The domino problem for surface groups

Sebastián Barbieri Lemp
Joint work with Nathalie Aubrun and Etienne Moutot

Université de Bordeaux
Journées de Combinatoire de Bordeaux
February, 2020

Classical domino problem

Consider a finite set τ of Wang tiles

Classical domino problem

Consider a finite set τ of Wang tiles

Question:

is there a function $x: \mathbb{Z}^{2} \rightarrow \tau$ such that adjacent tiles share the same color?

Classical domino problem

Question:

is there an algorithm which given a finite set of Wang tiles decides whether they tile the plane or not?

Classical domino problem

Question:

is there an algorithm which given a finite set of Wang tiles decides whether they tile the plane or not?

Theorem (Berger 66')
No.

Classical domino problem

Question:

is there an algorithm which given a finite set of Wang tiles decides whether they tile the plane or not?

Theorem (Berger 66')
No.

The domino problem is Undecidable.

Domino problem

Soon, humankind started to explore new worlds...

Domino problem

Soon, humankind started to explore new worlds...

Domino problem

Soon, humankind started to explore new worlds...

Domino problem

Soon, humankind started to explore new worlds...

Theorem (Kari 08')

The domino problem is undecidable in the binary hyperbolic tiling.

General setting

Let us consider the following ingredients:

- A directed, labeled (infinite) graph $\Gamma=(V, E, L)$.
- A finite set of colors \mathcal{A}.
- A finite list of forbidden colored labeled connected finite graphs \mathcal{F}.

General setting

Let us consider the following ingredients:

- A directed, labeled (infinite) graph $\Gamma=(V, E, L)$.
- A finite set of colors \mathcal{A}.
- A finite list of forbidden colored labeled connected finite graphs \mathcal{F}.

Domino problem for Γ :

Is there an algorithm which decides, given $(\mathcal{A}, \mathcal{F})$, whether there exists a coloring $x: V \rightarrow \mathcal{A}$ such that no graph from \mathcal{F} embeds?

The original domino problem:

Binary hyperbolic tiling:

Binary hyperbolic tiling:

General setting: Cayley graphs

A particularly interesting case is when $\Gamma=(V, E, L)$ is the Cayley graph of a finitely generated group G given by the set of generators S.

- $V=G$.
- $E=\{(g, g s) \mid g \in G, s \in S\}$.
- $L(g, g s)=s$.

General setting: Cayley graphs

A particularly interesting case is when $\Gamma=(V, E, L)$ is the Cayley graph of a finitely generated group G given by the set of generators S.

- $V=G$.
- $E=\{(g, g s) \mid g \in G, s \in S\}$.
- $L(g, g s)=s$.

Remark: the domino problem does not depend upon the set of generators S. These problems are all computationally (many-one) equivalent.
$\operatorname{DP}(G)$ is the domino problem of the group G.

Cayley graph of free group.

Domino problem on groups.

List of facts:

- $\mathrm{DP}\left(\mathbb{Z}^{2}\right)$ is undecidable.

Domino problem on groups.

List of facts:

- $\operatorname{DP}\left(\mathbb{Z}^{2}\right)$ is undecidable.
- $\mathrm{DP}(\mathbb{Z})$ is decidable.

Domino problem on groups.

List of facts:

- $\operatorname{DP}\left(\mathbb{Z}^{2}\right)$ is undecidable.
- $\mathrm{DP}(\mathbb{Z})$ is decidable.
- $\operatorname{DP}(G)$ is decidable whenever G is virtually free (Cayley graph looks like the previous tree [finite tree-width]).

Domino problem on groups.

List of facts:

- $\operatorname{DP}\left(\mathbb{Z}^{2}\right)$ is undecidable.
- $\mathrm{DP}(\mathbb{Z})$ is decidable.
- $\operatorname{DP}(G)$ is decidable whenever G is virtually free (Cayley graph looks like the previous tree [finite tree-width]).

Domino conjecture

A finitely generated group has decidable domino problem if and only if it is virtually free.

Verified for polycyclic groups, Baumslag-Solitar groups, Branch groups.

Domino problem on groups.

