Asymptotic freeness over the diagonal of random matrices

Camille Male
joint work with B. Au, G. Cébron,
A. Dahlqvist and F. Gabriel

Université de Bordeaux
JCB 2019

The Problem: Numerical computation of eigenvalues

We are given a $N \times N$ Hermitian random matrix of the form

$$
H_{N}=P\left(X_{1, N}, \ldots, X_{L, N}\right)
$$

- P is a non commutative polynomial in the matrices and their adjoint.
- $X_{1, N}, \ldots, X_{L, N}$ are independent random matrices.

Question: How to compute the spectrum distribution of H_{N} ? (large scale) Numerical method bypassing diagonalization \& based on fixed-point.
Assumptions: The size N is large.
Assuming distributional symmetries on the random matrices: invariance in law by conjugation by permutation matrices
In this talk: consider only the sum

$$
H_{N}=X_{N}+Y_{N}
$$

Organization of the talk

I: presentation of the result
We consider the cases of
(1) a single Wigner matrix X_{N},
(2) $X_{N}+Y_{N}$ when X_{N} Wigner matrix,
(3) $X_{N}+Y_{N}$ when one matrix is unitary invariant,
(9) $X_{N}+Y_{N}$ when one matrix is permutation invariant,

II: Notions of independence
Involves several concepts
(1) Freeness (non commutative analogue of independence)
(2) Freeness with amalgamation (analogue of conditional independence)
(3) Traffic independence (unifies Independence \& freeness)

1. Encoding the spectrum into a probability measure

The empirical eigenvalues distribution of $H_{N}: \mu_{H_{N}}=\mathbb{E}\left[\frac{1}{N} \sum_{i=1}^{N} \delta_{\lambda_{i}}\right]$, where the λ_{i} 's are the eigenvalues of H_{N}.

Definition
A (real) Wigner matrix is a symmetric random matrix $X_{N}=\left(\frac{x_{i, j}}{\sqrt{N}}\right)_{i, j}$ such that the $x_{i, j}, i \leqslant j$ are independent and identically distributed.

Assume: $\operatorname{Var}\left(x_{i, j}\right)=\mathbb{E}\left[\left(x_{i, j}-\mathbb{E}\left[x_{i, j}\right]\right)^{2}\right]=1$
Wigner theorem: $\mu_{H_{N}} \xrightarrow[N \rightarrow \infty]{ } \mu$ Semicircular Distribution: $\forall f$

$$
\int f \mathrm{~d} \mu_{X_{N}}:=\mathbb{E}\left[\frac{1}{N} \sum_{i=1}^{N} f\left(\lambda_{i}\right)\right] \underset{N \rightarrow \infty}{\longrightarrow} \int f \mathrm{~d} \mu=\int_{-2}^{2} f(t) \frac{\sqrt{4-t^{2}}}{2 \pi} \mathrm{~d} t
$$

The even moments $\int t^{2 n} \mathrm{~d} \mu(t)$ are the Catalan numbers $\frac{1}{n+1}\binom{2 n}{n}$.

2. Perturbation of a Wigner matrix

A tool: The Stieltjes transform of a prob. measure μ on $\mathbb{R}: \forall \lambda \in \mathbb{C}^{+}$

$$
g_{\mu}(\lambda):=\int_{\mathbb{R}} \frac{\mathrm{d} \mu(t)}{(\lambda-t)}, g_{H_{N}}(\lambda):=g_{\mu_{H_{N}}}(\lambda)=\mathbb{E}\left[\frac{1}{N} \operatorname{Tr}\left[\left(\lambda \mathbb{I}_{N}-H_{N}\right)^{-1}\right]\right]
$$

- Generating function of moments: $g_{\mu}(\lambda)=\sum_{n \geq 0} \frac{\int_{\mathbb{R}} \mathbb{t}^{n} \mathrm{~d} \mu(t)}{\lambda^{n+1}}$.
- Inversion formula: $\mathrm{d} \mu(t)=\lim _{\epsilon \rightarrow 0^{+}} \Im m \frac{-g_{\mu}(t+i \epsilon)}{\pi}$.

