Collapse transition of the interacting prudent walk

Nicolas Pétrélis
Joint work with Niccolò Torri

JCB, february 2019

civtri of mathenatigats
(1) Interacting self-avoiding walk
(2) Interacting partially directed self-avoiding walk
(3) Interacting prudent walk
(4) Methods and Proofs
(1) Interacting self-avoiding walk
1.1) Set of configurations in dimension $d \geq 2$

$$
\Omega_{L}^{\mathrm{SAW}, d}=\left\{w=\left(w_{i}\right)_{i=0}^{L}: \begin{array}{c}
w_{0}=0, w_{i}-w_{i-1} \in\left\{ \pm e_{1}, \ldots, \pm e_{d}\right\} \\
w \text { satisfies the self-avoiding condition }
\end{array}\right\}
$$

1.2) Interactions

With every $w \in \Omega_{L}^{S A W, d}$, we associate an hamiltonian that sums the self-touchings performed by w, i.e.,

$$
H_{L}(w)=\sum_{0 \leq i<j \leq L} 1_{\left\{\left|u_{i}-u_{j}\right|=1\right\}}
$$

with $u_{k}=w_{k-1}+\frac{w_{k}-w_{k-1}}{2}$ center of the k-th step $(k \leq L)$.
1.3) Free energy

The coupling parameter is $\beta \in[0, \infty[$ and ISAW model is then defined by

$$
\mathrm{P}_{\beta, L}(w)=\frac{e^{\beta H_{L}(w)}}{Z_{\beta, L}}, \quad w \in \Omega_{L}^{\mathrm{SAW}, d}
$$

and the free energy

$$
\mathrm{F}^{\mathrm{SAW}}(\beta):=\liminf _{L \rightarrow \infty} \frac{1}{L} \log Z_{\beta, L}
$$

1.4) Main open questions

- Existence of $F^{\mathrm{SAW}}(\beta)$ for $\beta>0$: only proven for β small [Ueltschi (2002), Hammond \& Helmuth (2019)]
- Phase transition conjectured at some $\beta_{c}(d)>0$ between an extended phase $\mathcal{E}=\left[0, \beta_{c}(d)\right)$ and a collapsed phase $\mathcal{C}=\left[\beta_{c}(d), \infty\right)$.
[Saleur (87), Duplantier \& Saleur (87)]
- Typical extension : a typical path w sampled from $\mathrm{P}_{\beta, L}$ is expected to scale :
- in \mathcal{E} as $\left\|w_{L}\right\| \asymp L^{\nu_{\mathrm{SAW}}}$,
- in \mathcal{C} as $\left\|w_{L}\right\| \asymp L^{\chi}$ with $\chi<\nu_{\text {SAW }}$.
[Brak, Owczarek, Prellberg (93)]

Problem : Self-avoiding walk is very complicated object! \Rightarrow relax the self-avoiding constraint or consider directed path.

- Interacting Weakly Self-Avoiding Walk
[v.d. Hofstadt, Klenke \& Koenig (2001-2002),
Bauerschmidt, Slade \& Wallace (2016)]
- Interacting Partially Directed Self-Avoiding Walk
[Zwanzig, Lauritzen (1969)]
[Whittington, Brak, Owzcareck, Prellberg]
[Carmona, P., Nguyen (2012, 2016, 2019)]
- Interacting Prudent Walk
[P. \& Torri (2018)]
(2) Interacting partially directed self-avoiding walk
2.2) 2-dimensional Interacting partially directed self-avoiding walk [Zwanzig \& Lauritzen (1968)]
$\Omega_{L}^{\mathrm{PDSAW}}=\left\{w=\left(w_{i}\right)_{i=0}^{L}: \begin{array}{l}w_{0}=0, w_{i}-w_{i-1} \in\{\uparrow, \rightarrow, \downarrow\}, \\ w \text { satisfies the self-avoiding condition }\end{array}\right\}$

$$
\mathbf{F}^{\mathrm{IPDSAW}}(\beta)=\lim _{L \rightarrow \infty} \frac{1}{L} \log Z_{\beta, L}^{\mathrm{IPDSAW}} \in[\beta, \infty)
$$

2.2.1) Collapse transition

Theorem (Brack et al (1993), Nguyen \& P. (2013))
Computation of $\beta_{c}^{D} \in(0, \infty)$ such that

- Collapsed phase $\beta>\beta_{c}^{D}$,
- Extended phase $\beta<\beta_{c}^{D}$.