Domino conjecture
A finitely generated group has decidable domino problem if and only if it is virtually free.

Why should one care about this?

Domino problem on groups.

Domino conjecture

A finitely generated group has decidable domino problem if and only if it is virtually free.

Why should one care about this?

Theorem (Muller \& Schupp '85)

A graph has decidable monadic second order logic (MSO) if and only if it has finite tree-width.

- Fact 1: A group is virtually free if and only if its Cayley graphs have finite tree-width.
- Fact 2: The domino problem can be expressed in MSO.

Domino problem on groups.

Domino conjecture

A finitely generated group has decidable domino problem if and only if it is virtually free.

Why should one care about this?

Theorem (Muller \& Schupp '85)

A graph has decidable monadic second order logic (MSO) if and only if it has finite tree-width.

- Fact 1: A group is virtually free if and only if its Cayley graphs have finite tree-width.
- Fact 2: The domino problem can be expressed in MSO.

If DC holds, then the domino problem contains all the complexity of MSO for finitely generated groups.

Surface groups

Consider the fundamental group of a closed orientable surface.

Surface groups

Consider the fundamental group of a closed orientable surface.

Surface groups

Consider the fundamental group of a closed orientable surface.

Surface groups

Consider the fundamental group of a closed orientable surface.

Surface groups

[^0]
Surface groups

Theorem (Aubrun, B. Moutot)
The domino problem of the fundamental group of any closed orientable surface of positive genus is undecidable.

Surface groups

Theorem (Aubrun, B. Moutot)

The domino problem of the fundamental group of any closed orientable surface of positive genus is undecidable.

Remark: we just need to show that the domino problem of

$$
\pi_{1}(\circlearrowleft) \cong\left\langle a, b, c, d \mid a b a^{-1} b^{-1} c d c^{-1} d^{-1}=1\right\rangle
$$

is undecidable.

How to prove it

Proof idea: use hyperbolicity.

- Step 1: show undecidability of DP for a class of graphs which embed nicely in the hyperbolic plane.

How to prove it

Proof idea: use hyperbolicity.

- Step 1: show undecidability of DP for a class of graphs which embed nicely in the hyperbolic plane.
- Step 2: show that one of these graphs 「 can be "locally encoded" by a subshift of finite type (set of tilings given by forbidden patterns) of $\pi_{1}(\infty)$.

How to prove it

Proof idea: use hyperbolicity.

- Step 1: show undecidability of DP for a class of graphs which embed nicely in the hyperbolic plane.
- Step 2: show that one of these graphs 「 can be "locally encoded" by a subshift of finite type (set of tilings given by forbidden patterns) of $\pi_{1}(\infty)$.
- Step 3: reduce $\operatorname{DP}\left(\pi_{1}(\infty)\right)$ to $\operatorname{DP}(\Gamma)$.

How to prove it

Proof idea: use hyperbolicity.

- Step 1: show undecidability of DP for a class of graphs which embed nicely in the hyperbolic plane.
- Step 2: show that one of these graphs 「 can be "locally encoded" by a subshift of finite type (set of tilings given by forbidden patterns) of $\pi_{1}(\infty)$.
- Step 3: reduce $\operatorname{DP}\left(\pi_{1}(\infty)\right)$ to $\mathrm{DP}(\Gamma)$.
- Step 4: profit.

How to prove it: nice class

A (non-deterministic) substitution is a pair (\mathcal{A}, R) where \mathcal{A} is a finite alphabet and R is a set of pairs $(a \mapsto w) \in \mathcal{A} \times \mathcal{A}^{*}$.

How to prove it: nice class

A (non-deterministic) substitution is a pair (\mathcal{A}, R) where \mathcal{A} is a finite alphabet and R is a set of pairs $(a \mapsto w) \in \mathcal{A} \times \mathcal{A}^{*}$.

Example

- $\mathcal{A}=\{0\}, R=\{(0 \mapsto 00)\}$.
- $\mathcal{A}=\{0,1\}, R=\{(1 \mapsto 0),(0 \mapsto 01)\}$.