Theorem (Pastur 72)
X_{N} : Wigner with $\operatorname{Var}\left(x_{i, j}\right)=\sigma^{2}$,
Y_{N} : independent of X_{N}, such that $\mu_{Y_{N}} \xrightarrow[N \rightarrow \infty]{ } \mu_{y}$.
Then $\mu_{X_{N}+Y_{N}} \xrightarrow[N \rightarrow \infty]{ } \mu_{X+y}$, determined by the fixed-point equation

$$
g_{x+y}(\lambda)=g_{y}\left(\lambda-\sigma^{2} g_{x+y}(\lambda)\right), \quad \forall \lambda \in \mathbb{C}^{+}
$$

2. Numerical Method

Spectrum of $X_{N}+Y_{N}$:
Density of $x+y$ at $t:-\lim _{\epsilon} \Im m g_{x+y}(t+i \epsilon) / \pi$. [Stieltjes inversion]
\Rightarrow With $\lambda_{t}=t+i \epsilon$, construct an approximation of $g_{x+y}\left(\lambda_{t}\right)$ for different values of t and a small ϵ.

When X_{N} Wigner.

$$
g_{x+y}(\lambda)=g_{y}\left(\lambda-\sigma^{2} g_{x+y}(\lambda)\right) \quad[\text { Pastur }]
$$

\Rightarrow Take $g^{(0)}$ arbitrary
Iterate $g^{(n)}=g_{y}\left(\lambda_{t}-\sigma^{2} g^{(n-1)}\right)$ until stationarity
Then $g^{(n)} \sim g_{x+y}\left(\lambda_{t}\right)$.

3. Definition of the \mathcal{R}-transform

X_{N} Wigner: $\quad g_{x+y}(\lambda)=g_{y}\left(\lambda-\sigma^{2} g_{x+y}(\lambda)\right) \quad[$ Pastur $]$
Remark: If X_{N} has variance σ^{2} and $Y_{N}=0$ then $g_{y}(\lambda)=\lambda^{-1}$ and

$$
g_{x}(\lambda)=\left(\lambda-\sigma^{2} g_{x}(\lambda)\right)^{-1}, \quad \forall \lambda \in \mathbb{C}^{+} .
$$

Another tool: For any y there is a unique \mathcal{R}_{y} such that

$$
g_{y}(\lambda)=\left(\lambda-\mathcal{R}_{y}\left(g_{y}(\lambda)\right)\right)^{-1}, \quad \forall \lambda \in \mathbb{C}^{+}
$$

\mathcal{R}_{y} : the \mathcal{R}-transform of y.
y is a semicircular variable if and only if it is linear.

3. The free probabilist method

\mathcal{R}-transform \mathcal{R}_{y} of $y: g_{y}(\lambda)=\left(\lambda-\mathcal{R}_{y}\left(g_{y}(\lambda)\right)\right)^{-1}$

We say that a random matrix X_{N} is unitarily invariant whenever

$$
X_{N} \stackrel{\mathcal{L} a w}{=} U X_{N} U^{*} \text { for any unitary matrix } U
$$

Theorem (Voiculescu 86,91)
Let X_{N} and Y_{N} be independent random matrices, such that one of the matrices is unitarily invariant and $\mu X_{N} \xrightarrow[N \rightarrow \infty]{\longrightarrow} \nu_{x}, \mu_{Y_{N}} \overrightarrow{N \rightarrow \infty} \nu_{y}$. Then $\mu_{X_{N}+Y_{N}} \underset{N \rightarrow \infty}{\longrightarrow} \mu_{x+y}$ where

$$
\mathcal{R}_{x+y}=\mathcal{R}_{x}+\mathcal{R}_{y} .
$$

Voiculescu [86] says that x and y are free iff $\mathcal{R}_{x+y}=\mathcal{R}_{x}+\mathcal{R}_{y}$. Voiculescu [91] says that X_{N} and Y_{N} converges to free variables x and $y_{\text {s }}$

3. Numerical Method

When X_{N} and Y_{N} are asymptotically free.
\mathcal{R}-transform of $x+y: g_{x+y}(\lambda)=\left(\lambda-\mathcal{R}_{x+y}\left(g_{x+y}(\lambda)\right)\right)^{-1}$
X_{N}, Y_{N} asymptotically free: $\mathcal{R}_{x+y}=\mathcal{R}_{x}+\mathcal{R}_{y} \quad$ [Voiculescu]
Both \mathcal{R}_{x} and \mathcal{R}_{y} known: iterate $g^{(n)}=\left(\lambda_{t}-\left(\mathcal{R}_{x}+\mathcal{R}_{y}\right)\left(g^{(n)}\right)\right)^{-1}$.
Theorem (Voiculescu 93, Biane 98)
x and y are free iff $\quad g_{x+y}(\lambda)=g_{y}\left(\lambda-\mathcal{R}_{x}\left(g_{x+y}(\lambda)\right)\right)$
Only \mathcal{R}_{x} known: iterate $g^{(n)}=g_{y}\left(\lambda_{t}-\mathcal{R}_{x}\left(g^{(n)}\right)\right)$.
None are known: use another fixed point for the subordinator $\theta_{x, y}(\lambda)=\lambda-\mathcal{R}_{x}\left(g_{x+y}(\lambda)\right)$ so that $g_{x+y}(\lambda)=g_{y}\left(\theta_{x, y}(\lambda)\right)$.