Phase transition second order with expo. 3/2.
2.2.2) Path properties The scaling limit of the path is identified in each regime.

Theorem (Carmona, Nguyen \& P. (2016), C. \& P. (2016, 2019))

- $\beta<\beta_{c}^{D}$: horizontal extension of the path $\sim L$ and vertical extension $\sim \sqrt{L}$
- $\beta=\beta_{c}^{D}$: horizontal extension of the path $L^{2 / 3}$ and vertical extension $\sim L^{1 / 3}$
- $\beta>\beta_{c}^{D}$: Limiting Wulff shape, horizontal extension and vertical extension \sqrt{L}.
(3) Interacting prudent walk
3.1) Prudent paths [Debierre \& Turban (1987)]

$$
\Omega_{L}^{\mathrm{Pr}}=\left\{w=\left(w_{i}\right)_{i=1}^{L}: \begin{array}{l}
w_{0}=0, w_{i} \in\{\leftarrow, \uparrow, \rightarrow, \downarrow\} \\
w \text { satisfies the prudent condition }
\end{array}\right\}
$$

- Combinatoric viewpoint [Detheridge \& Guttman (2008), Bousquet-Melou (2010), Beaton \& Iliev (2015)]
- Probabilistic approach [Beffara, Friedli \& Velenik (2009), P., Sun \& Torri (2017] (Scaling Limit of the Kinetic and of the Uniform prudent walk).
3.2) Families of Prudent paths
- 1-sided (partially directed)

- 2-sided (North-East)

- 4-sided (Prudent paths)

- 1-sided (partially directed)
- 2-sided (North-East)
- 4-sided (Prudent walk)

Open Question (Bousquet-Melou) : Exponential growth rate of number of configurations μ_{Pr} :

$$
\lim _{L \rightarrow \infty} \frac{1}{L} \log \left|\Omega_{L}^{\mathrm{Pr}}\right|=\mu_{\mathrm{Pr}} .
$$

Conjecture : $\mu_{\mathrm{Pr}}=\mu_{\mathrm{NE}}$.
3.3) Interacting Prudent Walk (IPRW)

$$
\Omega_{L}^{\operatorname{Pr}}=\left\{w=\left(w_{i}\right)_{i=1}^{L}: \begin{array}{l}
w_{0}=0, w_{i} \in\{\leftarrow, \uparrow, \rightarrow, \downarrow\} \\
w \text { satisfies the prudent condition }
\end{array}\right\}
$$

$$
\mathbf{F}^{\mathrm{Pr}}(\beta)=\lim _{L \rightarrow \infty} \frac{1}{L} \log Z_{L, \beta}^{\mathrm{Pr}} \quad \text { and } \quad \mathbf{F}^{\mathrm{NE}}(\beta)=\lim _{L \rightarrow \infty} \frac{1}{L} \log Z_{L, \beta}^{\mathrm{NE}}
$$

with

$$
Z_{L, \beta}^{\mathrm{Pr}}=\sum_{w \in \Omega_{L}^{\mathrm{Pr}}} e^{\beta H_{L}(w)} \quad \text { and } \quad Z_{L, \beta}^{\mathrm{NE}}=\sum_{w \in \Omega_{L}^{\mathrm{NE}}} e^{\beta H_{L}(w)}
$$

3.4) Results

Theorem (P. \& Torri, (2018))
(1) For any $\beta \geq 0$ the Free Energy exists and

$$
\mathbf{F}^{P r}(\beta)=\mathbf{F}^{N E}(\beta) \in[\beta, \infty) .
$$

Consequence (at $\beta=0$) : $\mu_{P}=\mu_{P}^{N E}$!
(2) There exists a critical point $\beta_{c}^{P r} \in(0, \infty)$ such that

$$
\begin{aligned}
& -\mathbf{F}^{P r}(\beta)>\beta \text { for every } \beta>\beta_{c}^{P r}, \\
& -\mathbf{F}^{P r}(\beta)=\beta \text { for every } \beta \leq \beta_{c}^{P r} .
\end{aligned}
$$

(3) $\beta_{c}^{P r} \geq \beta_{c}^{P D}$.
(1) $\mathbf{F}^{S A W}(\beta)>\beta$, for all $\beta \geq 0$.

