Periodic Pólya urns and an application to Young tableaux JCB 02/2019

Michael Wallner

joint work with Cyril Banderier and Philippe Marchal

Erwin Schrödinger-Fellow (Austrian Science Fund (FWF): J 4162)

Laboratoire Bordelais de Recherche en Informatique, Université de Bordeaux, France

February 13th, 2019

Based on the paper: Periodic Pólya urns and an application to Young tableaux, AofA 2018

Introduction

Balanced urn: K := a + b = c + d (above K = 2)

Initial b_0 black (•) and w_0 white (•)

• After *n* steps $b_0 + w_0 + Kn$ balls in the urn (deterministic!)

- Balanced urn: K := a + b = c + d (above K = 2)
 Initial b₀ black (●) and w₀ white (○)
- After n steps b₀ + w₀ + Kn balls in the urn (deterministic!)

Balanced urn: K := a + b = c + d (above K = 2)

Initial b_0 black (\bullet) and w_0 white (\circ)

• After *n* steps $b_0 + w_0 + Kn$ balls in the urn (deterministic!)

Balanced urn:
$$K := a + b = c + d$$
 (above $K = 2$)

Initial b₀ black (●) and w₀ white (○)

• After *n* steps $b_0 + w_0 + Kn$ balls in the urn (deterministic!)

Vast number of applications

- [Pólya, Eggenberger 1923-1930]: Disease infections $\begin{pmatrix} m & 0 \\ 0 & m \end{pmatrix}$
- [Rivest 2012]: How to check election results? How to be sure your vote was counted?
- [Fanti, Viswanath 2017]: Deanonymization in Bitcoin's peer-to-peer network
- Smythe, Mahmoud 1994, Holmgren, Janson 2016]: m-ary search trees
- [Janson 2004]: Branching processes
- [Mailler 2014], [Kuba, Sulzbach 2017], [Kuntschik, Neininger 2017]: Probabilistic analysis

Vast number of applications

- [Pólya, Eggenberger 1923-1930]: Disease infections $\begin{pmatrix} m & 0 \\ 0 & m \end{pmatrix}$
- [Rivest 2012]: How to check election results? How to be sure your vote was counted?
- [Fanti, Viswanath 2017]: Deanonymization in Bitcoin's peer-to-peer network
- Smythe, Mahmoud 1994, Holmgren, Janson 2016]: m-ary search trees
- [Janson 2004]: Branching processes
- [Mailler 2014], [Kuba, Sulzbach 2017], [Kuntschik, Neininger 2017]: Probabilistic analysis

Vivid field:

- many tools (martingales, analytic combinatorics, contraction, stochastic approximation, ...),
- many experts (see above, and more),
- many challenges: more colors, subset samplings, non tenable (non trivial positivity constraint), non time homogeneous, ...

Periodic Pólya urns

Definition

A *periodic Pólya urn* of period p is a Pólya urn with replacement matrices M_1, M_2, \ldots, M_p , such that at step np + k the replacement matrix M_k is used.

Periodic Pólya urns

Definition

A *periodic Pólya urn* of period p is a Pólya urn with replacement matrices M_1, M_2, \ldots, M_p , such that at step np + k the replacement matrix M_k is used. Such a model is called *balanced* if each of its replacement matrices is balanced.

Periodic Pólya urns

Definition

A *periodic Pólya urn* of period p is a Pólya urn with replacement matrices M_1, M_2, \ldots, M_p , such that at step np + k the replacement matrix M_k is used. Such a model is called *balanced* if each of its replacement matrices is balanced.

Definition

The Young-Pólya urn is a Pólya urn of period 2 with replacement matrix
$$M_1 := \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
 for every odd step, and replacement matrix $M_2 := \begin{pmatrix} 1 & 1 \\ 0 & 2 \end{pmatrix}$ for every even step.

Caveat: different from multidrawing models

Definition

Histories of length *n*: A sequence of *n* drawings/evolutions. $h_{n,k,\ell}$: Number of histories of length *n*, from (b_0, w_0) to (k, ℓ) .

Definition

Histories of length *n*: A sequence of *n* drawings/evolutions. $h_{n,k,\ell}$: Number of histories of length *n*, from (b_0, w_0) to (k, ℓ) .

$$H(x, y, z) = \sum_{n \ge 0} H_n(x, y) \frac{z^n}{n!} = \sum_{n, k, \ell \ge 0} h_{n, k, \ell} x^k y^\ell \frac{z^n}{n!}$$

Definition

Histories of length *n*: A sequence of *n* drawings/evolutions. $h_{n,k,\ell}$: Number of histories of length *n*, from (b_0, w_0) to (k, ℓ) .

$$H(x, y, z) = \sum_{n \ge 0} H_n(x, y) \frac{z^n}{n!} = \sum_{n, k, \ell \ge 0} h_{n, k, \ell} x^k y^\ell \frac{z^n}{n!}.$$
$$H_0 = xy$$

Definition

Histories of length *n*: A sequence of *n* drawings/evolutions. $h_{n,k,\ell}$: Number of histories of length *n*, from (b_0, w_0) to (k, ℓ) .

$$H(x, y, z) = \sum_{n \ge 0} H_n(x, y) \frac{z^n}{n!} = \sum_{n, k, \ell \ge 0} h_{n, k, \ell} x^k y^\ell \frac{z^n}{n!}$$

$$H_0 = xy$$

Definition

Histories of length *n*: A sequence of *n* drawings/evolutions. $h_{n,k,\ell}$: Number of histories of length *n*, from (b_0, w_0) to (k, ℓ) .

$$H(x, y, z) = \sum_{n \ge 0} H_n(x, y) \frac{z^n}{n!} = \sum_{n, k, \ell \ge 0} h_{n, k, \ell} x^k y^\ell \frac{z^n}{n!}$$
$$H_0 = xy$$
$$H_1 = x^2 y + xy^2$$

Definition

Histories of length *n*: A sequence of *n* drawings/evolutions. $h_{n,k,\ell}$: Number of histories of length *n*, from (b_0, w_0) to (k, ℓ) .

$$H(x,y,z) = \sum_{n\geq 0} H_n(x,y) \frac{z^n}{n!} = \sum_{n,k,\ell\geq 0} h_{n,k,\ell} x^k y^\ell \frac{z^n}{n!}$$

$$H_0 = xy$$

$$H_1 = x^2 y + x y^2$$

Definition

Histories of length *n*: A sequence of *n* drawings/evolutions. $h_{n,k,\ell}$: Number of histories of length *n*, from (b_0, w_0) to (k, ℓ) .

$$H(x,y,z) = \sum_{n\geq 0} H_n(x,y) \frac{z^n}{n!} = \sum_{n,k,\ell\geq 0} h_{n,k,\ell} x^k y^\ell \frac{z^n}{n!}$$

$$H_0 = xy$$

$$H_1 = x^2 y + x y^2$$

$$H_2 = 2x^3y^2 + 2x^2y^3 + 2xy^4$$

Definition

Histories of length *n*: A sequence of *n* drawings/evolutions. $h_{n,k,\ell}$: Number of histories of length *n*, from (b_0, w_0) to (k, ℓ) .