4. \mathcal{R}-transform with amalgamation over the diagonal

We say that a random matrix X_{N} is permutation invariant whenever

$$
X_{N} \stackrel{\mathcal{L a w}}{=} U X_{N} U^{*}, \forall U \text { permutation matrix. }
$$

Idea: to adapt, we replace

- the normalized trace $\frac{1}{N} \operatorname{Tr}$ by the diagonal operator $A \mapsto \operatorname{diag}(A)$,
- the scalars $\lambda \in \mathbb{C}$ by diagonal matrices $\boldsymbol{\lambda} \in \mathrm{D}_{N}(\mathbb{C})$.

Tool: Stieltjes transform $\mathbf{g}_{X_{N}}$ with amalgamation over the diagonal is

$$
\mathbf{g}_{X_{N}}(\boldsymbol{\lambda})=\operatorname{diag}\left[\left(\boldsymbol{\lambda}-X_{N}\right)^{-1}\right]
$$

where $\boldsymbol{\lambda}$ is a diagonal matrix with $\boldsymbol{\lambda}_{i i} \in \mathbb{C}^{+}$. The \mathcal{R}-transform over the diagonal is $\mathbf{R}_{X_{N}}: \mathcal{O}_{N} \subset \mathrm{D}_{N}(\mathbb{C}) \rightarrow \mathrm{D}_{N}(\mathbb{C})$ s.t.

$$
\mathbf{g}_{X_{N}}(\boldsymbol{\lambda})=\left(\boldsymbol{\lambda}-\mathbf{R}_{X_{N}}\left(\mathbf{g}_{X_{N}}(\boldsymbol{\lambda})\right)\right)^{-1}
$$

4. Consequence of the traffic approach

$$
\mathbf{g}_{X_{N}}(\boldsymbol{\lambda})=\operatorname{diag}\left[\left(\boldsymbol{\lambda}-X_{N}\right)^{-1}\right]=\left(\boldsymbol{\lambda}-\mathbf{R}_{X_{N}}\left(\boldsymbol{g}_{X_{N}}(\boldsymbol{\lambda})\right)\right)^{-1}
$$

Theorem (Au, Cébron, Dahlqvist, Gabriel, M. 18)
Let X_{N} and Y_{N} be independent random matrices, such that one of the matrices is permutation invariant. Assume the convergence of X_{N} and Y_{N} in the sense of traffics (generalization of the convergence of $\mu_{X_{N}}, \mu_{Y_{N}}$).
Then $\mathbf{g}_{X_{N}}+Y_{N} \underset{N \rightarrow \infty}{\longrightarrow} \mathbf{g}_{x+y}$ whose \mathcal{R}-transform over the diagonal is

$$
\mathbf{R}_{x+y}=\mathbf{R}_{x}+\mathbf{R}_{y} .
$$

Voiculescu [95]: x and y are free over the diagonal iff $\mathbf{R}_{x+y}=\mathbf{R}_{x}+\mathbf{R}_{y}$. M. [11]: X_{N} and Y_{N} converges to traffic-independent variables x and y.

This theorem: Traffic Independence implies Freeness with Amalgamation

4. Numerical Method [Belinshi, Mai, Speicher 17]

When X_{N} and Y_{N} are asymptotically free over the diagonal. Both \mathbf{R}_{x} and \mathbf{R}_{y} known: Take $\mathbf{g}^{(0)}$ an arbitrary diagonal matrix. Iterate $\mathbf{g}^{(n)}=\left(\lambda_{t} \times \mathbb{1}_{N}-\left(\mathbf{R}_{x}+\mathbf{R}_{y}\right)\left(\mathbf{g}^{(n)}\right)\right)^{-1}$
For large enough n, then $\frac{1}{N} \operatorname{Tr}\left[\mathbf{g}^{(n)}\right]$ is an approximation of $g_{x+y}(t+i \varepsilon)$.

