ISAW	IPDSAW	IPRW	MP

Collapse transition of the interacting prudent walk

Nicolas Pétrélis Joint work with Niccolò Torri

JCB, february 2019

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のくぐ

ISAW	IPDSAW	IPRW	MP

2 Interacting partially directed self-avoiding walk

ISAW	IPDSAW	IPRW	MP
●00000			

1 Interacting self-avoiding walk

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 めんの

ISAW	IPDSAW	IPRW	MP
00000	000	000000	000000000000000000000000000000000000000

1.1) Set of configurations in dimension $d \ge 2$

$$\Omega_L^{\text{SAW},d} = \left\{ w = (w_i)_{i=0}^L : \begin{array}{l} w_0 = 0, \ w_i - w_{i-1} \in \{\pm e_1, \dots, \pm e_d\}, \\ w \text{ satisfies the self-avoiding condition} \end{array} \right\}$$

・ロト ・西ト ・ヨト ・ヨー うへぐ

ISAW	IPDSAW	IPRW	MP
00000			

1.2) Interactions

With every $w \in \Omega_L^{\text{SAW},d}$, we associate an hamiltonian that sums the self-touchings performed by w, i.e.,

$$H_L(w) = \sum_{0 \le i < j \le L} 1_{\{|u_i - u_j| = 1\}},$$

with $u_k = w_{k-1} + \frac{w_k - w_{k-1}}{2}$ center of the k-th step $(k \le L)$.

ISAW	IPDSAW	IPRW	MP
000000			

1.3) Free energy

The coupling parameter is $\beta \in [0, \infty[$ and ISAW model is then defined by

$$\mathbf{P}_{\beta,L}(w) = \frac{e^{\beta H_L(w)}}{Z_{\beta,L}}, \quad w \in \Omega_L^{\mathrm{SAW},d},$$

and the free energy

$$\mathbf{F}^{\mathrm{SAW}}(\beta) := \liminf_{L \to \infty} \frac{1}{L} \log Z_{\beta,L}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

ISAW	IPDSAW	IPRW	MP
000000			

- 1.4) Main open questions
 - Existence of $F^{\text{SAW}}(\beta)$ for $\beta > 0$: only proven for β small [Ueltschi (2002), Hammond & Helmuth (2019)]
 - Phase transition conjectured at some β_c(d) > 0 between an extended phase ε = [0, β_c(d)) and a collapsed phase C = [β_c(d), ∞).
 [Saleur (87), Duplantier & Saleur (87)]
 - Typical extension : a typical path w sampled from $\mathcal{P}_{\beta,L}$ is expected to scale :

- in \mathcal{E} as $||w_L|| \asymp L^{\nu_{\text{SAW}}}$,
- in \mathcal{C} as $||w_L|| \simeq L^{\chi}$ with $\chi < \nu_{\text{SAW}}$.

[Brak, Owczarek, Prellberg (93)]

ISAW 00000●	IPDSAW 000	IPRW 0000000	MP 000000000000000000000000000000000000

Problem : Self-avoiding walk is very complicated object $! \Rightarrow$ relax the self-avoiding constraint or consider directed path.

- Interacting Weakly Self-Avoiding Walk [v.d. Hofstadt, Klenke & Koenig (2001-2002), Bauerschmidt, Slade & Wallace (2016)]
- Interacting Partially Directed Self-Avoiding Walk [Zwanzig, Lauritzen (1969)]
 [Whittington, Brak, Owzcareck, Prellberg]
 [Carmona, P., Nguyen (2012, 2016, 2019)]

• Interacting Prudent Walk [P. & Torri (2018)]

ISAW	IPDSAW	IPRW	MP
000000	●00	000000	000000000000000000000000000000000000000

2 Interacting partially directed self-avoiding walk

ISAW	IPDSAW	IPRW	MP
000000	000	000000	000000000000000000000000000000000000000

2.2) 2-dimensional Interacting partially directed self-avoiding walk [Zwanzig & Lauritzen (1968)]

$$\Omega_L^{\text{PDSAW}} = \left\{ w = (w_i)_{i=0}^L : \begin{array}{l} w_0 = 0, \ w_i - w_{i-1} \in \{\uparrow, \to, \downarrow\}, \\ w \text{ satisfies the self-avoiding condition} \end{array} \right\}$$

$$\mathbf{F}^{\text{IPDSAW}}(\beta) = \lim_{L \to \infty} \frac{1}{L} \log \mathbf{Z}_{\beta,L}^{\text{IPDSAW}} \in [\beta, \infty).$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