$$H(x,y,z) = \sum_{n\geq 0} H_n(x,y) \frac{z^n}{n!} = \sum_{n,k,\ell\geq 0} h_{n,k,\ell} x^k y^\ell \frac{z^n}{n!}$$

$$H_0 = xy$$

$$H_1 = x^2 y + x y^2$$

$$H_2 = 2x^3y^2 + 2x^2y^3 + 2xy^4$$

Definition

Histories of length *n*: A sequence of *n* drawings/evolutions. $h_{n,k,\ell}$: Number of histories of length *n*, from (b_0, w_0) to (k, ℓ) .

$$H(x, y, z) = \sum_{n \ge 0} H_n(x, y) \frac{z^n}{n!} = \sum_{n,k,\ell \ge 0} h_{n,k,\ell} x^k y^\ell \frac{z^n}{n!}.$$

$$H_0 = xy$$

$$H_1 = x^2 y + xy^2$$

$$H_2 = 2x^3 y^2 + 2x^2 y^3 + 2xy^4$$

$$H_3 = 6x^4 y^2 + 8x^3 y^3 + 8x^2 y^4 + 8xy^5$$

Distributions

Distribution of the urn

Central question?

How does the composition of the urn look like after *n* steps?
Distribution of the urn

Central question?

How does the composition of the urn look like after *n* steps?

Panacea! Histories generating function

 $H(x, y, z) = xy + (xy^2 + x^2y) z + (2xy^4 + 2x^2y^3 + 2x^3y^2) \frac{z^2}{2} + \dots$

Distribution of the urn

Central question?

How does the composition of the urn look like after n steps?

Panacea! Histories generating function

 $H(x, y, z) = xy + (xy^{2} + x^{2}y) z + (2xy^{4} + 2x^{2}y^{3} + 2x^{3}y^{2}) \frac{z^{2}}{2} + \dots$

Balanced urn

- Homogeneous polynomials $H_n(x, y)$
- Deterministic number of balls
- \Rightarrow Distribution B_n of black balls after *n* steps

Distribution of the urn

Central question?

How does the composition of the urn look like after n steps?

Panacea! Histories generating function

$$H(x, y, z) = xy + (xy^{2} + x^{2}y) z + (2xy^{4} + 2x^{2}y^{3} + 2x^{3}y^{2}) \frac{z^{2}}{2} + \dots$$

Balanced urn

- Homogeneous polynomials $H_n(x, y)$
- Deterministic number of balls
- \Rightarrow Distribution B_n of black balls after *n* steps

Many known distributions for (non-periodic) urn models

Generalized Gamma distribution GenGamma(α, β)

Let $\alpha, \beta > 0$ be real, then the density function with support $(0, +\infty)$ is

$$f(x; \alpha, \beta) := \frac{\beta x^{\alpha-1} \exp(-x^{\beta})}{\Gamma(\alpha/\beta)},$$

where Γ is the classical Gamma function $\Gamma(z) := \int_0^\infty t^{z-1} \exp(-t) dt$.

Generalized Gamma distribution GenGamma(α, β)

Let $\alpha, \beta > 0$ be real, then the density function with support $(0, +\infty)$ is

$$f(x; \alpha, \beta) := \frac{\beta x^{\alpha-1} \exp(-x^{\beta})}{\Gamma(\alpha/\beta)},$$

where Γ is the classical Gamma function $\Gamma(z) := \int_0^\infty t^{z-1} \exp(-t) dt$.

Some examples with red $\alpha = 0.5$, blue $\alpha = 1$, and green $\alpha = 2$:

Gamma distributions

Generalized Gamma distribution GenGamma(α, β)

Let $\alpha, \beta > 0$ be real, then the density function with support $(0, +\infty)$ is

$$f(x; \alpha, \beta) := \frac{\beta x^{\alpha-1} \exp(-x^{\beta})}{\Gamma(\alpha/\beta)}$$

where Γ is the classical Gamma function $\Gamma(z) := \int_0^\infty t^{z-1} \exp(-t) dt$.

Generalized Gamma distribution GenGamma(lpha, eta)

Let $\alpha, \beta > 0$ be real, then the density function with support $(0, +\infty)$ is

$$f(x; \alpha, \beta) := \frac{\beta x^{\alpha-1} \exp(-x^{\beta})}{\Gamma(\alpha/\beta)},$$

where Γ is the classical Gamma function $\Gamma(z) := \int_0^\infty t^{z-1} \exp(-t) dt$.

Generalized Gamma distribution GenGamma(α, β)

Let $\alpha, \beta > 0$ be real, then the density function with support $(0, +\infty)$ is

$$f(x; \alpha, \beta) := \frac{\beta x^{\alpha-1} \exp(-x^{\beta})}{\Gamma(\alpha/\beta)},$$

where Γ is the classical Gamma function $\Gamma(z) := \int_{0}^{\infty} t^{z-1} \exp(-t) dt$.

Gamma distributions

Half-normal for $\alpha = 1$

This talk!

[Janson 2010]: area of the supremum process of the Brownian motion

- [Peköz, Röllin, Ross 2016]: preferential attachments in graphs
- [Khodabin, Ahmadabadi 2010]: generalization of special functions

The number of black balls

Black balls in Young-Pólya urns

Theorem

The normalized random variable $\frac{2^{2/3}}{3} \frac{B_n}{n^{2/3}}$ of the number of black balls in a Young–Pólya urn converges in law to a generalized Gamma distribution:

$$\frac{2^{2/3}}{3} \frac{B_n}{n^{2/3}} \xrightarrow{\mathcal{L}} \text{GenGamma}(1,3).$$

The evolution of the Young-Pólya urn

Black balls in Young-Pólya urns

Theorem

The normalized random variable $\frac{2^{2/3}}{3} \frac{B_n}{n^{2/3}}$ of the number of black balls in a Young–Pólya urn converges in law to a generalized Gamma distribution:

$$\frac{2^{2/3}}{3} \frac{B_n}{n^{2/3}} \xrightarrow{\mathcal{L}} \text{GenGamma}(1,3).$$

The evolution of the Young-Pólya urn

I Classical Pólya urn
$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
: $C_1 \frac{B_{1,n}}{n}$ $\xrightarrow{\mathcal{L}}$ 2 Classical Pólya urn $\begin{pmatrix} 1 & 1 \\ 0 & 2 \end{pmatrix}$: $C_2 \frac{B_{2,n}}{\sqrt{n}}$ $\xrightarrow{\mathcal{L}}$

0.8 0.6 0.4 0.2 0 i 2 3 4 Density: $f(x; 1, 3) = \frac{3 e^{-x^3}}{\Gamma(1/3)}$

uniform distribution

1 Split into even and odd steps

$$H_e(x, y, z) := \sum_{n \ge 0} H_{2n}(x, y) \frac{z^{2n}}{(2n)!}$$
$$H_o(x, y, z) := \sum_{n \ge 0} H_{2n+1}(x, y) \frac{z^{2n+1}}{(2n+1)!}$$

1 Split into even and odd steps

$$H_e(x, y, z) := \sum_{n \ge 0} H_{2n}(x, y) \frac{z^{2n}}{(2n)!}$$
$$H_o(x, y, z) := \sum_{n \ge 0} H_{2n+1}(x, y) \frac{z^{2n+1}}{(2n+1)!}$$

