On some arithmetic properties of Mahler functions

Julien Roques

Université de Lyon

Joint work with Sara Checcoli (Université Grenoble Alpes)

JCB - 12/02/2019

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

A ℓ -Mahler function is a series $f(x) = \sum_{k=0}^{+\infty} f_k x^k \in \mathbb{Q}[[x]]$ such that

$$a_n(x)f(x^{\ell^n}) + a_{n-1}(x)f(x^{\ell^{n-1}}) + \dots + a_0(x)f(x) = 0$$

for some $\ell \geq 2$, $n \geq 1$ and $a_0(x), \ldots, a_n(x) \in \mathbb{Q}(x)$ with $a_0(x)a_n(x) \neq 0$.

A ℓ -Mahler function is a series $f(x) = \sum_{k=0}^{+\infty} f_k x^k \in \mathbb{Q}[[x]]$ such that

$$a_n(x)f(x^{\ell^n}) + a_{n-1}(x)f(x^{\ell^{n-1}}) + \cdots + a_0(x)f(x) = 0$$

for some $\ell \geq 2$, $n \geq 1$ and $a_0(x), \ldots, a_n(x) \in \mathbb{Q}(x)$ with $a_0(x)a_n(x) \neq 0$.

A brief historic :

A ℓ -Mahler function is a series $f(x) = \sum_{k=0}^{+\infty} f_k x^k \in \mathbb{Q}[[x]]$ such that

$$a_n(x)f(x^{\ell^n}) + a_{n-1}(x)f(x^{\ell^{n-1}}) + \dots + a_0(x)f(x) = 0$$

for some $\ell \geq 2$, $n \geq 1$ and $a_0(x), \ldots, a_n(x) \in \mathbb{Q}(x)$ with $a_0(x)a_n(x) \neq 0$.

A brief historic :

 Seminal work of Mahler on the nature of the values of these functions at algebraic points.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

A ℓ -Mahler function is a series $f(x) = \sum_{k=0}^{+\infty} f_k x^k \in \mathbb{Q}[[x]]$ such that

$$a_n(x)f(x^{\ell^n}) + a_{n-1}(x)f(x^{\ell^{n-1}}) + \dots + a_0(x)f(x) = 0$$

for some $\ell \geq 2$, $n \geq 1$ and $a_0(x), \ldots, a_n(x) \in \mathbb{Q}(x)$ with $a_0(x)a_n(x) \neq 0$.

- A brief historic :
 - Seminal work of Mahler on the nature of the values of these functions at algebraic points.
 - Further works by Becker, Dumas, Kubota, Loxton, van der Poorten, Masser, Nishioka, Randé, Töpfer,..., Philippon, Adamczewski, Faverjon...

A ℓ -Mahler function is a series $f(x) = \sum_{k=0}^{+\infty} f_k x^k \in \mathbb{Q}[[x]]$ such that

$$a_n(x)f(x^{\ell^n}) + a_{n-1}(x)f(x^{\ell^{n-1}}) + \dots + a_0(x)f(x) = 0$$

for some $\ell \geq 2$, $n \geq 1$ and $a_0(x), \ldots, a_n(x) \in \mathbb{Q}(x)$ with $a_0(x)a_n(x) \neq 0$.

- A brief historic :
 - Seminal work of Mahler on the nature of the values of these functions at algebraic points.
 - Further works by Becker, Dumas, Kubota, Loxton, van der Poorten, Masser, Nishioka, Randé, Töpfer,..., Philippon, Adamczewski, Faverjon...
 - Renewal of interest : the generating series of an automatic sequence is a Mahler function.

In the rest of the talk, we assume that

$$f(x) = p(x)f(x^\ell)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへぐ

where $p(x) \in \mathbb{Z}[x]$ is a polynomial such that p(0) = 1.