ISAW 000000	IPDSAW ∞⊙●	IPRW 0000000	MP 000000000000000000000000000000000000
2.2.1)	Collapse transition		
Theor	em (Brack et al (1993)), Nguyen & P. (2013))
Comp	utation of $\beta_c^{p} \in (0,\infty)$ - Collapsed phase $\beta >$	such that $> \beta_c^{\mathcal{D}},$	
	– Extended phase β <	β_c^{D} .	
Phase	transition second orde	r with expo. $3/2$.	J

2.2.2) Path properties The scaling limit of the path is identified in each regime.

Theorem (Carmona, Nguyen & P. (2016), C. & P. (2016, 2019))

- $\beta < \beta_c^{\rm D}$: horizontal extension of the path $\sim L$ and vertical extension $\sim \sqrt{L}$
- $\beta = \beta_c^{\rm D}$: horizontal extension of the path $L^{2/3}$ and vertical extension $\sim L^{1/3}$
- $\beta > \beta_c^{\mathbf{D}}$: Limiting Wulff shape, horizontal extension and vertical extension \sqrt{L} .

ISAW	IPDSAW	IPRW	MP
000000	000	000000	000000000000000000000000000000000000000

(3) Interacting prudent walk

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ▲□ ● ● ●

ISAW	IPDSAW	IPRW	MP
		000000	

3.1) Prudent paths [Debierre & Turban (1987)]

$$\Omega_L^{\Pr} = \begin{cases} w = (w_i)_{i=1}^L : & w_0 = 0, \ w_i \in \{\leftarrow, \uparrow, \rightarrow, \downarrow\}, \\ w \text{ satisfies the prudent condition} \end{cases}$$

- Combinatoric viewpoint [Detheridge & Guttman (2008), Bousquet-Melou (2010), Beaton & Iliev (2015)]
- Probabilistic approach [Beffara, Friedli & Velenik (2009), P., Sun & Torri (2017] (Scaling Limit of the Kinetic and of the Uniform prudent walk).

ISAW 000000	IPDSAW 000	IPRW 000000	MP 000000000000000000000000000000000000
3.2)	Families of Prudent pat	hs	
•	1-sided (partially direct	ed)	
۲	2-sided (North-East)		
		ЦЦ	
٠	4-sided (Prudent paths)	1	

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ■ めるの

ISAW	IPDSAW	IPRW	MP
		000000	

- 1-sided (partially directed)
- 2-sided (North-East)
- 4-sided (Prudent walk)

Open Question (Bousquet-Melou) : Exponential growth rate of number of configurations μ_{Pr} :

$$\lim_{L \to \infty} \frac{1}{L} \log \left| \Omega_L^{\mathsf{Pr}} \right| = \mu_{\mathsf{Pr}}.$$

Conjecture : $\mu_{Pr} = \mu_{NE}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

ISAW	IPDSAW	IPRW	MP
000000	000	0000000	000000000000000000000000000000000000000

3.3) Interacting Prudent Walk (IPRW)

.

$$\Omega_L^{\Pr} = \begin{cases} w = (w_i)_{i=1}^L : w_0 = 0, w_i \in \{\leftarrow, \uparrow, \rightarrow, \downarrow\}, \\ w \text{ satisfies the prudent condition} \end{cases}$$

$$\mathbf{F}^{\mathbf{Pr}}(\beta) = \lim_{L \to \infty} \frac{1}{L} \log Z_{L,\beta}^{\mathbf{Pr}} \quad \text{and} \quad \mathbf{F}^{\mathsf{NE}}(\beta) = \lim_{L \to \infty} \frac{1}{L} \log Z_{L,\beta}^{\mathsf{NE}}$$

with
$$Z_{L,\beta}^{\mathbf{Pr}} = \sum_{w \in \Omega_L^{\mathbf{Pr}}} e^{\beta H_L(w)} \quad \text{and} \quad Z_{L,\beta}^{\mathsf{NE}} = \sum_{w \in \Omega_L^{\mathbf{NE}}} e^{\beta H_L(w)}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のへで

ISAW	IPDSAW	IPRW	MP
		000000	

▲□▶ ▲圖▶ ▲園▶ ▲園▶

æ

ISAW	IPDSAW	IPRW	MP
000000	000	000000	•000000000000000

4 Methods and Proofs

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ → 圖 - 釣�?