2 Model the evolution using differential operators

$$\begin{aligned} M_1 &= \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} & M_2 &= \begin{pmatrix} 1 & 1 \\ 0 & 2 \end{pmatrix} \\ \mathcal{D}_1 &:= x^2 \partial_x + y^2 \partial_y & \mathcal{D}_2 &:= x^2 y \partial_x + y^3 \partial_y \end{aligned}$$

1 Split into even and odd steps

$$H_e(x, y, z) := \sum_{n \ge 0} H_{2n}(x, y) \frac{z^{2n}}{(2n)!}$$
$$H_o(x, y, z) := \sum_{n \ge 0} H_{2n+1}(x, y) \frac{z^{2n+1}}{(2n+1)!}$$

2 Model the evolution using differential operators

$$\begin{aligned} M_1 &= \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} & M_2 &= \begin{pmatrix} 1 & 1 \\ 0 & 2 \end{pmatrix} \\ \mathcal{D}_1 &:= x^2 \partial_x + y^2 \partial_y & \mathcal{D}_2 &:= x^2 y \partial_x + y^3 \partial_y \end{aligned}$$

3 Link odd and even steps

$$\partial_z H_o(x, y, z) = \mathcal{D}_1 H_e(x, y, z)$$
 $\partial_z H_e(x, y, z) = \mathcal{D}_2 H_o(x, y, z)$

4 Eliminate the (redundant) y variable (white balls) due to $\frac{1}{n}$

number of balls after *n* steps = $2 + n + \lfloor \frac{n}{2} \rfloor$.

Eliminate the (redundant) y variable (white balls) due to number of balls after n steps = $2 + n + \lfloor \frac{n}{2} \rfloor$. This gives

$$\begin{cases} x\partial_x H_e(x,y,z) + y\partial_y H_e(x,y,z) = 2H_e(x,y,z) + \frac{3}{2}z\partial_z H_e(x,y,z), \\ x\partial_x H_o(x,y,z) + y\partial_y H_o(x,y,z) = \frac{3}{2}H_o(x,y,z) + \frac{3}{2}z\partial_z H_o(x,y,z). \end{cases}$$

Eliminate the (redundant) y variable (white balls) due to number of balls after n steps = $2 + n + \lfloor \frac{n}{2} \rfloor$. This gives

$$\begin{cases} x\partial_x H_e(x, y, z) + y\partial_y H_e(x, y, z) = 2H_e(x, y, z) + \frac{3}{2}z\partial_z H_e(x, y, z), \\ x\partial_x H_o(x, y, z) + y\partial_y H_o(x, y, z) = \frac{3}{2}H_o(x, y, z) + \frac{3}{2}z\partial_z H_o(x, y, z). \end{cases}$$

5 Algebra! Eliminate $\partial_y H_e$ and $\partial_y H_o$, then substitute y = 1(We define H(x, z) := H(x, 1, z), $H_e(x, z) := H_e(x, 1, z)$, and $H_o(x, z) := H_o(x, 1, z)$)

Eliminate the (redundant) y variable (white balls) due to number of balls after n steps = $2 + n + \lfloor \frac{n}{2} \rfloor$. This gives

$$\begin{cases} x\partial_x H_e(x,y,z) + y\partial_y H_e(x,y,z) = 2H_e(x,y,z) + \frac{3}{2}z\partial_z H_e(x,y,z), \\ x\partial_x H_o(x,y,z) + y\partial_y H_o(x,y,z) = \frac{3}{2}H_o(x,y,z) + \frac{3}{2}z\partial_z H_o(x,y,z). \end{cases}$$

S Algebra! Eliminate $\partial_y H_e$ and $\partial_y H_o$, then substitute y = 1(We define H(x, z) := H(x, 1, z), $H_e(x, z) := H_e(x, 1, z)$, and $H_o(x, z) := H_o(x, 1, z)$)

Theorem

$$\begin{cases} \partial_z H_e(x,z) = x(x-1)\partial_x H_o(x,z) + \frac{3}{2}z\partial_z H_o(x,z) + \frac{3}{2}H_o(x,z), \\ \partial_z H_o(x,z) = x(x-1)\partial_x H_e(x,z) + \frac{3}{2}z\partial_z H_e(x,z) + 2H_e(x,z). \end{cases}$$

Eliminate the (redundant) y variable (white balls) due to number of balls after n steps = $2 + n + \lfloor \frac{n}{2} \rfloor$. This gives

$$\begin{cases} x\partial_x H_e(x, y, z) + y\partial_y H_e(x, y, z) = 2H_e(x, y, z) + \frac{3}{2}z\partial_z H_e(x, y, z), \\ x\partial_x H_o(x, y, z) + y\partial_y H_o(x, y, z) = \frac{3}{2}H_o(x, y, z) + \frac{3}{2}z\partial_z H_o(x, y, z). \end{cases}$$

5 Algebra! Eliminate $\partial_y H_e$ and $\partial_y H_o$, then substitute y = 1(We define H(x, z) := H(x, 1, z), $H_e(x, z) := H_e(x, 1, z)$, and $H_o(x, z) := H_o(x, 1, z)$)

Theorem

$$\begin{cases} \partial_z H_e(x,z) = x(x-1)\partial_x H_o(x,z) + \frac{3}{2}z\partial_z H_o(x,z) + \frac{3}{2}H_o(x,z), \\ \partial_z H_o(x,z) = x(x-1)\partial_x H_e(x,z) + \frac{3}{2}z\partial_z H_e(x,z) + 2H_e(x,z). \end{cases}$$

Moreover, they satisfy linear differential equations, i.e., they are D-finite.

Urns are D-finite!

Let $\widetilde{H}(x,z) := \sum_{n \ge 0} \frac{H_n(x)}{H_n(1)} z^n$ be the probability generating function. Then we have $L\widetilde{H}(x,z) = (\cdots \partial_z^3 + \cdots \partial_z^2 + \cdots \partial_z)\widetilde{H}(x,z) = 0.$

Urns are D-finite!

Let $\widetilde{H}(x,z) := \sum_{n\geq 0} \frac{H_n(x)}{H_n(1)} z^n$ be the probability generating function. Then we have $L\widetilde{H}(x,z) = (\cdots \partial_z^3 + \cdots \partial_z^2 + \cdots \partial_z)\widetilde{H}(x,z) = 0.$