(4) Methods and Proofs

4.1) Proofs

(1) Existence critical point β_{c}^{NE} such that $\mathbf{F}^{\mathrm{NE}}(\beta)=\beta$, for all $\beta \geq \beta_{c}^{\mathrm{NE}}$.
(2) $\mathbf{F}^{\operatorname{Pr}}(\beta)=\mathbf{F}^{\mathrm{NE}}(\beta)$ for all $\beta \geq 0$.
4.2) Phase transition for the NE-model

Decompose each NE path into partially directed subpaths (called blocks).
4.3) Decomposition of a path into oriented blocks

Critical Point : $\beta_{c}: \mathbf{F}^{\mathrm{NE}}(\beta)=\beta$ for any $\beta>\beta_{c}$.

Goal : Upper bound for $\mathbf{Z}_{L, \beta}^{\mathrm{NE}}: \mathbf{Z}_{L, \beta}^{\mathrm{NE}} \leq C(\beta) e^{\beta L}$ for β large. Have to control

- Self-touchings in any block,
- Self-touchings between different blocks .
4.4) Partition function restricted to one block
4.4.1) Stretches representation of an oriented block
- $N-1$ inter-stretches : increments along the orientation.
- $\left(\ell_{1}, \ldots, \ell_{N}\right) \in \mathbb{Z}^{N}$ sequence of stretches.
- Total length $\left|\ell_{1}\right|+\cdots+\left|\ell_{N}\right|+N-1$.

$$
\mathcal{L}_{T, N}(d, f)=\left\{\left(\ell_{i}\right)_{i=1}^{N}: \ell_{1}=d, \ell_{N}=f, \sum_{i=1}^{N}\left|\ell_{i}\right|=T-N+1\right\}
$$

Number self-touchings between ℓ_{i} and ℓ_{i+1} :

$$
\ell_{i} \tilde{\wedge} \ell_{i+1}:=\frac{1}{2}\left(\left|\ell_{i}\right|+\left|\ell_{i+1}\right|-\left|\ell_{i}+\ell_{i+1}\right|\right) .
$$

$$
\begin{aligned}
\mathbf{Z}_{T, \beta}^{\mathrm{PD}}(N ; d, f) & =\sum_{\ell \in \mathcal{L}_{T, N}(d, f)} e^{\beta \sum_{i=1}^{N-1} \ell_{i} \tilde{\wedge} \ell_{i+1}} \\
& =\frac{e^{\beta T-\frac{\beta}{2}|f|-\frac{\beta}{2}|d|}}{e^{\beta(N-1)}} \sum_{\ell \in \mathcal{L}_{T, N}(d, f)} \prod_{i=1}^{N-1} e^{-\frac{\beta}{2}\left|\ell_{i+1}+\ell_{i}\right|}
\end{aligned}
$$

4.4.2) Auxiliary Random Walk

With each $\left(\ell_{i}\right)_{i=1}^{N} \in \mathcal{L}_{T, N}(d, f)$ we associate a random walk trajectory

$$
\left(\ell_{1}, \ldots, \ell_{N}\right) \Leftrightarrow\left(V_{i}\right)_{i=1}^{N}: V_{i}=(-1)^{i-1} \ell_{i}
$$

The increments of V :

$$
V_{i}-V_{i-1}=(-)^{i-1}\left(\ell_{i-1}+\ell_{i}\right)
$$

One to one correspondence between $\mathcal{L}_{T, N}(d, f)$ and

$$
\left\{\left(V_{i}\right)_{i=1}^{N}: G_{N}(V)=L-N+1, V_{1}=d, V_{N}=(-1)^{N-1} f\right\}
$$

with $G_{N}(V)=\sum_{i=1}^{N}\left|V_{i}\right|$.