ISAW	IPDSAW	IPRW	MP
000000	000	0000000	000000000000000000000000000000000000000

4.1) Proofs

• Existence critical point β_c^{NE} such that $\mathbf{F}^{\text{NE}}(\beta) = \beta$, for all $\beta \geq \beta_c^{\text{NE}}$.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ りへぐ

$$2 \mathbf{F}^{\mathsf{Pr}}(\beta) = \mathbf{F}^{\mathsf{NE}}(\beta) \text{ for all } \beta \ge 0.$$

ISAW	IPDSAW	IPRW	MP
000000	000	000000	000000000000000000000000000000000000000

4.2) Phase transition for the NE-model

Decompose each NE path into partially directed subpaths (called blocks).

4.3) Decomposition of a path into oriented blocks

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

ISAW	IPDSAW	IPRW	MP
000000	000	000000	000000000000000000000000000000000000000

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = の�?

ISAW	IPDSAW	IPRW	MP
000000	000	000000	000000000000000000000000000000000000000

Critical Point : β_c : $\mathbf{F}^{\text{NE}}(\beta) = \beta$ for any $\beta > \beta_c$.

Goal : Upper bound for $\mathbf{Z}_{L,\beta}^{\text{NE}} : \mathbf{Z}_{L,\beta}^{\text{NE}} \leq C(\beta)e^{\beta L}$ for β large. Have to control

- Self-touchings in any block,
- Self-touchings between different blocks .

ISAW	IPDSAW	IPRW	MP
000000	000	000000	000000000000000000000000000000000000000

4.4) Partition function restricted to one block

ISAW	IPDSAW	IPRW	MP
000000	000	000000	0000000000000000

4.4.1) Stretches representation of an oriented block

- N-1 inter-stretches : increments along the orientation.
- $(\ell_1, \ldots, \ell_N) \in \mathbb{Z}^N$ sequence of stretches.
- Total length $|\ell_1| + \cdots + |\ell_N| + N 1$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

ISAW	IPDSAW	IPRW	MP
			000000000000000000000000000000000000000

$$\mathcal{L}_{T,N}(d,f) = \left\{ (\ell_i)_{i=1}^N \colon \ell_1 = d, \, \ell_N = f, \, \sum_{i=1}^N |\ell_i| = T - N + 1 \right\}$$

Number self-touchings between ℓ_i and ℓ_{i+1} : $\ell_i \wedge \ell_{i+1} := \frac{1}{2} (|\ell_i| + |\ell_{i+1}| - |\ell_i + \ell_{i+1}|).$

$$\begin{aligned} \mathbf{Z}_{T,\beta}^{\text{PD}}(N;d,f) &= \sum_{\ell \in \mathcal{L}_{T,N}(d,f)} e^{\beta \sum_{i=1}^{N-1} \ell_i \,\tilde{\wedge} \,\ell_{i+1}} \\ &= \frac{e^{\beta T - \frac{\beta}{2}|f| - \frac{\beta}{2}|d|}}{e^{\beta(N-1)}} \sum_{\ell \in \mathcal{L}_{T,N}(d,f)} \prod_{i=1}^{N-1} e^{-\frac{\beta}{2}|\ell_{i+1} + \ell_i|} \end{aligned}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

ISAW	IPDSAW	IPRW	MP
000000	000	000000	0000000000000000

4.4.2) Auxiliary Random Walk

With each $(\ell_i)_{i=1}^N \in \mathcal{L}_{T,N}(d, f)$ we associate a random walk trajectory

$$(\ell_1,\ldots,\ell_N) \Leftrightarrow (V_i)_{i=1}^N \colon V_i = (-1)^{i-1}\ell_i$$

The increments of V :

$$V_i - V_{i-1} = (-)^{i-1} (\ell_{i-1} + \ell_i).$$

One to one correspondence between $\mathcal{L}_{T,N}(d, f)$ and

$$\left\{ (V_i)_{i=1}^N \colon G_N(V) = L - N + 1, \, V_1 = d, \, V_N = (-1)^{N-1} f \right\}$$

うして ふゆ く は く は く む く し く

with $G_N(V) = \sum_{i=1}^{N} |V_i|$.

