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Mahler functions

Definition
A `-Mahler function is a series f (x) =

∑+∞
k=0 fkxk ∈ Q[[x ]] such that

an(x)f (x `n) + an−1(x)f (x `n−1) + · · ·+ a0(x)f (x) = 0

for some ` ≥ 2, n ≥ 1 and a0(x), . . . , an(x) ∈ Q(x) with a0(x)an(x) 6= 0.

A brief historic :
Seminal work of Mahler on the nature of the values of these functions
at algebraic points.
Further works by Becker, Dumas, Kubota, Loxton, van der Poorten,
Masser, Nishioka, Randé, Töpfer,..., Philippon, Adamczewski,
Faverjon...
Renewal of interest : the generating series of an automatic sequence is
a Mahler function.
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Mahler functions of order 1

In the rest of the talk, we assume that

f (x) = p(x)f (x `)

where p(x) ∈ Z[x ] is a polynomial such that p(0) = 1.

Up to a multiplicative constant, we have

f (x) =
∞∑

n=0
fnxn =

∏
i≥0

p(x `i ) ∈ Z[[x ]].
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Mahler functions of order 1
Examples

p(x) = 1− x , ` = 2 : f (x) =
∑

n≥0(−1)tnxn where (tn)n≥0 is the
Thue-Morse sequence, i.e., tn ∈ {0, 1} is the sum of the binary digits
of n modulo 2.

p(x) = 1 + x + · · ·+ xm−1, `,m prime, ` > m : f (x) =
∑

n≥0 fnxn

where fn = 1 if the base ` expansion of n has only digits less than m
and fn = 0 otherwise.
p(x) = 1 + x + x2, ` = 3 : f (x) =

∑
n≥0 fnxn where (fn)n≥0 is the

Stern diatomic sequence, i.e., fn counts the way of writing n as a sum
of powers of 2 using each power of 2 at most twice.
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The main problems

Question (Vague version)

How the properties of f (x) and/or of the sequence of its coefficients
(fn)n≥0 mirrors on the polynomial p(x) ?

Question (Precise version)

More precisely, when is f (x)
rational ?
algebraic ?
automatic ?



The main problems

Question (Vague version)

How the properties of f (x) and/or of the sequence of its coefficients
(fn)n≥0 mirrors on the polynomial p(x) ?

Question (Precise version)

More precisely, when is f (x)
rational ?

algebraic ?
automatic ?



The main problems

Question (Vague version)

How the properties of f (x) and/or of the sequence of its coefficients
(fn)n≥0 mirrors on the polynomial p(x) ?

Question (Precise version)

More precisely, when is f (x)
rational ?
algebraic ?

automatic ?



The main problems

Question (Vague version)

How the properties of f (x) and/or of the sequence of its coefficients
(fn)n≥0 mirrors on the polynomial p(x) ?

Question (Precise version)

More precisely, when is f (x)
rational ?
algebraic ?
automatic ?



When is f (x) algebraic ?

Definition
The series f (x) is algebraic if there exists P(x ,Y ) ∈ Q(x)[Y ] \ {0} such
that

P(x , f (x)) = 0.

Proposition (Randé)

If f (x) is algebraic, then it is rational.

Démonstration.

f (x) ∈ Z[[x ]] is the Taylor expansion at 0 of an analytic function on
the unit disc D(0, 1) ;
Polyà-Carlson Theorem.
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When is f (x) rational ?

Theorem (Duke and Nguyen)

Assume that ` is a prime and p(x) = φm(x) is the m-th cyclotomic
polynomial. Then, f (x) is rational if and only if ` divides m.

Theorem (Checcoli-R)

Assume that ` is a prime. Then, the following conditions are equivalent :
1 f (x) is rational ;

2 p(x) is a product of cyclotomic polynomials of order divisible by ` ;

3 p(x) is monic and, for almost all roots of unity ζ of order prime to `,
f (x) is bounded as z tends to ζ radially.
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When is f (x) rational ?
Idea of proof of radial boundedness ⇒ product of cyclotomic polynomials

Let ζ be a root of unity of sufficiently large order m prime to ` and let κ be
the order of ` in (Z/mZ)×.

First step : a priori radial behaviour. We have

f (ζet) ∼ mζ(t)t−
log(
∏κ−1

k=0 p(ζ`
k

))
log(`κ) as t → 0− where mζ(`κt) = mζ(t).

Second step : norm estimate. By assumption, f (x) is bounded as x → ζ, so

<(− log(
∏κ−1

k=0 p(ζ`k ))
log(`κ) ) ≥ 0⇒ |

κ−1∏
k=0

p(ζ`k )| ≤ 1
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When is f (x) rational ?
Idea of proof of radial boundedness ⇒ product of cyclotomic polynomials

Third step : p(ζ) is a unit of Z[ζ]. We have

x :=
∏

ξ root of 1 of order m
p(ξ) =

r∏
i=1

κ−1∏
k=0

p(ζ`ki )

for some primitive m-th roots of unity ζ1, . . . , ζr .

So

|x | ≤ 1.

But x = NQ(ζ)/Q(p(ζ)) ∈ Z, so

x = ±1.