In the rest of the talk, we assume that

$$f(x) = p(x)f(x^\ell)$$

where $p(x) \in \mathbb{Z}[x]$ is a polynomial such that p(0) = 1. Up to a multiplicative constant, we have

$$f(x) = \sum_{n=0}^{\infty} f_n x^n = \prod_{i \ge 0} p(x^{\ell^i}) \in \mathbb{Z}[[x]].$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

■ p(x) = 1 - x, $\ell = 2$: $f(x) = \sum_{n \ge 0} (-1)^{t_n} x^n$ where $(t_n)_{n \ge 0}$ is the Thue-Morse sequence, *i.e.*, $t_n \in \{0, 1\}$ is the sum of the binary digits of *n* modulo 2.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- p(x) = 1 x, $\ell = 2$: $f(x) = \sum_{n \ge 0} (-1)^{t_n} x^n$ where $(t_n)_{n \ge 0}$ is the Thue-Morse sequence, *i.e.*, $t_n \in \{0, 1\}$ is the sum of the binary digits of *n* modulo 2.
- $p(x) = 1 + x + \dots + x^{m-1}$, ℓ , m prime, $\ell > m : f(x) = \sum_{n \ge 0} f_n x^n$ where $f_n = 1$ if the base ℓ expansion of n has only digits less than mand $f_n = 0$ otherwise.

- p(x) = 1 x, $\ell = 2$: $f(x) = \sum_{n \ge 0} (-1)^{t_n} x^n$ where $(t_n)_{n \ge 0}$ is the Thue-Morse sequence, *i.e.*, $t_n \in \{0, 1\}$ is the sum of the binary digits of *n* modulo 2.
- $p(x) = 1 + x + \dots + x^{m-1}$, ℓ , m prime, $\ell > m : f(x) = \sum_{n \ge 0} f_n x^n$ where $f_n = 1$ if the base ℓ expansion of n has only digits less than mand $f_n = 0$ otherwise.
- $p(x) = 1 + x + x^2$, $\ell = 3 : f(x) = \sum_{n \ge 0} f_n x^n$ where $(f_n)_{n \ge 0}$ is the Stern diatomic sequence, *i.e.*, f_n counts the way of writing *n* as a sum of powers of 2 using each power of 2 at most twice.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

How the properties of f(x) and/or of the sequence of its coefficients $(f_n)_{n\geq 0}$ mirrors on the polynomial p(x)?

How the properties of f(x) and/or of the sequence of its coefficients $(f_n)_{n\geq 0}$ mirrors on the polynomial p(x)?

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ ▲ 三 ● ● ●

Question (Precise version)

More precisely, when is f(x)

rational ?

How the properties of f(x) and/or of the sequence of its coefficients $(f_n)_{n\geq 0}$ mirrors on the polynomial p(x)?

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Question (Precise version)

More precisely, when is f(x)

- rational ?
- algebraic ?

How the properties of f(x) and/or of the sequence of its coefficients $(f_n)_{n\geq 0}$ mirrors on the polynomial p(x)?

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Question (Precise version)

More precisely, when is f(x)

- rational ?
- algebraic ?
- automatic ?

Definition

The series f(x) is algebraic if there exists $P(x,Y)\in \mathbb{Q}(x)[Y]\setminus\{0\}$ such that

P(x,f(x))=0.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Definition

The series f(x) is algebraic if there exists $P(x,Y)\in \mathbb{Q}(x)[Y]\setminus\{0\}$ such that

$$P(x,f(x))=0.$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Proposition (Randé)

If f(x) is algebraic, then it is rational.

Definition

The series f(x) is algebraic if there exists $P(x, Y) \in \mathbb{Q}(x)[Y] \setminus \{0\}$ such that

$$P(x,f(x))=0.$$

Proposition (Randé)

If f(x) is algebraic, then it is rational.

Démonstration.

■ $f(x) \in \mathbb{Z}[[x]]$ is the Taylor expansion at 0 of an analytic function on the unit disc D(0, 1);

(日)

Polyà-Carlson Theorem.

When is f(x) rational?

▲□▶▲圖▶▲≧▶▲≧▶ ≧ のへで

Theorem (Duke and Nguyen)

Assume that ℓ is a prime and $p(x) = \phi_m(x)$ is the m-th cyclotomic polynomial. Then, f(x) is rational if and only if ℓ divides m.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Theorem (Duke and Nguyen)

Assume that ℓ is a prime and $p(x) = \phi_m(x)$ is the m-th cyclotomic polynomial. Then, f(x) is rational if and only if ℓ divides m.