 $L = 9z(z-1)(z+1)(x^{3}z^{2}+2x^{3}z+3x^{2}-3x+1)(x^{3}z^{2}-2x^{3}z+3x^{2}-3x+1)(15x^{7}z^{6}+36x^{7}z^{5}+45x^{7}z^{4}-3x^{6}z^{5}+15x^{6}z^{4}+180x^{6}z^{3}-24x^{5}z^{4}-210x^{5}z^{3}-24x^{5}z^{4}-210x^{5}z^{3}-24x^{5}z^{4}-210x^{5}z^{5}-210x^{5}z^{5}-210x^{5}z^{5}-210x^{5}-2$ $+8x^{4}z^{4} - 108x^{6}z + 63x^{5}z^{2} + 90x^{4}z^{3} + 180x^{5}z - 108x^{4}z^{2} - 10x^{3}z^{3} - 81x^{5} - 135x^{4}z + 81x^{3}z^{2} + 189x^{4} + 54x^{3}z - 30x^{2}z^{2} - 189x^{3} - 9x^{2}z + 5xz^{2}z^{3} - 18x^{3}z^{3} - 18x^$ $+99 x^{2} - 2 z x - 27 x + z + 3) \partial_{3}^{3} + 3 (375 x^{13} z^{12} + 1188 x^{13} z^{11} + 912 x^{13} z^{10} - 84 x^{12} z^{11} - 2646 x^{13} z^{9} + 1419 x^{12} z^{10} - 4995 x^{13} z^{8} + 9822 x^{12} z^{9} - 1734 x^{11} z^{10} - 100 x^{10} x^{10} + 100 x^{10} x^{10}$ $- 486 x^{13} z^7 + 5853 x^{12} z^8 - 10974 x^{11} z^9 + 578 x^{10} z^{10} + 1620 x^{13} z^6 - 24138 x^{12} z^7 - 1902 x^{11} z^8 + 4506 x^{10} z^9 - 7938 x^{12} z^6 + 53940 x^{11} z^7 - 5102 x^{10} z^8 - 24138 x^{12} z^7 - 1902 x^{11} z^8 + 4506 x^{10} z^9 - 7938 x^{12} z^6 + 53940 x^{11} z^7 - 5102 x^{10} z^8 - 24138 x^{12} z^7 - 1902 x^{11} z^8 + 4506 x^{10} z^9 - 7938 x^{12} z^6 + 53940 x^{11} z^7 - 5102 x^{10} z^8 - 24138 x^{10} z^8 - 24138$ $-424 x^9 z^9 + 24138 x^{12} z^5 + 5292 x^{11} z^6 - 65778 x^{10} z^7 + 5958 x^9 z^8 + 3240 x^{12} z^4 - 62748 x^{11} z^5 + 11358 x^{10} z^6 + 49444 x^9 z^7 - 2472 x^8 z^8 - 7776 x^{12} z^{33} + 240 x^{12} + 240 x^{12$ $+ 13932 x^{11} z^4 + 102168 x^{10} z^5 - 29508 x^9 z^6 - 21948 x^8 z^7 + 412 x^7 z^8 + 27054 x^{11} z^3 - 46224 x^{10} z^4 - 120504 x^9 z^5 + 33384 x^8 z^6 + 4918 x^7 z^7 - 8748 x^{11} z^2 -55242 x^{10} z^3 + 69579 x^9 z^4 + 102294 x^8 z^5 - 22658 x^7 z^6 - 360 x^6 z^7 + 25434 x^{10} z^2 + 85158 x^9 z^3 - 77346 x^8 z^4 - 61030 x^7 z^5 + 9456 x^6 z^6 + 2430 x^{10} z^7 z^5 + 9456 x^6 z^6 + 2430 x^{10} z^7 z^5 + 9456 x^6 z^6 + 2430 x^{10} z^7 z^5 + 9456 x^6 z^6 + 2430 x^{10} z^7 z^5 + 9456 x^6 z^6 + 2430 x^{10} z^7 z^5 + 9456 x^6 z^6 + 2430 x^{10} z^7 z^5 + 9456 x^6 z^6 + 2430 x^{10} z^7 z^5 + 9456 x^6 z^6 + 2430 x^{10} z^7 z^5 + 9456 x^6 z^6 + 2430 x^{10} z^7 z^5 + 9456 x^6 z^6 + 2430 x^{10} z^7 z^5 + 9456 x^6 z^6 + 2430 x^{10} z^7 z^5 + 9456 x^6 z^6 + 2430 x^{10} z^7 + 25434 x^{10} z^7 + 25444 x^{1$ $- 46332 x^9 z^2 - 104976 x^8 z^3 + 71694 x^7 z^4 + 24626 x^6 z^5 - 2286 x^5 z^6 - 13770 x^9 z + 76869 x^8 z^2 + 100998 x^7 z^3 - 52878 x^6 z^4 - 6102 x^5 z^5 + 254 x^4 z^6 + 5103 x^9 z$ + 35964 $x^8z - 109242 x^7z^2 - 72612 x^6z^3 + 29151 x^5z^4 + 718 x^4z^5 - 22113 x^8 - 56646 x^7z + 116856 x^6z^2 + 37458 x^5z^3 - 11534 x^4z^4 - 8x^3z^5 + 44226 x^7z^4 - 8x^3z^5 + 44226 x^7z^5 + 8x^3z^5 + 8x^3$ $+ 59346\,x^{6}z - 89910\,x^{5}z^{2} - 13098\,x^{4}z^{3} + 3144\,x^{3}z^{4} - 53298\,x^{6} - 43092\,x^{5}z + 49137\,x^{4}z^{2} + 2698\,x^{3}z^{3} - 540\,x^{2}z^{4} + 42525\,x^{5} + 21906\,x^{4}z - 18726\,x^{3}z^{2} - 18726\,x^{3}z^{2} + 21264\,x^{3}z^{2} + 21264\,x^{3}z^{2}$ $-144x^{2}z^{3} + 45xz^{4} - 23247x^{4} - 7674x^{3}z + 4758x^{2}z^{2} - 66xz^{3} + 8694x^{3} + 1764x^{2}z - 728xz^{2} + 12z^{3} - 2142x^{2} - 238zx + 51z^{2} + 315x + 14z - 21)\partial_{z}^{2}z^{3} + 52z^{2}z^{3} + 52z^{2} + 52z^{2}$ $+ 2 (1020 x^{13} z^{11} + 4032 x^{13} z^{10} + 7461 x^{13} z^9 - 276 x^{12} z^{10} + 972 x^{13} z^8 + 1317 x^{12} z^9 - 9315 x^{13} z^7 + 29340 x^{12} z^8 - 2559 x^{11} z^9 - 5346 x^{13} z^6 + 27900 x^{12} z^7 + 2700 x^{12} z^8 + 2700 x^{12} + 2700 x^{12} + 2700 x^{12} + 2700 x^{$ $- 34260 x^{11} x^{9} + 853 x^{10} x^{9} - 52074 x^{12} x^{6} - 19935 x^{11} x^{7} + 14352 x^{10} x^{8} - 40743 x^{12} x^{5} + 113634 x^{11} x^{6} - 5916 x^{10} x^{7} - 1466 x^{9} x^{8} + 40338 x^{12} x^{4} + 25839 x^{11} x^{5} + 113634 x^{11} x^{6} - 5916 x^{10} x^{7} - 1466 x^{9} x^{9} + 40338 x^{12} x^{4} + 25839 x^{11} x^{5} + 113634 x^{11} x^{6} - 5916 x^{10} x^{7} - 1466 x^{9} x^{9} + 40338 x^{12} x^{4} + 25839 x^{11} x^{5} + 113634 x^{11} x^{6} - 5916 x^{10} x^{7} - 1466 x^{9} x^{9} + 40338 x^{12} x^{4} + 25839 x^{11} x^{5} + 113634 x^{11} x^{6} - 5916 x^{10} x^{7} + 1146 x^{9} x^{9} + 1126 x^{10} x^{10} + 1126 x^{10$ $- 127818 x^{10} z^{6} + 13083 x^{9} z^{7} + 19440 x^{12} z^{3} - 150660 x^{11} z^{4} + 40608 x^{10} z^{5} + 80886 x^{9} z^{6} - 5442 x^{8} z^{7} - 11664 x^{12} z^{2} - 