) = O(x_{0}x_{0}) + O(x_{0}x_{0}) + O(x_{0}x_{0})$$
$$O(x_{0}) O(x_{0}) = O(x_{0}x_{0}) + O(x_{0}x_{0})$$

Nested block syster 00000000 One superblock 0000 Classificatio 00000

. .

Bonus

Direct product in the case of finite blocks

"Speak, friend..."

Example 3

$$G' = C_3 \ acting \ on \ (non \ empty) \ subsets$$

 $\mathbb{K}[x]^{G'} \longleftrightarrow \text{Orbit algebra of } C_3 \times \mathfrak{S}_{\infty}$?

$$O(x_{0}) O(x_{0}) = O(x_{0}x_{0}) + O(x_{0}x_{0}) + O(x_{0}x_{0})$$
$$O(x_{0}) O(x_{0}) = O(x_{0}x_{0}) + O(x_{0}x_{0}) + O(x_{0}x_{0})$$

Nested block syster 00000000 One superblock 0000 Classificatio 00000

. .

Bonus

Direct product in the case of finite blocks

"Speak, friend..."

Example 3

$$G' = C_3 \ acting \ on \ (non \ empty) \ subsets$$

 $\mathbb{K}[x]^{G'} \longleftrightarrow \text{Orbit algebra of } C_3 \times \mathfrak{S}_{\infty}$?

$$O(x_{0}) O(x_{0}) = O(x_{0}x_{0}) + O(x_{0}x_{0}) + O(x_{0}x_{0})$$
$$O(x_{0}) O(x_{0}) = O(x_{0}x_{0}) + O(x_{0}x_{0}) + O(x_{0}x_{0})$$

Profile, conjectures	Nested block system	One superblock	Classification	Bonu
000000	0000000	0000		

The tower has shape H_0 , H, H, H, \cdots

Lemma to prove

G has tower H_0 H_1 H_2 $H_3 \Rightarrow H_1 = H_2$

Proof.

An element $s \in G$ stabilizing the blocks \leftrightarrow a quadruple

$$g \in H_1 \quad \to \quad \exists \ (1,g,h,k), \ h,k \in H_1.$$

Let σ be an element of G that permutes "straightforwardly" the first two blocks and fixes the other two.

Conjugation of x by σ in $G \to y = (g, 1, h, k)$ Then: $x^{-1}y = (g, g^{-1}, 1, 1)$

By arguing that the tower does not depend on the ordering of the blocks, g^{-1} and therefore g are in H_2 .

In the infinite case, apply to each restriction to four consecutive blocks of the fixator of the previous ones in G.

Profile, conjectures	Nested block system	One superblock	Classification	Bonus
0000000	00000000	0000	00000	