Theorem (Checcoli-R)

Assume that ℓ is a prime. Then, the following conditions are equivalent :

- **1** f(x) is rational;
- **2** p(x) is a product of cyclotomic polynomials of order divisible by ℓ ;

Theorem (Duke and Nguyen)

Assume that ℓ is a prime and $p(x) = \phi_m(x)$ is the m-th cyclotomic polynomial. Then, f(x) is rational if and only if ℓ divides m.

Theorem (Checcoli-R)

Assume that ℓ is a prime. Then, the following conditions are equivalent :

- **1** f(x) is rational;
- **2** p(x) is a product of cyclotomic polynomials of order divisible by ℓ ;
- p(x) is monic and, for almost all roots of unity ζ of order prime to l, f(x) is bounded as z tends to ζ radially.

Let ζ be a root of unity of sufficiently large order m prime to ℓ and let κ be the order of ℓ in $(\mathbb{Z}/m\mathbb{Z})^{\times}$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Let ζ be a root of unity of sufficiently large order m prime to ℓ and let κ be the order of ℓ in $(\mathbb{Z}/m\mathbb{Z})^{\times}$.

First step : a priori radial behaviour. We have

$$f(\zeta e^t) \sim m_{\zeta}(t) t^{-rac{\log(\prod_{k=0}^{\kappa-1} p(\zeta^{\ell^k}))}{\log(\ell^{\kappa})}} ext{ as } t o 0^- ext{ where } m_{\zeta}(\ell^{\kappa}t) = m_{\zeta}(t).$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Let ζ be a root of unity of sufficiently large order m prime to ℓ and let κ be the order of ℓ in $(\mathbb{Z}/m\mathbb{Z})^{\times}$.

First step : a priori radial behaviour. We have

$$f(\zeta e^t) \sim m_\zeta(t) t^{-rac{\log(\prod_{k=0}^{\kappa-1} p(\zeta^{\ell^k}))}{\log(\ell^\kappa)}}$$
 as $t o 0^-$ where $m_\zeta(\ell^\kappa t) = m_\zeta(t)$.

Second step : norm estimate. By assumption, f(x) is bounded as $x \to \zeta$, so

$$\Re(-rac{\log(\prod_{k=0}^{\kappa-1} p(\zeta^{\ell^k}))}{\log(\ell^\kappa)}) \geq 0 \Rightarrow |\prod_{k=0}^{\kappa-1} p(\zeta^{\ell^k})| \leq 1$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

$$x := \prod_{\xi \text{ root of } 1 \text{ of order } m} p(\xi) = \prod_{i=1}^{r} \prod_{k=0}^{\kappa-1} p(\zeta_i^{\ell^k})$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

for some primitive *m*-th roots of unity ζ_1, \ldots, ζ_r .

$$x := \prod_{\xi \text{ root of } 1 \text{ of order } m} p(\xi) = \prod_{i=1}^{r} \prod_{k=0}^{\kappa-1} p(\zeta_i^{\ell^k})$$

for some primitive *m*-th roots of unity ζ_1, \ldots, ζ_r . So

 $|x| \leq 1.$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

$$x := \prod_{\xi \text{ root of } 1 \text{ of order } m} p(\xi) = \prod_{i=1}^{r} \prod_{k=0}^{\kappa-1} p(\zeta_i^{\ell^k})$$

for some primitive *m*-th roots of unity ζ_1, \ldots, ζ_r . So

 $|x| \leq 1.$

But $x = N_{\mathbb{Q}(\zeta)/\mathbb{Q}}(p(\zeta)) \in \mathbb{Z}$, so

$$x = \pm 1.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

$$x := \prod_{\xi \text{ root of 1 of order } m} p(\xi) = \prod_{i=1}^{r} \prod_{k=0}^{\kappa-1} p(\zeta_i^{\ell^k})$$

for some primitive *m*-th roots of unity ζ_1, \ldots, ζ_r . So

$$|x| \leq 1.$$

But $x = N_{\mathbb{Q}(\zeta)/\mathbb{Q}}(p(\zeta)) \in \mathbb{Z}$, so

$$x = \pm 1.$$

Fourth step : conclusion. For infinitely many roots of unity ζ , $p(\zeta)$ is a unit of $\mathbb{Z}[\zeta]$. A result due to Kaminski implies that p(x) is a product of cyclotomic polynomials.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