4617 x^{11} z^{3} + 240894 x^{10} z^{4} - 80883 x^{9} z^{5} - 5442 x^{8} z^{7} - 11664 x^{12} z^{2} - 4617 x^{11} z^{3} + 240894 x^{10} z^{4} - 80883 x^{9} z^{5} - 5442 x^{8} z^{7} - 11664 x^{12} z^{2} - 4617 x^{11} z^{3} + 240894 x^{10} z^{4} - 80883 x^{9} z^{5} - 5442 x^{8} z^{7} - 11664 x^{12} z^{2} - 4617 x^{11} z^{3} + 240894 x^{10} z^{4} - 80883 x^{9} z^{5} - 5442 x^{8} z^{7} - 11664 x^{12} z^{2} - 4617 x^{11} z^{3} + 240894 x^{10} z^{4} - 80883 x^{9} z^{5} - 5442 x^{8} z^{7} - 11664 x^{12} z^{5} - 4617 x^{11} z^{5} + 260883 x^{10} z^{5} - 5442 x^{11} z^{5} - 5444 x^{11} z^{5} - 5444$ $-38142 x^8 z^6 + 907 x^7 z^7 + 58806 x^{11} z^2 - 92340 x^{10} z^3 - 206514 x^9 z^4 + 69570 x^8 z^5 + 8198 x^7 z^6 - 17496 x^{11} z - 115182 x^{10} z^2 + 227124 x^9 z^3 + 93150 x^8 z^6 + 69570 x^8 z^6 + 8198 x^7 z^6 - 17496 x^{11} z - 115182 x^{10} z^2 + 227124 x^9 z^3 + 93150 x^8 z^6 + 69570 x^8 z^6 + 8198 x^7 z^6 - 17496 x^{11} z - 115182 x^{10} z^2 + 227124 x^9 z^3 + 93150 x^8 z^6 + 69570 x^8 z^6 + 8198 x^7 z^6 - 17496 x^{11} z - 115182 x^{10} z^2 + 227124 x^9 z^3 + 93150 x^8 z^6 + 69570 x^8 z^6 + 8198 x^7 z^6 + 17496 x^{11} z - 115182 x^{10} z^2 + 227124 x^9 z^3 + 93150 x^8 z^6 + 11272 x^{10} z^2 + 227124 x^9 z^3 + 93150 x^8 z^6 + 11272 x^{10} z^2 + 227124 x^9 z^3 + 93150 x^8 z^6 + 11272 x^{10} z^2 + 227124 x^9 z^3 + 93150 x^8 z^6 + 11272 x^{10} z^2 + 227124 x^9 z^3 + 93150 x^8 z^6 + 11272 x^{10} z^2 + 11272 x^{1$ $-38517 x^7 z^5 - 526 x^6 z^6 + 58563 x^{10} z + 127008 x^9 z^2 - 289710 x^8 z^3 - 12354 x^7 z^4 + 14154 x^6 z^5 - 10206 x^{10} - 105462 x^9 z - 93312 x^8 z^2 + 232929 x^7 z^3 - 9330 x^6 z^6 + 58563 x^{10} z^2 + 232929 x^7 z^3 - 9330 x^6 z^6 + 58563 x^{10} z^2 + 232929 x^7 z^3 - 93312 x^8 z^2 + 232929 x^7 z^3 - 93292 x^7 z^3 - 93312 x^8 z^2 + 232929 x^7 z^3 - 93292 x^$ $-3231 x^5 z^5 + 27216 x^9 + 139482 x^8 z + 50922 x^7 z^2 - 122508 x^6 z^3 + 5958 x^5 z^4 + 359 x^4 z^5 - 20412 x^8 - 150903 x^7 z - 20358 x^6 z^2 + 41499 x^5 z^3 - 1632 x^4 z^4 - 150903 x^7 z^2 - 10000 x^2 - 100000 x^2 - 10000 x^2 - 100$ $- 19278 x^{7} + 134298 x^{6} z + 4050 x^{5} z^{2} - 8526 x^{4} z^{3} + 194 x^{3} z^{4} + 55566 x^{6} - 94770 x^{5} z + 1350 x^{4} z^{2} + 948 x^{3} z^{3} - 57834 x^{5} + 50715 x^{4} z - 1416 x^{3} z^{2} - 60 x^{2} z^{3} + 50715 x^{4} z^{2} + 50715 x^{2} + 5071$ $+35910x^4 - 19620x^3z + 540x^2z^2 + 5xz^3 - 14490x^3 + 5148x^2z - 110xz^2 + 3780x^2 - 819zx + 10z^2 - 588x + 60z + 42)\partial_{x} + 17010x^{10} - 61236x^9 + 102060x^8 + 102060x^8 + 102060x^8 + 102060x^8 + 10000x^8 + 10000x^8$ $-103194x^{7} + 70308x^{6} - 34020x^{5} + 11970x^{4} - 3024x^{3} + 504x^{2} - 42x + 12x(270x^{6} - 261x^{5} + 126x^{4} + 21x^{3} - 69x^{2} + 30x - 5)(3x^{2} - 3x + 1)^{2}z$ $+ 2x(3x^{2} - 3x + 1)(3240x^{9} - 2673x^{8} - 6129x^{7} + 16254x^{6} - 16101x^{5} + 8010x^{4} - 1923x^{3} + 78x^{2} + 45x - 5)z^{2}$ $+4x^{3}(3x^{2}-3x+1)(1134x^{7}-4995x^{6}+5886x^{5}-2841x^{4}+129x^{3}+366x^{2}-159x+28)z^{3}$ $-6x^{4}(3x^{2}-3x+1)(1485x^{6}-468x^{5}-927x^{4}+1150x^{3}-623x^{2}+162x-27)z^{4}$ $-4 x^{6} (3 x^{2} - 3 x + 1) (1107 x^{4} - 3093 x^{3} + 1863 x^{2} - 565 x - 28) z^{5} + 6 x^{7} (405 x^{6} + 5178 x^{5} - 4335 x^{4} - 128 x^{3} + 1619 x^{2} - 666 x + 111) z^{6} (3 x^{2} - 3 x + 1) (1107 x^{4} - 3093 x^{3} + 1863 x^{2} - 565 x - 28) z^{5} + 6 x^{7} (405 x^{6} + 5178 x^{5} - 4335 x^{4} - 128 x^{3} + 1619 x^{2} - 666 x + 111) z^{6} (3 x^{2} - 3 x + 1) (1107 x^{4} - 3093 x^{3} + 1863 x^{2} - 565 x - 28) z^{5} + 6 x^{7} (405 x^{6} + 5178 x^{5} - 4335 x^{4} - 128 x^{3} + 1619 x^{2} - 666 x + 111) z^{6} (3 x^{2} - 3 x^{2} + 10) (1107 x^{4} - 3093 x^{3} + 1863 x^{2} - 565 x - 28) z^{5} + 6 x^{7} (405 x^{6} + 5178 x^{5} - 4335 x^{4} - 128 x^{3} + 1619 x^{2} - 666 x + 111) z^{6} (1107 x^{4} - 3093 x^{3} + 1863 x^{2} - 565 x - 28) z^{5} + 6 x^{7} (105 x^{6} + 5178 x^{5} - 4335 x^{4} - 128 x^{3} + 1619 x^{2} - 666 x + 111) z^{6} (1107 x^{4} - 3093 x^{3} + 1863 x^{2} - 565 x - 28) z^{5} + 6 x^{7} (105 x^{6} + 5178 x^{5} - 4335 x^{4} - 128 x^{3} + 1619 x^{2} - 666 x + 111) z^{6} (1107 x^{6} + 5178 x^{6} + 5178 x^{5} + 5178 x^{6} + 5178 x^{5} + 517$ $+20 x^{9} (405 x^{4}+1053 x^{3}-1335 x^{2}+597 x-76) z^{7}+10 x^{10} (783 x^{3}-57 x^{2}-69 x+23) z^{8}+240 x^{12} (12 x-1) z^{9}+600 x^{13} z^{10} (20 x^{10}-10 x^$