How to prove it: nice class

A (non-deterministic) substitution is a pair (\mathcal{A}, R) where \mathcal{A} is a finite alphabet and R is a set of pairs $(a \mapsto w) \in \mathcal{A} \times \mathcal{A}^{*}$.

Example

$$
\begin{aligned}
& \text { - } \mathcal{A}=\{0\}, R=\{(0 \mapsto 00)\} \\
& \text { - } \mathcal{A}=\{0,1\}, R=\{(1 \mapsto 0),(0 \mapsto 01)\}
\end{aligned}
$$

An infinite word $u=\ldots u_{-1} u_{0} u_{1} u_{2} \cdots \in \mathcal{A}^{\mathbb{Z}}$ produces a word $v=\ldots v_{-1} v_{0} v_{1} v_{2} \cdots \in \mathcal{A}^{\mathbb{Z}}$ if v can be obtained from u by applying a rule of R on each symbol.

That is, there exists a function $\Delta: \mathbb{Z} \rightarrow \mathbb{Z}$ such that :

$$
\left(u_{i} \mapsto v_{\Delta(i)} \ldots v_{\Delta(i+1)-1}\right) \in R \text { for every } i \in \mathbb{Z}
$$

How to prove it: nice class

Let $\left\{u_{i}\right\}_{i \in \mathbb{Z}}$ be a sequence of bi-infinite words such that u_{i} produces u_{i+1} (with Δ_{i}). We can associate an orbit graph.

How to prove it: nice class

Let $\left\{u_{i}\right\}_{i \in \mathbb{Z}}$ be a sequence of bi-infinite words such that u_{i} produces u_{i+1} (with Δ_{i}). We can associate an orbit graph.

- Join all consecutive symbols of u_{i} by edges from left to right.
- Join each symbol of u_{i} with the corresponding sequence of symbols it produces in u_{i+1} assigning labels from left to right.

Example 1: trivial substitution gives \mathbb{Z}^{2}.

$$
\mathcal{A}=\{0\} R=\{(0 \mapsto 0)\} .
$$

Example 2: Doubling substitution gives bin hyp tiling.

$$
\mathcal{A}=\{0\} R=\{(0 \mapsto 00)\} .
$$

Undecidability: reduce to example 2.

Idea: take an orbit graph Γ.

Undecidability: reduce to example 2.

In each vertex code a finite subgraph of the binary orbit graph + information on how to locally paste them together.

Undecidability: reduce to example 2.

In each vertex code a finite subgraph of the binary orbit graph + information on how to locally paste them together.

Impose local consistency rules.

Undecidability: reduce to example 2.

- Suppose $\operatorname{DP}(\Gamma)$ is decidable.
- Use the previous tiling to encode the binary orbit graph.
- Let $(\mathcal{A}, \mathcal{F})$ be an alphabet and a set of forbidden patterns for the binary orbit graph. Use the encoding to simulate tilings in Γ.
- As $\operatorname{DP}(\Gamma)$ is decidable, we may use the associated algorithm to decide whether $(\mathcal{A}, \mathcal{F})$ admits a tiling of the binary orbit graph.
- contradiction \checkmark.

Undecidability: reduce to example 2.

- Suppose $\operatorname{DP}(\Gamma)$ is decidable.
- Use the previous tiling to encode the binary orbit graph.
- Let $(\mathcal{A}, \mathcal{F})$ be an alphabet and a set of forbidden patterns for the binary orbit graph. Use the encoding to simulate tilings in Γ.
- As $\operatorname{DP}(\Gamma)$ is decidable, we may use the associated algorithm to decide whether $(\mathcal{A}, \mathcal{F})$ admits a tiling of the binary orbit graph.
- contradiction \checkmark.

Warning

- We must check that the language of coded subgraphs is finite.

Undecidability: reduce to example 2.

- Suppose $\operatorname{DP}(\Gamma)$ is decidable.
- Use the previous tiling to encode the binary orbit graph.
- Let $(\mathcal{A}, \mathcal{F})$ be an alphabet and a set of forbidden patterns for the binary orbit graph. Use the encoding to simulate tilings in Γ.
- As $\operatorname{DP}(\Gamma)$ is decidable, we may use the associated algorithm to decide whether $(\mathcal{A}, \mathcal{F})$ admits a tiling of the binary orbit graph.
- contradiction \checkmark.