A ℓ -automaton is determined by :

A ℓ -automaton is determined by :

• a finite set of states $Q = \{q_1, q_2, \dots, q_d\}$,

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

A $\ell\text{-}automaton$ is determined by :

• a finite set of states $Q = \{q_1, q_2, \ldots, q_d\}$,

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

• a initial state $i \in Q$,

A ℓ -automaton is determined by :

- a finite set of states $Q = \{q_1, q_2, \dots, q_d\}$,
- a initial state $i \in Q$,
- ℓ transition maps $Q \rightarrow Q$, denoted by $0, 1, \ldots, \ell 1$,

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

A ℓ -automaton is determined by :

- a finite set of states $Q = \{q_1, q_2, \dots, q_d\}$,
- a initial state $i \in Q$,
- ℓ transition maps $Q \rightarrow Q$, denoted by $0, 1, \ldots, \ell 1$,

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

• an output function $\phi: Q \to \mathbb{Z}$.

A ℓ -automaton is determined by :

- a finite set of states $Q = \{q_1, q_2, \dots, q_d\}$,
- a initial state $i \in Q$,
- ℓ transition maps $Q \rightarrow Q$, denoted by $0, 1, \ldots, \ell 1$,
- an output function $\phi: Q \to \mathbb{Z}$.

Example - Baum-Sweet 2-automaton

When is f(x) automatic? Reminders on automatic sequences

A ℓ -automaton is determined by :

- a finite set of states $Q = \{q_1, q_2, \ldots, q_d\}$,
- a initial state $i \in Q$,
- ℓ transition maps $Q \rightarrow Q$, denoted by $0, 1, \ldots, \ell 1$,

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

• an output function $\phi: Q \to \mathbb{Z}$.

Example - Baum-Sweet 2-automaton

•
$$\ell = 2$$
, $Q = \{q_1, q_2, q_3\}$, $i = q_1$,

•
$$0: q_1 \mapsto q_2, q_2 \mapsto q_1, q_3 \mapsto q_3$$
,

1 :
$$q_1\mapsto q_1, q_2\mapsto q_3, q_3\mapsto q_3,$$

$$\bullet \phi: q_1 \mapsto 1, q_2 \mapsto 0, q_3 \mapsto 0.$$

When is f(x) automatic? Reminders on automatic sequences

A ℓ -automaton is determined by :

- a finite set of states $Q = \{q_1, q_2, \ldots, q_d\}$,
- a initial state $i \in Q$,
- ℓ transition maps $Q \rightarrow Q$, denoted by $0, 1, \ldots, \ell 1$,
- an output function $\phi: Q \to \mathbb{Z}$.

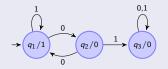
Example - Baum-Sweet 2-automaton

•
$$\ell = 2$$
, $Q = \{q_1, q_2, q_3\}$, $i = q_1$,

•
$$0: q_1 \mapsto q_2, q_2 \mapsto q_1, q_3 \mapsto q_3$$
,

1 :
$$q_1\mapsto q_1, q_2\mapsto q_3, q_3\mapsto q_3,$$

$$\bullet \ \phi: q_1 \mapsto 1, q_2 \mapsto 0, q_3 \mapsto 0.$$



▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

$$n = n_r \ell^r + \cdots + n_1 \ell^1 + n_0 \ell^0 \rightsquigarrow u_n = \phi(n_r(\cdots n_1(n_0(i))\cdots)).$$

$$n = n_r \ell^r + \cdots + n_1 \ell^1 + n_0 \ell^0 \rightsquigarrow u_n = \phi(n_r(\cdots n_1(n_0(i))\cdots)).$$

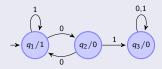
▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Such a sequence is said to be ℓ -automatic.

$$n = n_r \ell^r + \cdots + n_1 \ell^1 + n_0 \ell^0 \rightsquigarrow u_n = \phi(n_r(\cdots n_1(n_0(i))\cdots)).$$

Such a sequence is said to be ℓ -automatic.