Fourth step : conclusion. For infinitely many roots of unity ζ, p(ζ) is a unit
of Z[ζ]. A result due to Kaminski implies that p(x) is a product of
cyclotomic polynomials.
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When is f (x) automatic ?
Reminders on automatic sequences

A `-automaton is determined by :

a finite set of states Q = {q1, q2, . . . , qd},
a initial state i ∈ Q,
` transition maps Q → Q, denoted by 0, 1, . . . , `− 1,
an output function φ : Q → Z.

Example - Baum-Sweet 2-automaton

` = 2, Q = {q1, q2, q3}, i = q1,
0 : q1 7→ q2, q2 7→ q1, q3 7→ q3,
1 : q1 7→ q1, q2 7→ q3, q3 7→ q3,
φ : q1 7→ 1, q2 7→ 0, q3 7→ 0.

q1/1 q2/0 q3/0

1

0

0

1

0,1
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When is f (x) automatic ?
Reminders on automatic sequences

Any `-automaton generates a sequence (un)n∈N ∈ ZN :

n = nr`
r + · · ·+ n1`

1 + n0`
0 ; un = φ(nr (· · · n1(n0(i)) · · · )).

Such a sequence is said to be `-automatic.

Example - Baum-Sweet 2-automatic sequence

q1/1 q2/0 q3/0

1

0

0

1

0,1 (un)n≥0 =
(1, 1, 0, 1, 1, 0, 0, 1, 0, . . .).

For instance, 5 =
1 · 22 + 0 · 21 + 1 · 20 ; u5 = 0.
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When is f (x) automatic ?
Automatic vs bounded

Remark
If f (x) is automatic, then (fn)n≥0 is bounded.

Proposition (Becker)

f (x) is automatic if and only if (fn)n≥0 is bounded.
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When is f (x) automatic ?
The main result

Theorem (Checcoli-R)

(i) If ` > deg p(x), f (x) is automatic if and only if the coefficients of
p(x) are in {0,±1}.

(ii) If ` = 2 and p(x) = x2 + bx + 1, f (x) is automatic if and only if
b ∈ {0,−1}.

(iii) If ` ≤ 3 and p(x) = x3 + bx2 + cx + 1, f (x) is automatic if and only
if :

` = 2 and b = c = 0 ;
` = 3 and (b, c) ∈ {(0, 0), (−1, 0), (0,−1)}.



When is f (x) automatic ?
Idea of proof

Let ζ be a root of unity of sufficiently large order m prime to ` and let κ be
the order of ` in (Z/mZ)×.

First step : a priori radial behaviour. We have

f (ζet) ∼ mζ(t)t
−

log(
∏κ−1

k=0 p(ζ`
k

))
log(`κ) as t → 0− where mζ(`κt) = mζ(t).

Second step : norm estimate. By assumption, the coefficients of f (x) are
bounded, so |tf (ζet)| is bounded as t → 0−. Therefore,

<(1− log(
∏κ−1

k=0 p(ζ`k ))
log(`κ) ) ≥ 0⇒

∣∣∣∣∣
κ−1∏
k=0

p(ζ`k )
∣∣∣∣∣ ≤ `κ ⇒ |NQ(ζ)/Q(p(ζ))| ≤ `[Q(ζ):Q].

Third step : conclusion Applying this inequality to some explicit roots of
unity ζ, we get polynomial inequalities for the coefficients of p(x).
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When is f (x) automatic ?
... if p(x) has higher degree

Question
Does p(x) have a “special” structure when f (x) is automatic ?

We will see that the automaticity of f (x) imposes restrictions on the order
of vanishing of p(x) at x = 1.
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When is f (x) automatic ?
A necessary condition

Our norm estimates gives :

Theorem (Checcoli-R)

If f (x) is automatic, then vx−1(p) can be explicitly bounded in terms of `.

Corollary (The case ` = 2)

Assume that ` = 2, that f (x) is automatic and that one of the following
conditions hold :

1 p(j) 6= 0 ;

2 p(ζ5) 6= 0, where ζ5 is a primitive 5-th root of unity ;

3 p(ζ9) 6= 0, where ζ9 is a primitive 9-th root of unity.
Then, vx−1(p) = 0 or 1.
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Interpretation in terms of Newton polygons

Definition
The Newton polygon at x = 1 of

an(x)f (x `n) + an−1(x)f (x `n−1) + · · ·+ a0(x)f (x) = 0

is the convex hull in R2 of

{(i , j) | i ∈ Z and j ≥ vx−1(ai)}.

This polygon is made of
two vertical half lines
and of k vectors (r1, d1), ..., (rk , dk) ∈ N∗ × Z having pairwise distinct
slopes, called the slopes L.



Interpretation in terms of Newton polygons

The Newton polygon at x = 1 of

f (x) = p(x)f (x `)

has only one slope, namely vx−1(p).

So, our bound on vx−1(p) can be interpreted as a bound on the slopes of
the equation.

Question
Let f (x) be a Mahler function of arbitrary order, and consider its minimal
equation

an(x)f (x `n) + an−1(x)f (x `n−1) + · · ·+ a0(x)f (x) = 0.

If f (x) is automatic, what can be said on the slopes of this minimal
operator ?
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