$$
\mathbf{Z}_{T, \beta}^{\mathrm{PD}}(N ; d, f)=e^{\beta T-\frac{\beta}{2}|f|-\frac{\beta}{2}|d|}\left(\frac{c_{\beta}}{e^{\beta}}\right)^{N-1} \sum_{\ell \in \mathcal{L}_{T, N}(d, f)} \prod_{i=1}^{N-1} \frac{e^{-\frac{\beta}{2}\left|\ell_{i+1}+\ell_{i}\right|}}{c_{\beta}}
$$

with

$$
\sum_{\ell \in \mathcal{L}_{T, N}(d, f)} \ldots=\sum_{\ell \in \mathcal{L}_{T, N}(d, f)} \mathbf{P}_{\beta}\left(\left(V_{i}\right)_{i=2}^{N}=\left((-1)^{i-1} \ell_{i}\right)_{i=2}^{N} \mid V_{1}=d\right)
$$

$\mathbf{Z}_{T, \beta}^{\mathrm{PD}}(N ; d, f)$

$$
=e^{\beta T-\frac{\beta}{2}|f|-\frac{\beta}{2}|d|}\left(\frac{c_{\beta}}{e^{\beta}}\right)^{N-1} \quad \mathbf{P}_{\beta}\left(\left.\begin{array}{c}
V_{N}=(-1)^{N-1} f \\
G_{N}(V)=T-N+1
\end{array} \right\rvert\, V_{1}=d\right)
$$

4.5) Interactions between oriented blocks

Block $i+1$ interacts with blocks $i-1$ and i and such interactions are bounded above by
$\left(N_{i}+\left|f_{i-1}\right|\right) \wedge\left|d_{i+1}\right| \leq \frac{\left|f_{i-1}\right|+\left|d_{i+1}\right|}{2}+\frac{3}{4}\left(N_{i}-1\right)-\frac{1}{4}\left|f_{i-1}+d_{i+1}\right|$
4.6) Full partition function

Partition Ω_{L}^{NE} depending on

- r number of oriented blocks.
- T_{1}, \ldots, T_{r} length of each block $\left(T_{1}+\cdots+T_{r}=L\right)$
- N_{1}, \ldots, N_{r} numbers of stretches in each block
- $\left(d_{i}, f_{i}\right)_{i=1}^{r}$ length of first and last stretch in each block.

Thus

$$
\mathbf { Z } _ { L , \beta } ^ { \mathrm { NE } } \leq \sum _ { r \leq L } \sum _ { T , N , d , f } \longdiv { \prod _ { i = 1 } ^ { r } \mathbf { Z } _ { T _ { i } , \beta } ^ { \mathrm { PD } } (N _ { i } , d _ { i } , f _ { i }) e ^ { \beta (| f _ { i - 2 } | + N _ { i - 1 }) \wedge | d _ { i } |) } }
$$

and

| $\prod_{i=1}^{r}$ |
| :---: |\(\prod_{i=1}^{r} e^{\beta T_{i}-\frac{\beta}{2}\left(\left|d_{i}\right|+\left|f_{i}\right|\right)}\left(\frac{c_{\beta}}{e^{\beta}}\right)^{N_{i}-1} \mathbf{P}_{\beta}\left(\left.\begin{array}{c}\begin{array}{c}V_{N_{i}}=(-1)^{N_{i}-1} f_{i}

G_{N_{i}}(V)=T_{i}-N_{i}+1\end{array}\end{array} \right\rvert\, V_{1}=d_{i}\right)\)

$$
e^{\beta\left(\frac{\left|f_{i-1}\right|+\left|d_{i+1}\right|}{2}+\frac{3}{4}\left(N_{i}-1\right)-\frac{1}{4}\left|f_{i-1}+d_{i+1}\right|\right)}
$$

