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1.1) Set of configurations in dimension d > 2

SAW,d _ . wo=0,w; — w1 € {Feq,...,Feq},
Qr = qw = (wi)izo . - "
w satisfies the self-avoiding condition

|

Sasl
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1.2) Interactions

With every w € QiAW’d, we associate an hamiltonian that sums

the self-touchings performed by w, i.e.,

HL(TU) - Z 1{\111;—/11‘]-\:1}:

0<i<j<L

with up, = wi_1 + % center of the k-th step (k < L).
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1.3) Free energy
The coupling parameter is 8 € [0, co[ and ISAW model is then
defined by

B Hp(w)
€ SAW.d
P_37L(w): 72 , wEQL ,
B,L

and the free energy

; 1
F3AW(3) .= liminf — log Z3,1.-
L—oo L
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1.4) Main open questions

e Existence of F5AW(3) for 8 > 0 : only proven for 3 small
[Ueltschi (2002), Hammond & Helmuth (2019)]

e Phase transition conjectured at some [.(d) > 0 between an
extended phase € = [0, 5.(d)) and a collapsed phase
C= [Bc(d)a OO)
[Saleur (87), Duplantier & Saleur (87)]

e Typical extension : a typical path w sampled from Pg j, is
expected to scale :
o in & as ||wg|| x LVsaw,
o in C as ||wg|| < LX with x < vgaw.

[Brak, Owczarek, Prellberg (93)]
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Problem : Self-avoiding walk is very complicated object! =
’relax the self-avoiding constraint or consider directed path. ‘

o Interacting Weakly Self-Avoiding Walk
[v.d. Hofstadt, Klenke & Koenig (2001-2002),
Bauerschmidt, Slade & Wallace (2016)]

o Interacting Partially Directed Self-Avoiding Walk
[Zwanzig, Lauritzen (1969)]
[Whittington, Brak, Owzcareck, Prellberg |
[Carmona, P., Nguyen (2012, 2016, 2019)]

o Interacting Prudent Walk
[P. & Torri (2018)]
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2.2) 2-dimensional Interacting partially directed self-avoiding
walk  |Zwanzig & Lauritzen (1968)]

QPDSAW {w — (w)-, : wo =0, w; —w;—1 € {1, =, 1}, }

=0 " wsatisfies the self-avoiding condition

FIPDSA\’V(ﬁ)

= hn;cilogZIPDbAW [B,00).
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2.2.1) Collapse transition

Theorem ( Brack et al (1993), Nguyen & P. (2013))

Computation of 7 € (0,00) such that
— Collapsed phase 3 > 32,

— Extended phase 3 < 7.

Phase transition second order with expo. 3/2.

2.2.2) Path properties The scaling limit of the path is identified
in each regime.

Theorem (Carmona, Nguyen & P. (2016), C. & P. (2016, 2019))
e 3 < B2: horizontal extension of the path ~ L and vertical
extension ~ /L
e 3= B2 horizontal extension of the path L2/3 and vertical
extension ~ L'/3
e B> B2: Limiting Wulff shape, horizontal extension and
vertical extension VL.
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3.1) Prudent paths [Debierre & Turban (1987)]

wo =0, w; € {<_7T7_>7\l/}7 }

w satisfies the prudent condition

Qb = {w = (w)k, -

e Combinatoric viewpoint [Detheridge & Guttman (2008),
Bousquet-Melou (2010), Beaton & Iliev (2015)]

e Probabilistic approach |Beffara, Friedli & Velenik (2009),
P., Sun & Torri (2017] (Scaling Limit of the Kinetic and of
the Uniform prudent walk).
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3.2) Families of Prudent paths
o 1l-sided (partially directed)

o 2-sided (North-East)

@ 4-sided (Prudent paths)
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o 1l-sided (partially directed)
e 2-sided (North-East)
o 4-sided (Prudent walk)

Open Question (Bousquet-Melou) : Exponential growth rate
of number of configurations upy :

1 .
Jim 1o 9] = o

Conjecture : pupy = yg.
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3.3) Interacting Prudent Walk (IPRW)
wo =0, w; € <, 1, —, 1},

w satisfies the prudent condition

1
FP*(B) = hm log 7%, and FY(3) = lim — log 21,
L ’ L—oo L !

Zip= Y, M and Zf= ) M

weQPr wtel\fE



IPDSAW IPRW

[e]e]e]e]e] lo)

3.4) Results
Theorem (P. & Torri, (2018))
@ For any B > 0 the Free Energy exists and
F7(8) = F¥(B) € [B, 0).

Consequence (at 3=10) : pp = !

@ There exists a critical point BE™ € (0,00) such that
-F7(B) > 8 for every 8> 57,
FP(8) = B for every B < ST

@ 5Ir =B

Q@ F54AV(B) > B, for all B > 0.
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@ Methods and Proofs
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4.1) Proofs

@ Existence critical point SY such that F2(3) = 3, for all
B> B=.