Warning

- We must check that the language of coded subgraphs is finite.
- We must check that the set of encodings is non-empty.

Hyperbolic geometry to the rescue!

A substitution (\mathcal{A}, R) has an expanding eigenvalue if there exists $\lambda>1$ and $v: \mathcal{A} \rightarrow \mathbb{R}^{+}$such that for every $\left(a \mapsto u_{1} \ldots u_{k}\right) \in R$:

$$
\lambda v(a)=\left(v\left(u_{1}\right)+v\left(u_{2}\right)+\cdots+v\left(u_{k}\right)\right)
$$

Example

$\mathcal{A}=\{0\} R=\{(0 \mapsto 00)\}$ admits the expanding eigenvalue $\lambda=2$.

$$
2 \lambda v(0)=(v(0)+v(0))
$$

Hyperbolic geometry to the rescue!

To every orbit of a substitution with an expanding eigenvalue we can associate canonically a tiling of \mathbb{H}^{2}.

Hyperbolic geometry to the rescue!

To every orbit of a substitution with an expanding eigenvalue we can associate canonically a tiling of \mathbb{H}^{2}.

Hyperbolic geometry to the rescue!

To every orbit of a substitution with an expanding eigenvalue we can associate canonically a tiling of \mathbb{H}^{2}.

Hyperbolic geometry to the rescue!

We superpose a tiling of (\mathcal{A}, R) and a binary tiling.

Hyperbolic geometry to the rescue!

We superpose a tiling of (\mathcal{A}, R) and a binary tiling.

Finitely many (coded) ways to intersect \Longrightarrow finite alphabet

Hyperbolic geometry to the rescue!

We superpose a tiling of (\mathcal{A}, R) and a binary tiling.

Finitely many (coded) ways to intersect \Longrightarrow finite alphabet There is an encoding \Longrightarrow non-emptiness

Hyperbolic geometry to the rescue!

We superpose a tiling of (\mathcal{A}, R) and a binary tiling.

Finitely many (coded) ways to intersect \Longrightarrow finite alphabet There is an encoding \Longrightarrow non-emptiness

Remark: Tiling superpositions were introduced by D.B. Cohen and C. Goodman-Strauss to produce aperiodic tilings of surface groups.

Hyperbolic geometry to the rescue!

Theorem (Aubrun, B., Moutot)
For every orbit graph Г of a substitution with an expanding
eigenvalue $D P(\Gamma)$ is undecidable.

Hyperbolic geometry to the rescue!

```
Theorem (Aubrun, B., Moutot)
For every orbit graph \Gamma of a substitution with an expanding eigenvalue \(D P(\Gamma)\) is undecidable.
```


Question

How does this relate to the fundamental group of

Hyperbolic geometry to the rescue!

Theorem (Aubrun, B., Moutot)

For every orbit graph 「 of a substitution with an expanding eigenvalue $D P(\Gamma)$ is undecidable.

Question

How does this relate to the fundamental group of \square
There is a "hidden" substitution in that group, namely $\mathcal{A}=\{\mathrm{a}, \mathrm{b}\}$ and

$$
\left\{\left(\mathrm{a} \mapsto \mathrm{ab}^{5} a b^{5} a b^{5} a b^{5} a b^{4}\right),\left(\mathrm{b} \mapsto a b^{5} a b^{5} a b^{5} a b^{5} a b^{5} a b^{4}\right) \cdot\right\}
$$

with $\lambda=17+12 \sqrt{2}$ and $v(\mathrm{~b}) / v(\mathrm{a})=\frac{1+\sqrt{2}}{2}$.

A way to look at this Cayley graph is as a translation surface obtained by pasting together octagons.

Surface group: vertex with ancestor

If a vertex is connected by a generator with the previous ring then the sequences of vertices in the next level it sees follows the following pattern:

Surface group: vertex with ancestor

If a vertex is not connected by a generator with the previous ring then the sequences of vertices in the next level it sees follows the following pattern:

Surface group: proof of undecidability

- Encode substitution structure using a finite alphabet and local rules. \checkmark

Surface group: proof of undecidability

- Encode substitution structure using a finite alphabet and local rules. \checkmark
- Assume the domino problem of the surface group is decidable.