$$
\begin{gathered}
\prod_{i=1}^{r}=e^{\beta L} \prod_{i=1}^{r}\left(\frac{c_{\beta}}{e^{\beta}}\right)^{N_{i}-1} \mathbf{P}_{\beta}\left(\left.\begin{array}{c}
V_{N_{i}}=(-1)^{N_{i}-1} f_{i} \\
G_{N_{i}}(V)=T_{i}-N_{i}+1
\end{array} \right\rvert\, V_{1}=d_{i}\right) \\
\times e^{\beta\left(\frac{3}{4}\left(N_{i}-1\right)-\frac{1}{4}\left|f_{i-1}+d_{i+1}\right|\right)}
\end{gathered}
$$

so that (with $f_{0}=d_{r+1}=0$)

$$
\begin{aligned}
& \prod_{i=1}^{r}=e^{\beta L}\left(\frac{c_{\beta}}{e^{\frac{\beta}{4}}}\right)^{N_{1}+\cdots+N_{r}-r} c_{\beta / 2}^{r} \\
& \times \prod_{i=1}^{r} \mathbf{P}_{\beta}\left(\left.\begin{array}{c}
V_{N_{i}=(-1)^{N_{i}-1} f_{i}}^{V_{N_{i}}(V)=T_{i}-N_{i}+1}
\end{array} \right\rvert\, V_{1}=d_{i}\right) \frac{e^{-\frac{\beta}{4}\left|f_{i-1}+d_{i+1}\right|}}{c_{\beta / 2}}
\end{aligned}
$$

```
assume \(r \in 2 \mathbb{N}\) :
```

$$
\begin{aligned}
& \prod_{i=1}^{r} \mathbf{P}_{\beta}\left(\left.\begin{array}{c}
V_{N_{i}}=(-1)^{N_{i}-1} f_{i} \\
G_{N_{i}}(V)=T_{i}-N_{i}+1
\end{array} \right\rvert\, V_{1}=d_{i}\right) \frac{e^{-\frac{\beta}{4}\left|f_{i-1}+d_{i+1}\right|}}{c_{\beta / 2}} \\
& =\prod_{i=1}^{r / 2} \mathbf{P}_{\beta}\left(\left.\begin{array}{c}
V_{N_{2 i}}=(-1)^{N_{2 i}-1} f_{2 i} \\
G_{N_{2 i}}(V)=T_{2 i}-N_{2 i}+1
\end{array} \right\rvert\, V_{1}=d_{2 i}\right) \frac{e^{-\frac{\beta}{4}\left|f_{2 i-2}+d_{2 i}\right|}}{c_{\beta / 2}} \\
& \quad \prod_{i=1}^{r / 2} \mathbf{P}_{\beta}\left(\begin{array}{c}
V_{N_{2 i-1}}=(-1)^{N_{2 i-1} f_{2 i-1}} \\
G_{N_{2 i-1}}(V)=T_{2 i-1}-N_{2 i-1}+1
\end{array}\right. \\
& \left.\quad V_{1}=d_{2 i-1}\right) \frac{e^{-\frac{\beta}{4}\left|f_{2 i-1}+d_{2 i+1}\right|}}{c_{\beta / 2}}
\end{aligned}
$$

Consequence: The summations over T_{1}, \ldots, T_{r} and over $\left(d_{i}, f_{i}\right)_{i=1}^{r}$ disappear in the probabilities.

Conclusion : Since $N_{i} \geq 2$ for every $i \leq r$ (at least two stretches in an oriented block)

$$
\begin{aligned}
\mathbf{Z}_{L, \beta}^{\mathrm{NE}} & \leq e^{\beta L} \sum_{r=1}^{L / 4} \sum_{N_{1}+\cdots+N_{r} \leq L} c_{\beta / 2}^{r}\left(\frac{c_{\beta}}{e^{\frac{\beta}{4}}}\right)^{N_{1}+\cdots+N_{r}-r} \\
& \leq e^{\beta L} \sum_{r=1}^{\infty}\left[c_{\beta / 2} \sum_{N=1}^{\infty}\left(\frac{c_{\beta}}{e^{\frac{\beta}{4}}}\right)^{N}\right]^{r}
\end{aligned}
$$

That is, $\mathbf{Z}_{L, \beta}^{\mathrm{NE}} \leq C(\beta) e^{\beta L}$ if β is large enough.