ISAW 000000	IPDSAW 000	IPRW 0000000	MP 000000000000000000000000000000000000

$$\mathbf{Z}_{T,\beta}^{\mathrm{PD}}(N;d,f) = e^{\beta T - \frac{\beta}{2}|f| - \frac{\beta}{2}|d|} \left(\frac{c_{\beta}}{e^{\beta}}\right)^{N-1} \left| \sum_{\ell \in \mathcal{L}_{T,N}(d,f)} \prod_{i=1}^{N-1} \frac{e^{-\frac{\beta}{2}|\ell_{i+1} + \ell_i|}}{c_{\beta}} \right| \right|$$

with

$$\boxed{\sum_{\ell \in \mathcal{L}_{T,N}(d,f)} \dots} = \sum_{\ell \in \mathcal{L}_{T,N}(d,f)} \mathbf{P}_{\beta} \left(\left(V_i \right)_{i=2}^N = \left((-1)^{i-1} \ell_i \right)_{i=2}^N \middle| V_1 = d \right)$$

$$\mathbf{Z}_{T,\beta}^{\text{PD}}(N;d,f) = e^{\beta T - \frac{\beta}{2}|f| - \frac{\beta}{2}|d|} \left(\frac{c_{\beta}}{e^{\beta}}\right)^{N-1} \mathbf{P}_{\beta} \left(\begin{array}{c} V_{N} = (-1)^{N-1}f \\ G_{N}(V) = T - N + 1 \end{array} \middle| V_{1} = d \right)$$

・ロト ・日・ ・ヨ・ ・ヨ・ うへぐ

ISAW	IPDSAW	IPRW	MP
			0000000000000000

4.5) Interactions between oriented blocks

Block i + 1 interacts with blocks i - 1 and i and such interactions are bounded above by

$$(N_i + |f_{i-1}|) \land |d_{i+1}| \le \frac{|f_{i-1}| + |d_{i+1}|}{2} + \frac{3}{4}(N_i - 1) - \frac{1}{4}|f_{i-1} + d_{i+1}|$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

ISAW 000000	IPDSAW 000	IPRW 0000000	MP ०००००००००००
4.6) Full	l partition function		
Partition	n $\Omega_L^{\rm NE}$ depending on		
	umber of oriented bloc	eks.	
• <i>T</i> ₁ ,	\ldots, T_r length of each	block $(T_1 + \cdots +$	$T_r = L$)
• N ₁ ,	\ldots, N_r numbers of str	retches in each blo	ck
• $(d_i,$	$(f_i)_{i=1}^r$ length of first a	and last stretch in e	each block.
Thus			
$\mathbf{Z}_{L,eta}^{ ext{NE}}$	$\leq \sum_{r \leq L} \sum_{T,N,d,f} \left[\prod_{i=1}^r \mathbf{Z}_{T_i}^{\mathtt{PD}} ight]$	$\mathcal{O}_{,\beta}(N_i, d_i, f_i) e^{\beta(f_{i-1})}$	$_2 +N_{i-1})\wedge d_i)$
and			
$\left \prod_{i=1}^r ight \leq]_i$	$\prod_{i=1}^{r} e^{\beta T_{i} - \frac{\beta}{2} \left(d_{i} + f_{i} \right)} \left(\frac{c_{\beta}}{e^{\beta}} \right)$	$\int_{0}^{N_{i}-1} \mathbf{P}_{\beta} \left(\begin{array}{c} V_{N_{i}} = 0 \\ G_{N_{i}}(V) = 0 \end{array} \right)$	$\left \int_{T_i - N_i + 1}^{-1} K_i \right V_1 = d_i$

$$e^{\beta \left(\frac{|f_{i-1}|+|d_{i+1}|}{2}+\frac{3}{4}(N_i-1)-\frac{1}{4}|f_{i-1}+d_{i+1}|\right)}$$

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = の�?