@ FF*(B) = F¥E(p) for all 3 > 0.
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4.2) Phase transition for the NE-model

Decompose each NE path into partially directed subpaths
(called blocks).

4.3) Decomposition of a path into oriented blocks
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Critical Point : 3. : F¥¥(8) = 8 for any 3 > f..

Goal : Upper bound for ZI\EB : Zl\Eﬁ < O(B)ePr for B large. Have
to control

@ Self-touchings in any block,
@ Self-touchings between different blocks .



MP
00000®000000000

4.4) Partition function restricted to one block
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4.4.1) Stretches representation of an oriented block
o N — 1 inter-stretches : increments along the orientation.
o (f1,...,0n) € Z"N sequence of stretches.
e Total length 1| + -+ [{n| + N — 1.

<-stretch orientation

inter-stretches— T3+ . 3 .t
N=12 9790120505 7 0 0=number of increments

in each stretch
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Number self-touchings between ¢; and
liyy

G Al = S(|0] + [Ciga| — € + Ciyal).

Z?%(N, d7 f) = Z 65 Zf\;zl 0 Alitq
teLr n(d.f)
BT—51f1-51d|

N—-1
=D D | (R i
e

teLr n(d,f) i=1
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4.4.2) Auxiliary Random Walk
With each (£;)Y, € L7 n(d, f) we associate a random walk
trajectory

(s bv) & (Vi) Vi= (1)1
The increments of V :
Vi=Viei = (=) li1 + ).
One to one correspondence between L7 n(d, f) and
[, Gn(V) = L= N+ 1 Vi =d, Vi = (-1 f}

with Gy (V) = 2N Vi),
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- Nl Cipa+i|
_Bip__B Cp N-1 e 2| +1
ZED(N;d, ) = #7351 ()

EEETJ\](d,f) i=1

with

SN S (R (CVETO RN

¢eLy N (d,f) Ly n(d,f)

Zy%(Nsd, f)

_Byg_B (o] N-1 VN:(—l)N_lf
=PRI (35) P5<G e Vi=d
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4.5) Interactions between oriented blocks

Block 7 + 1 interacts with blocks 7 — 1 and 7 and such
interactions are bounded above by

| fi1l + |diya] n

3 1
(Ni+|fica]) Aldiga| < 5 Z(Ni_l)_zlfifl +dit1]
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4.6) Full partition function

Partition QEE depending on
e 7 number of oriented blocks.
e Ti,...,T, length of each block (7} +---+ T, =1)

@ Ni,..., N, numbers of stretches in each block
o (d;, fi)i_; length of first and last stretch in each block.
Thus

T

ZE,E < Z Z HZ%.),g(Ni,di?fi) eBUfi2[+Ni—1)Aldi])
r<L T.Ndf |i=1

and

- T b= G ladinl) ()N Vi, = (DN,

H SHe g\ i (?) PB( GNi(iV)=Ti—Ni<}L—1 m:dl)
=1 =1

[fi—1l+ld;
65(¥+%(Ni—1)—%|fi71+di+1 \)
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: 5L L reg\ Niml -
| | = | | — =Nty _

—° <€B> Pﬁ( N V) =Ty N ’Ll_di)
i=1 i=1

X eﬁ(%(lel)*%|fZ,1+dz+l‘)

so that  (with fo = d,4+1 = 0)

r Nyt-+Np—r
H =M (D i
. a 8 “8/2

€4

Bif. )
= (—1)Ni-1y, 6_4‘f1—1+d1+1|
XHPB GN(V)*T7N+1 E

V1= di) o



MP
000000000000080

assume r € 2N :

e—§|fi—1+di+1\
Vi= di> _—
€B/2

: VN, = (-nNiTty
HPﬂ Gn.(V)=T; — N; +1
N; = 13 i

i=1

ik Vg = (~1)N2i 71 fo e_g‘f2i—2+d2i|
i=1

GnN,,; (V) = Ta; — Ng; +1 05/2

r/2

P VNgi_y = (—1)N2i-tpo; e_g‘f2i71+d2i+1‘
H B ‘ Ll = dgz;l _—
1 GNoyy 1 (V) =T2;—1 — No;j—1 +1

1=

/2

Consequence : The summations over 17,...,7, and over
(d;, fi)i_, disappear in the probabilities.
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Conclusion : Since N; > 2 for every i < r (at least two

stretches in an oriented block)
L/1 £\ NN
NE 8L
28 <y Y @n(G)
r=1 Ni+-+N.<L e
o0 o c r
L
<3 [ d (2)]
r=1 N=1 \¢€*
O

That is, ZIEB < C(B)ePL if 3 is large enough.
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