Surface group: proof of undecidability

- Encode substitution structure using a finite alphabet and local rules. \checkmark
- Assume the domino problem of the surface group is decidable.
- Use the previous construction to reduce the domino problem in the orbit graph of the substitution to the one of the surface group.

Surface group: proof of undecidability

- Encode substitution structure using a finite alphabet and local rules. \checkmark
- Assume the domino problem of the surface group is decidable.
- Use the previous construction to reduce the domino problem in the orbit graph of the substitution to the one of the surface group.
- Contradiction.

Surface group: proof of undecidability

- Encode substitution structure using a finite alphabet and local rules. \checkmark
- Assume the domino problem of the surface group is decidable.
- Use the previous construction to reduce the domino problem in the orbit graph of the substitution to the one of the surface group.
- Contradiction.

Theorem (Aubrun, B., Moutot)

The domino problem is undecidable on the fundamental group of the closed orientable surface of genus 2.

Word-hyperbolic groups

Word-hyperbolic group

A finitely generated group is word-hyperbolic if the geodesic triangles of one of its Cayley graphs are δ-slim for some $\delta>0$.

2
${ }^{2}$ From https://en.wikipedia.org/wiki/Hyperbolic_group

Word-hyperbolic groups

Facts about word-hyperbolic groups:

- Virtually free groups \checkmark.
- Surface groups (genus $g \geq 2$) \checkmark.
- Nice computability properties: Finitely presented, decidable word problem, Dehn's algorithm works, language of shortlex geodesics is regular, etc.
- A random group is almost surely word-hyperbolic.

Word-hyperbolic groups

Facts about word-hyperbolic groups:

- Virtually free groups \checkmark.
- Surface groups (genus $g \geq 2$) \checkmark.
- Nice computability properties: Finitely presented, decidable word problem, Dehn's algorithm works, language of shortlex geodesics is regular, etc.
- A random group is almost surely word-hyperbolic.

Bottom line: testing ground for
Domino conjecture
A finitely generated group has decidable domino problem if and only if it is virtually free.

word-hyperbolic groups

Gromov's conjecture

The fundamental group of
∞ embeds into any one-ended word-hyperbolic group.

word-hyperbolic groups

Gromov's conjecture

The fundamental group of \square embeds into any one-ended word-hyperbolic group.

Facts:

- If a group H embeds into a group G, then the domino problem of G is computationally harder than the domino problem of H.
- If a word-hyperbolic group is not virtually free, it contains an embedded one-ended word-hyperbolic group.
- If GC holds, then every word-hyperbolic group which is not virtually free contains an embedded copy of the fundamental group of \qquad

word-hyperbolic groups

Gromov's conjecture

The fundamental group of \square embeds into any one-ended word-hyperbolic group.

Theorem

If GC holds, then the domino problem conjecture holds for every word-hyperbolic group.

word-hyperbolic groups

Gromov's conjecture

The fundamental group of \square embeds into any one-ended word-hyperbolic group.

Theorem

If GC holds, then the domino problem conjecture holds for every word-hyperbolic group.

- Fun fact: find a (non virt free) word-hyperbolic group with decidable domino problem and you shall attain fame and glory disprove Gromov's conjecture!

word-hyperbolic groups

Gromov's conjecture

The fundamental group of \square embeds into any one-ended word-hyperbolic group.

Theorem

If GC holds, then the domino problem conjecture holds for every word-hyperbolic group.

- Fun fact: find a (non virt free) word-hyperbolic group with decidable domino problem and you shall attain fame and glory disprove Gromov's conjecture!
- Fun fact: Same can be shown with weaker versions of GC.

Thank you for your attention!

The domino problem is undecidable on surface groups. https://arxiv.org/abs/1811.08420

[^0]: ${ }^{1}$ https://math.stackexchange.com/questions/1834108/ cayley-graph-of-the-fundamental-group-of-the-2-torus