ISAW	IPDSAW	IPRW	MP
000000	000	0000000	०००००००००००●००

$$\left| \prod_{i=1}^{r} \right| = e^{\beta L} \prod_{i=1}^{r} \left(\frac{C_{\beta}}{e^{\beta}} \right)^{N_{i}-1} \mathbf{P}_{\beta} \left(\begin{smallmatrix} V_{N_{i}} = (-1)^{N_{i}-1}f_{i} \\ G_{N_{i}}(V) = T_{i} - N_{i}+1 \end{smallmatrix} \middle| V_{1} = d_{i} \right) \\ \times e^{\beta \left(\frac{3}{4} (N_{i}-1) - \frac{1}{4} |f_{i-1} + d_{i+1}| \right)}$$

so that (with $f_0 = d_{r+1} = 0$)

$$\boxed{\prod_{i=1}^{r}} = e^{\beta L} \left(\frac{c_{\beta}}{e^{\frac{\beta}{4}}}\right)^{N_{1}+\dots+N_{r}-r} c_{\beta/2}^{r}$$

$$\times \prod_{i=1}^{r} \mathbf{P}_{\beta} \left(\begin{array}{c} V_{N_{i}} = (-1)^{N_{i}-1}f_{i} \\ G_{N_{i}}(V) = T_{i}-N_{i}+1 \end{array} \middle| V_{1} = d_{i} \right) \frac{e^{-\frac{\beta}{4}|f_{i-1}+d_{i+1}|}}{c_{\beta/2}}$$

▲□▶ ▲御▶ ▲臣▶ ★臣▶ ―臣 …のへで

ISAW 000000	IPDSAW 000	IPRW 0000000	MP ०००००००००००००
assume r	$r \in 2\mathbb{N}$:		
$\prod_{i=1}^{r}\mathbf{P}_{\beta}\left($	$V_{N_i} = (-1)^{N_i - 1} f_i$ $G_{N_i}(V) = T_i - N_i + 1$	$V_1 = d_i \left(\frac{e^{-\frac{\beta}{4} f_{i-1} + d_{i+1}}}{c_{\beta/2}} \right)$	-1
$=\prod_{i=1}^{r/2}\mathbf{P}_i$	$\beta \begin{pmatrix} V_{N_{2i}} = (-1)^{N_{2i}-1} f_2 \\ G_{N_{2i}}(V) = T_{2i} - N_{2i} \end{pmatrix}$	$V_{1+1} = V_{1} = d_{2i} \left(V_{1} = d_{2i} \right) \frac{e^{-\frac{\beta}{4} J }}{2}$	$\frac{f_{2i-2}+d_{2i} }{c_{\beta/2}}$
$\prod_{i=1}^{r/2}$	$\begin{bmatrix} 2 \\ \mathbf{P}_{\beta} \begin{pmatrix} V_{N_{2i-1}} = (-1) \\ G_{N_{2i-1}}(V) = T_{2i} \end{pmatrix}$	$\Big _{_{-1} - N_{2i-1} + 1}^{N_{2i-1}} \Big V_1 = d_2$	$(2i-1) \frac{e^{-\frac{\beta}{4} f_{2i-1}+d_{2i+1} }}{c_{\beta/2}}$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ りへぐ

Consequence : The summations over T_1, \ldots, T_r and over $(d_i, f_i)_{i=1}^r$ disappear in the probabilities.

ISAW	IPDSAW	IPRW	MP
000000	000	000000	0000000000000000

Conclusion : Since $N_i \ge 2$ for every $i \le r$ (at least two stretches in an oriented block)

$$\mathbf{Z}_{L,\beta}^{\text{NE}} \le e^{\beta L} \sum_{r=1}^{L/4} \sum_{N_1 + \dots + N_r \le L} c_{\beta/2}^r \left(\frac{c_{\beta}}{e^{\frac{\beta}{4}}}\right)^{N_1 + \dots + N_r - r}$$
$$\le e^{\beta L} \sum_{r=1}^{\infty} \left[c_{\beta/2} \sum_{N=1}^{\infty} \left(\frac{c_{\beta}}{e^{\frac{\beta}{4}}}\right)^N\right]^r$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへぐ

That is, $\mathbf{Z}_{L,\beta}^{\text{NE}} \leq C(\beta)e^{\beta L}$ if β is large enough.