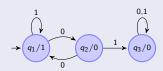
Example - Baum-Sweet 2-automatic sequence



$$n = n_r \ell^r + \cdots + n_1 \ell^1 + n_0 \ell^0 \rightsquigarrow u_n = \phi(n_r(\cdots n_1(n_0(i))\cdots)).$$

Such a sequence is said to be ℓ -automatic.

Example - Baum-Sweet 2-automatic sequence



 $(u_n)_{n\geq 0} =$ (1,1,0,1,1,0,0,1,0,...).

For instance, $5 = 1 \cdot 2^2 + 0 \cdot 2^1 + 1 \cdot 2^0 \rightsquigarrow u_5 = 0.$

・ロト・西・・田・・田・・日・

Remark

If f(x) is automatic, then $(f_n)_{n\geq 0}$ is bounded.

Remark

If f(x) is automatic, then $(f_n)_{n\geq 0}$ is bounded.

Proposition (Becker)

f(x) is automatic if and only if $(f_n)_{n\geq 0}$ is bounded.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Theorem (Checcoli-R)

- (i) If ℓ > deg p(x), f(x) is automatic if and only if the coefficients of p(x) are in {0,±1}.
- (ii) If $\ell = 2$ and $p(x) = x^2 + bx + 1$, f(x) is automatic if and only if $b \in \{0, -1\}$.
- (iii) If $\ell \leq 3$ and $p(x) = x^3 + bx^2 + cx + 1$, f(x) is automatic if and only if :

■
$$l = 2$$
 and $b = c = 0$;
■ $l = 3$ and $(b, c) \in \{(0, 0), (-1, 0), (0, -1)\}$

Let ζ be a root of unity of sufficiently large order m prime to ℓ and let κ be the order of ℓ in $(\mathbb{Z}/m\mathbb{Z})^{\times}$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Let ζ be a root of unity of sufficiently large order m prime to ℓ and let κ be the order of ℓ in $(\mathbb{Z}/m\mathbb{Z})^{\times}$.

First step : a priori radial behaviour. We have

$$f(\zeta e^t) \sim m_\zeta(t) t^{-rac{\log(\prod_{k=0}^{\kappa-1} p(\zeta^{\ell^k}))}{\log(\ell^\kappa)}}$$
 as $t o 0^-$ where $m_\zeta(\ell^\kappa t) = m_\zeta(t)$.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Let ζ be a root of unity of sufficiently large order m prime to ℓ and let κ be the order of ℓ in $(\mathbb{Z}/m\mathbb{Z})^{\times}$.

First step : a priori radial behaviour. We have

$$f(\zeta e^t) \sim m_\zeta(t) t^{-rac{\log(\prod_{k=0}^{\kappa-1} p(\zeta^{\ell^k}))}{\log(\ell^\kappa)}}$$
 as $t o 0^-$ where $m_\zeta(\ell^\kappa t) = m_\zeta(t)$.

Second step : norm estimate. By assumption, the coefficients of f(x) are bounded, so $|tf(\zeta e^t)|$ is bounded as $t \to 0^-$. Therefore,

$$\Re(1 - \frac{\log(\prod_{k=0}^{\kappa-1} p(\zeta^{\ell^k}))}{\log(\ell^{\kappa})}) \ge 0 \Rightarrow \left|\prod_{k=0}^{\kappa-1} p(\zeta^{\ell^k})\right| \le \ell^{\kappa} \Rightarrow |\mathsf{N}_{\mathbb{Q}(\zeta)/\mathbb{Q}}(p(\zeta))| \le \ell^{\mathbb{[Q}(\zeta)/\mathbb{Q})}$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Let ζ be a root of unity of sufficiently large order m prime to ℓ and let κ be the order of ℓ in $(\mathbb{Z}/m\mathbb{Z})^{\times}$.