Let $m_r(n)$ be the *r*-th factorial moment of the distribution of black balls after *n* steps, i.e.

$$m_r(n) := \mathbb{E} \left(B_n(B_n-1) \cdots (B_n-r+1) \right)$$

Let $m_r(n)$ be the *r*-th factorial moment of the distribution of black balls after *n* steps, i.e.

$$m_r(n) := \mathbb{E} \left(B_n(B_n - 1) \cdots (B_n - r + 1) \right)$$
$$= [z^n] \partial_x^r \widetilde{H}(x, z)_{|x=1}$$

Let $m_r(n)$ be the *r*-th factorial moment of the distribution of black balls after *n* steps, i.e.

$$m_r(n) := \mathbb{E} \left(B_n(B_n - 1) \cdots (B_n - r + 1) \right)$$
$$= [z^n] \partial_x^r \widetilde{H}(x, z)|_{x=1}$$
$$= \frac{[z^n] \left. \frac{\partial^r}{\partial x^r} H(x, z) \right|_{x=1}}{[z^n] H(1, z)}$$

Let $m_r(n)$ be the *r*-th factorial moment of the distribution of black balls after *n* steps, i.e.

$$m_r(n) := \mathbb{E} \left(B_n(B_n - 1) \cdots (B_n - r + 1) \right)$$
$$= [z^n] \partial_x^r \widetilde{H}(x, z)|_{x=1}$$
$$= \frac{[z^n] \left. \frac{\partial^r}{\partial x^r} H(x, z) \right|_{x=1}}{[z^n] H(1, z)}$$

Theorem

The r-th factorial moment satisfies $m_r(n) = \frac{3^r}{2^{2r/3}} \frac{\Gamma\left(\frac{r}{3} + \frac{1}{3}\right)}{\Gamma\left(\frac{1}{3}\right)} n^{2r/3} \left(1 + \mathcal{O}\left(\frac{1}{n}\right)\right).$

Let $m_r(n)$ be the *r*-th factorial moment of the distribution of black balls after *n* steps, i.e.

$$m_r(n) := \mathbb{E} \left(B_n(B_n - 1) \cdots (B_n - r + 1) \right)$$
$$= [z^n] \partial_x^r \widetilde{H}(x, z)|_{x=1}$$
$$= \frac{[z^n] \left. \frac{\partial^r}{\partial x^r} H(x, z) \right|_{x=1}}{[z^n] H(1, z)}$$

Theorem

The r-th factorial moment satisfies $m_r(n) = \frac{3^r}{2^{2r/3}} \frac{\Gamma\left(\frac{r}{3} + \frac{1}{3}\right)}{\Gamma\left(\frac{1}{3}\right)} n^{2r/3} \left(1 + \mathcal{O}\left(\frac{1}{n}\right)\right).$

In particular

$$\lim_{n\to\infty}\frac{2^{2r/3}}{3^r}\frac{m_r(n)}{n^{2r/3}}=\frac{\Gamma\left(\frac{r}{3}+\frac{1}{3}\right)}{\Gamma\left(\frac{1}{3}\right)}=:m_r.$$

Mittag-Leffler and generalized gamma distributions

Torsten Carleman (1892-1949)

Gösta Mittag-Leffler (1846-1927)

Theorem

The distribution of Young–Pólya urn is characterized by its moments.

Mittag-Leffler and generalized gamma distributions

Torsten Carleman (1892-1949)

Gösta Mittag-Leffler (1846-1927)

Theorem

The distribution of Young–Pólya urn is characterized by its moments.

Proof.

[Carleman 1923] & [Fréchet, Shohat 1930] \Rightarrow the moments determine the distribution uniquely.

Mittag-Leffler and generalized gamma distributions

Torsten Carleman (1892-1949)

Gösta Mittag-Leffler (1846-1927)

Theorem

The distribution of Young–Pólya urn is characterized by its moments.

Proof.

[Carleman 1923] & [Fréchet, Shohat 1930] \Rightarrow the moments determine the distribution uniquely.

The support of the distribution plays a role. There is a unique distribution with such moments if the Carleman's condition holds:

– for support [0, ∞) (Stieljes moment problem): if $\sum 1/m_r^{1/2r} = \infty$

– for support $(-\infty,\infty)$ (Hamburger moment problem): if $\sum 1/m_{2r}^{1/2r}=\infty$

Young–Pólya urn of period p and parameter ℓ

The same approach allows us to study the distribution of black balls for the urn with replacement matrices

$$M_1 = M_2 = \dots = M_{p-1} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

and

$$M_{p} = egin{pmatrix} 1 & \ell \ 0 & 1+\ell \end{pmatrix}.$$

We call this model the Young-Pólya urn of period p and parameter ℓ .

Young–Pólya urn of period p and parameter ℓ

The same approach allows us to study the distribution of black balls for the urn with replacement matrices

$$M_1 = M_2 = \dots = M_{p-1} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

and

$$M_{p} = egin{pmatrix} 1 & \ell \ 0 & 1+\ell \end{pmatrix}.$$

We call this model the Young-Pólya urn of period p and parameter ℓ .