First step : a priori radial behaviour. We have

$$f(\zeta e^t) \sim m_\zeta(t) t^{-rac{\log(\prod_{k=0}^{\kappa-1} p(\zeta^{\ell^k}))}{\log(\ell^\kappa)}}$$
 as $t o 0^-$ where $m_\zeta(\ell^\kappa t) = m_\zeta(t)$.

Second step : norm estimate. By assumption, the coefficients of f(x) are bounded, so $|tf(\zeta e^t)|$ is bounded as $t \to 0^-$. Therefore,

$$\Re(1 - \frac{\log(\prod_{k=0}^{\kappa-1} p(\zeta^{\ell^k}))}{\log(\ell^{\kappa})}) \ge 0 \Rightarrow \left|\prod_{k=0}^{\kappa-1} p(\zeta^{\ell^k})\right| \le \ell^{\kappa} \Rightarrow |N_{\mathbb{Q}(\zeta)/\mathbb{Q}}(p(\zeta))| \le \ell^{\mathbb{Q}(\zeta)}$$

Third step : conclusion Applying this inequality to some explicit roots of unity ζ , we get polynomial inequalities for the coefficients of p(x).

When is f(x) automatic? ... if p(x) has higher degree

(4日) (個) (主) (主) (三) の(の)

When is f(x) automatic? ... if p(x) has higher degree

Question

Does p(x) have a "special" structure when f(x) is automatic?

Question

Does p(x) have a "special" structure when f(x) is automatic?

We will see that the automaticity of f(x) imposes restrictions on the order of vanishing of p(x) at x = 1.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

When is f(x) automatic? A necessary condition

Our norm estimates gives :

Theorem (Checcoli-R)

If f(x) is automatic, then $v_{x-1}(p)$ can be explicitly bounded in terms of ℓ .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

When is f(x) automatic? A necessary condition

Our norm estimates gives :

Theorem (Checcoli-R)

If f(x) is automatic, then $v_{x-1}(p)$ can be explicitly bounded in terms of ℓ .

Corollary (The case $\ell = 2$)

Assume that $\ell = 2$, that f(x) is automatic and that one of the following conditions hold :

- **1** $p(j) \neq 0$;
- **2** $p(\zeta_5) \neq 0$, where ζ_5 is a primitive 5-th root of unity;

3 $p(\zeta_9) \neq 0$, where ζ_9 is a primitive 9-th root of unity. Then, $v_{x-1}(p) = 0$ or 1.

Definition

The Newton polygon at x = 1 of

$$a_n(x)f(x^{\ell^n}) + a_{n-1}(x)f(x^{\ell^{n-1}}) + \cdots + a_0(x)f(x) = 0$$

is the convex hull in \mathbb{R}^2 of

$$\{(i,j) \mid i \in \mathbb{Z} \text{ and } j \geq v_{x-1}(a_i)\}.$$

This polygon is made of

two vertical half lines

and of k vectors (r₁, d₁), ..., (r_k, d_k) ∈ N* × Z having pairwise distinct slopes, called the slopes L.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Interpretation in terms of Newton polygons

The Newton polygon at x = 1 of

$$f(x) = p(x)f(x^\ell)$$

has only one slope, namely $v_{x-1}(p)$.

Interpretation in terms of Newton polygons

The Newton polygon at x = 1 of

$$f(x) = p(x)f(x^\ell)$$

has only one slope, namely $v_{x-1}(p)$.

So, our bound on $v_{x-1}(p)$ can be interpreted as a bound on the slopes of the equation.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Interpretation in terms of Newton polygons

The Newton polygon at x = 1 of

$$f(x) = p(x)f(x^\ell)$$

has only one slope, namely $v_{x-1}(p)$.

So, our bound on $v_{x-1}(p)$ can be interpreted as a bound on the slopes of the equation.

Question

Let f(x) be a Mahler function of arbitrary order, and consider its minimal equation

$$a_n(x)f(x^{\ell^n}) + a_{n-1}(x)f(x^{\ell^{n-1}}) + \cdots + a_0(x)f(x) = 0.$$

If f(x) is automatic, what can be said on the slopes of this minimal operator?