Theorem

Let b_0 be the initial black and w_0 the initial white balls. Then,

$$\frac{p^{\delta}}{p+\ell} \frac{B_n}{n^{\delta}} \xrightarrow{\mathcal{L}} \text{Beta}(b_0, w_0) \prod_{i=0}^{\ell-1} \text{GenGamma}(b_0 + w_0 + p + i, p + \ell),$$

with $\delta = p/(p+\ell)$, and where $\text{Beta}(b_0, w_0)$ is the law with support [0, 1] and density $\frac{\Gamma(b_0+w_0)}{\Gamma(b_0)\Gamma(w_0)} x^{b_0-1}(1-x)^{w_0-1}.$

Young Tableaux

Limiting objects

Classical dream: universality via limiting objects for combinatorial stuctures:

- Dyck paths ~→ Brownian motion (Bachelier, Einstein)
- Trees ~→ Continuous random trees (Aldous)
- Domino tilings ~→ Gaussian Free Field (Kenyon)
- Planar maps ~→ Brownian map (Marckert, Mokkadem: existence, Le Gall: triangulations, Miermont: quadrangulations)
- Self-avoiding processes ~→ SLE (Schramm, Lawler, Werner)
- Young tableaux \rightsquigarrow ?
 - Fluctuations in the corners of rectangular shapes: Gaussian
 - Fluctuations along the edge of square shapes: Tracy–Widom limit law

Triangular Young tableaux

Triangular Young tableaux

A triangular Young tableau of slope $\alpha := -\frac{\ell}{p}$ and of size N is a classical Young tableau with N cells such that

- the first p rows (from the bottom) have length $n\ell$,
- the next p rows have length $(n-1)\ell$ and so on

Triangular Young tableaux

Triangular Young tableaux

A triangular Young tableau of slope $\alpha := -\frac{\ell}{p}$ and of size N is a classical Young tableau with N cells such that

- the first p rows (from the bottom) have length $n\ell$,
- the next p rows have length $(n-1)\ell$ and so on

We are interested in $n \to \infty$. In particular: Distribution of the lower right corner.

Here

$$p = 1, \ell = 1$$

Triangular Young tableaux

Triangular Young tableaux

A triangular Young tableau of slope $\alpha := -\frac{\ell}{p}$ and of size N is a classical Young tableau with N cells such that

- the first p rows (from the bottom) have length $n\ell$,
- the next p rows have length $(n-1)\ell$ and so on

We are interested in $n \to \infty$. In particular: Distribution of the lower right corner.

Here

$$p = 1, \ell = 1$$
Triangular Young tableaux

A triangular Young tableau of slope $\alpha := -\frac{\ell}{p}$ and of size N is a classical Young tableau with N cells such that

- the first p rows (from the bottom) have length $n\ell$,
- the next p rows have length $(n-1)\ell$ and so on

We are interested in $n \to \infty$. In particular: Distribution of the lower right corner.

$$p = 1, \ell = 1$$

Triangular Young tableaux

A triangular Young tableau of slope $\alpha := -\frac{\ell}{p}$ and of size N is a classical Young tableau with N cells such that

- the first p rows (from the bottom) have length $n\ell$,
- the next p rows have length $(n-1)\ell$ and so on

We are interested in $n \to \infty$. In particular: Distribution of the lower right corner.

$$p = 1, \ell = 1$$

Triangular Young tableaux

A triangular Young tableau of slope $\alpha := -\frac{\ell}{p}$ and of size N is a classical Young tableau with N cells such that

- the first p rows (from the bottom) have length $n\ell$,
- the next p rows have length $(n-1)\ell$ and so on

We are interested in $n \to \infty$. In particular: Distribution of the lower right corner.

$$p = 1, \ell = 1$$

Triangular Young tableaux

A triangular Young tableau of slope $\alpha := -\frac{\ell}{p}$ and of size N is a classical Young tableau with N cells such that

- the first p rows (from the bottom) have length $n\ell$,
- the next p rows have length $(n-1)\ell$ and so on

We are interested in $n \rightarrow \infty$. In particular: Distribution of the lower right corner.

$$p = 1, \ell = 1$$

Triangular Young tableaux

A triangular Young tableau of slope $\alpha := -\frac{\ell}{p}$ and of size N is a classical Young tableau with N cells such that

- the first p rows (from the bottom) have length $n\ell$,
- the next p rows have length $(n-1)\ell$ and so on

We are interested in $n \to \infty$. In particular: Distribution of the lower right corner.

$$p = 1, \ell = 1$$

Triangular Young tableaux

A triangular Young tableau of slope $\alpha := -\frac{\ell}{p}$ and of size N is a classical Young tableau with N cells such that

- the first p rows (from the bottom) have length $n\ell$,
- the next p rows have length $(n-1)\ell$ and so on

We are interested in $n \to \infty$. In particular: Distribution of the lower right corner.

$$p = 1, \ell = 1$$

Triangular Young tableaux

A triangular Young tableau of slope $\alpha := -\frac{\ell}{p}$ and of size N is a classical Young tableau with N cells such that

- the first p rows (from the bottom) have length $n\ell$,
- the next p rows have length $(n-1)\ell$ and so on

We are interested in $n \to \infty$. In particular: Distribution of the lower right corner.

$$p = 1, \ell = 1$$

$$\bullet \ n=10$$

Triangular Young tableaux

A triangular Young tableau of slope $\alpha := -\frac{\ell}{p}$ and of size N is a classical Young tableau with N cells such that

- the first p rows (from the bottom) have length $n\ell$,
- the next p rows have length $(n-1)\ell$ and so on

We are interested in $n \rightarrow \infty$. In particular: Distribution of the lower right corner.

$$\bullet p=3, \ell=4$$

Periodic Pólya urns | Young Tableaux

Random Young Tableaux as Random Surfaces

400

200

Asymptotic results for Young Tableaux: [Logan, Shepp 77], [Vershik, Kerov 77], [Cohn, Larsen, Propp 98], [Borodin, Okounkov, Olshanski 99], [Widom 01], [Okounkov, Reshetikhin 01], [Pittel, Romik 04], [Romik 15], [Marchal 15], [Morales, Pak, Panova 16], ...

Asymptotic results for Young Tableaux: [Logan, Shepp 77], [Vershik, Kerov 77], [Cohn, Larsen, Propp 98], [Borodin, Okounkov, Olshanski 99], [Widom 01], [Okounkov, Reshetikhin 01], [Pittel, Romik 04], [Romik 15], [Marchal 15], [Morales, Pak, Panova 16], ...

Theorem

Let X_n be the entry of the lower right corner of a uniform random triangular Young tableau of slope $\alpha = -\frac{\ell}{p}$ and of size N. Define $\delta = \frac{p}{p+\ell} = \frac{1}{1-\alpha}$.

Asymptotic results for Young Tableaux: [Logan, Shepp 77], [Vershik, Kerov 77], [Cohn, Larsen, Propp 98], [Borodin, Okounkov, Olshanski 99], [Widom 01], [Okounkov, Reshetikhin 01], [Pittel, Romik 04], [Romik 15], [Marchal 15], [Morales, Pak, Panova 16], ...

Theorem

Let X_n be the entry of the lower right corner of a uniform random triangular Young tableau of slope $\alpha = -\frac{\ell}{p}$ and of size N. Define $\delta = \frac{p}{p+\ell} = \frac{1}{1-\alpha}$. Then $C \frac{N-X_n}{n^{1+\delta}}$

converges in law to the same limiting distribution as the number of black balls in a periodic Young–Pólya urn with initial conditions $w_0 = \ell$, $b_0 = p$ and with replacement matrices $M_1 = \cdots = M_{p-1} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ and $M_p = \begin{pmatrix} 1 & \ell \\ 0 & 1+\ell \end{pmatrix}$,

Asymptotic results for Young Tableaux: [Logan, Shepp 77], [Vershik, Kerov 77], [Cohn, Larsen, Propp 98], [Borodin, Okounkov, Olshanski 99], [Widom 01], [Okounkov, Reshetikhin 01], [Pittel, Romik 04], [Romik 15], [Marchal 15], [Morales, Pak, Panova 16], ...

Theorem

Let X_n be the entry of the lower right corner of a uniform random triangular Young tableau of slope $\alpha = -\frac{\ell}{p}$ and of size N. Define $\delta = \frac{p}{p+\ell} = \frac{1}{1-\alpha}$. Then $C \frac{N-X_n}{n^{1+\delta}}$

converges in law to the same limiting distribution as the number of black balls in a periodic Young–Pólya urn with initial conditions $w_0 = \ell$, $b_0 = p$ and with replacement matrices $M_1 = \cdots = M_{p-1} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ and $M_p = \begin{pmatrix} 1 & \ell \\ 0 & 1 + \ell \end{pmatrix}$, i.e., for $n \to \infty$ we have

$$\frac{2}{p\ell} \frac{N - X_n}{n^{1+\delta}} \stackrel{\mathcal{L}}{\longrightarrow} \mathsf{Beta}(b_0, w_0) \prod_{i=0}^{\ell-1} \mathsf{GenGamma}(b_0 + w_0 + p + i, p + \ell).$$

Correspondence 1

- T

		e.				l.		l							
-			<u> </u>	~	-	-		~		-					
1	2	4	9	11	16	23	33	34	36	37	42	Ļ			
3	5	7	13	15	24	47	48	49	64	66	69	I			
6	8	10	21	28	35	50	53	54	65	67	70	Î			
12	14	20	29	38	39	51	62	↓							
17	19	26	30	40	52	56	63	p							
18	25	32	43	46	57	59	68	Î							
22	27	45	58	↓											
31	44	60	71	p											
41	55	61	72	11											

Correspondence 1

41	55	61	72	1															ļ	\langle	v_1
31	44	60	71	p												ر. مرجعين	er e			d)
22	27	45	58	↓												i de la compañía de l			-4	λ.	
18	25	32	43	46	57	59	68	lî						,			1	6	ע	5	o
17	19	26	30	40	52	56	63	p						11	1	/	\angle	5		p	1
12	14	20	29	38	39	51	62]↓						17	. /	~	R			,	/
6	8	10	21	28	35	50	53	54	65	67	70]1	1	/	$\langle \rangle$	\mathcal{T}	52	$\hat{\mathcal{D}}$)	1	
3	5	7	13	15	24	47	48	49	64	66	69	p	- []	6	20			p –		1	/
1	2	4	9	11	16	23	33	34	36	37	42	Ļ		10					e de la compañía de la		
<u> </u>		l				l				l	\rightarrow	•		O_p	$-\frac{1}{1}$			er er er er			L

 $\sim \tau$

Correspondence 1

• Lower right cell of \mathcal{Y} corresponds to node $v_{n\ell}$

Correspondence 1

- Lower right cell of \mathcal{Y} corresponds to node $v_{n\ell}$
- First row corresponds to left-most branch of ${\mathcal S}$

Correspondence 1

- Lower right cell of \mathcal{Y} corresponds to node $v_{n\ell}$
- First row corresponds to left-most branch of ${\mathcal S}$
- Important: Hook lengths are the same!

Correspondence 1

- Lower right cell of \mathcal{Y} corresponds to node $v_{n\ell}$
- First row corresponds to left-most branch of S
- Important: Hook lengths are the same!

Key result

Let $E_{\mathcal{T}}$ be a uniform random linear extension of \mathcal{T} , and X_n be the lower right entry of \mathcal{Y} .

$$1+X_n\stackrel{\mathcal{L}}{=} E_{\mathcal{T}}(v_{n\ell}).$$

Correspondence 2

Correspondence 2

Periodic Young–Pólya urn with period p and parameter ℓ with replacement matrices

$$M_1 = M_2 = \cdots = M_{p-1} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
 and $M_p = \begin{pmatrix} 1 & \ell \\ 0 & 1+\ell \end{pmatrix}$.

Correspondence 2

Periodic Young–Pólya urn with period p and parameter ℓ with replacement matrices

$$M_1 = M_2 = \cdots = M_{p-1} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
 and $M_p = \begin{pmatrix} 1 & \ell \\ 0 & 1 + \ell \end{pmatrix}$.

• Initial conditions $b_0 = p$ and $w_0 = \ell$

Correspondence 2

Periodic Young–Pólya urn with period p and parameter ℓ with replacement matrices

$$M_1 = M_2 = \cdots = M_{p-1} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
 and $M_p = \begin{pmatrix} 1 & \ell \\ 0 & 1 + \ell \end{pmatrix}$.

• Initial conditions $b_0 = p$ and $w_0 = \ell$

 $\Rightarrow N - E_{\mathcal{S}}(v_{n\ell})$ is distributed like $B_{(n-1)p}$, the black balls after (n-1)p steps

The general result for Pólya urns

Theorem (The product generalized gamma distribution for balanced periodic triangular urns)

Let $p \ge 1$ and $\ell_1, \ldots, \ell_p \ge 0$ be non-negative integers. Consider a periodic Pólya urn of period p with replacement matrices M_1, \ldots, M_p given by

$$M_j := egin{pmatrix} 1 & \ell_j \ 0 & 1+\ell_j \end{pmatrix}.$$

Then, the renormalized distribution of black balls is asymptotically for $n \to \infty$ given by the following product of independent distributions:

$$\frac{p^{\delta}}{p+\ell} \frac{B_n}{n^{\delta}} \xrightarrow{\mathcal{L}} \operatorname{Beta}(b_0, w_0) \prod_{\substack{i=1, \\ i\neq \ell_1+\dots+\ell_j+j \text{ with } 1\leq j\leq p-1}}^{p+\ell-1} \operatorname{GenGamma}(b_0+w_0+i, p+\ell).$$
with $\ell = \ell_1 + \dots + \ell_p$, $\delta = p/(p+\ell)$, and $\operatorname{Beta}(b_0, w_0) = 1$ when $w_0 = 0$.

Solves the law of the south-east corner for a periodic triangular Young tableaux of any periodic shape.

- **1** Extension: Periodic Pólya urns (time dependent extension)
- 2 Main result: Asymptotic analysis of composition
- 3 New limit law: Generalized Gamma distribution
- Application: Lower right corner of triangular Young tableaux

- Extension: Periodic Pólya urns (time dependent extension)
- 2 Main result: Asymptotic analysis of composition
- 3 New limit law: Generalized Gamma distribution
- Application: Lower right corner of triangular Young tableaux

- Extension: Periodic Pólya urns (time dependent extension)
 Main result: Asymptotic analysis of composition
- **3** New limit law: Generalized Gamma distribution
- Application: Lower right corner of triangular Young tableaux

- **I** Extension: Periodic Pólya urns (time dependent extension)
- 2 Main result: Asymptotic analysis of composition
- 3 New limit law: Generalized Gamma distribution

Application: Lower right corner of triangular Young tableaux

- **I** Extension: Periodic Pólya urns (time dependent extension)
- 2 Main result: Asymptotic analysis of composition
- 3 New limit law: Generalized Gamma distribution
- 4 Application: Lower right corner of triangular Young tableaux

- **I** Extension: Periodic Pólya urns (time dependent extension)
- 2 Main result: Asymptotic analysis of composition
- 3 New limit law: Generalized Gamma distribution
- 4 Application: Lower right corner of triangular Young tableaux