X_{N} matrix of Erdos-Renyi graph $\left(p_{N}=\frac{1}{N}\right), Y_{N}=V D V^{-1}$ for D diagonal and V FFT matrix \& Unitary BM (Method: via $\mathbf{g}_{x+y, ~} \mathbf{g}_{y}\left(\theta_{x, y}\right)$)

Link between Independence and Freeness

$\underline{\text { Recall: }}$ The Fourier transform $f_{x}(t)=\mathbb{E}\left[e^{i t x}\right]=\sum_{n \geq 0} \frac{(i t)^{n} \mathbb{E}\left[X^{n}\right]}{n!}$.

$$
x \text { and } y \text { are independent iff } \ln f_{x+y}=\ln f_{x}+\ln f_{y}
$$

Expansion $F_{x}(t)=\sum_{n \geq 0} \frac{(i t)^{n} c_{n}(x)}{n!}: c_{n}(x)$ is the n-th cumulant of x.
Claimed previously: The \mathcal{R}-transform characterizes freeness

$$
x \text { and } y \text { are free iff } R_{x+y}=R_{x}+R_{y}
$$

Expansion $\mathcal{R}_{x}(t)=\sum_{n \geq 0} k_{n}(x) t^{n}: k_{n}(x)$ is the n-th free cumulant of x.
The following relations charaterize $\left(c_{n}(x)\right)_{n \geq 1}$ and $\left(k_{n}(x)\right)_{n \geq 1}: \forall n \geq 1$

$$
\begin{array}{r}
\mathbb{E}\left[x^{n}\right]=\sum_{\pi \in \mathcal{P}(n)} \prod_{B \in \pi} c_{|B|}(x), \\
\mathbb{E}\left[x^{n}\right]=\sum_{\pi \in \mathcal{N C P}(n)} \prod_{B \in \pi} k_{|B|}(x)
\end{array}
$$

Moment Formulation of Freeness

Recall: x_{1}, \ldots, x_{L} are independent iff $\mathbb{E}\left[x_{1}^{n_{1}} \ldots x_{L}^{n_{L}}\right]=\prod_{\ell=1}^{L} \mathbb{E}\left[x_{\ell}^{n_{\ell}}\right]$.
Freeness: x_{1}, \ldots, x_{L} are free if and only if: $\forall n \geq 2, \forall \ell_{1} \neq \ell_{2} \neq \cdots \neq \ell_{n}$ in $\{1, \ldots, L\}$ and $\forall P_{1}, \ldots, P_{n}$ polynomials

$$
\mathbb{E}\left[\left(P_{1}\left(x_{\ell_{1}}\right)-\mathbb{E}\left[P_{1}\left(x_{\ell_{1}}\right)\right]\right) \ldots\left(P_{n}\left(x_{\ell_{n}}\right)-\mathbb{E}\left[P_{n}\left(x_{\ell_{n}}\right)\right]\right)\right]=0 .
$$

In words: An alternated product of centered elements is centered
Random matrices $X_{N, 1}, \ldots, X_{N, L}$ are asymptotically free whenever for any
$\varepsilon_{N}=\left(P_{1}\left(X_{N, \ell_{1}}\right)-\mathbb{E} \frac{1}{N} \operatorname{Tr} P_{1}\left(X_{N, \ell_{1}}\right)\right) \ldots\left(P_{n}\left(X_{N, \ell_{n}}\right)-\mathbb{E} \frac{1}{N} \operatorname{Tr} P_{n}\left(X_{N, \ell_{n}}\right)\right)$,
alternated product, we have $\mathbb{E} \frac{1}{N} \operatorname{Tr}\left[\varepsilon_{N}\right] \underset{N \rightarrow \infty}{\longrightarrow} 0$.

Freeness with Amalgamation

x and y are independent conditionally on $z: \forall f, g$,

$$
\mathbb{E}[f(x) g(y) \mid z]=\mathbb{E}[f(x) \mid z] \times \mathbb{E}[g(y) \mid z] .
$$

Freeness with amalgamation over (\sim conditionally on) diagonal matrices. The map $\Delta: A \mapsto \operatorname{diag}(A)$ is a conditional expectation in the sense that

$$
\Delta\left(D_{1} A D_{2}\right)=D_{1} \Delta(A) D_{2}, \quad \forall D_{1}, D_{2} \in \mathrm{D}_{N}(\mathbb{C})
$$

Random matrices $X_{N, 1}, \ldots, X_{N, L}$ are asymptotically free over the diagonal whenever

$$
\Delta\left[\left(P_{1}\left(X_{N, \ell_{1}}\right)-\Delta\left[P_{1}\left(X_{N, \ell_{1}}\right)\right]\right) \ldots\left(P_{n}\left(X_{N, \ell_{n}}\right)-\Delta\left[P_{n}\left(X_{N, \ell_{n}}\right)\right]\right)\right]
$$

tends to zero. (Actually the P_{i} 's are non commutative polynomials whose coefficients are diagonal matrices...)

Traffic Probability

Eig. distr.: $\int t^{n} \mathrm{~d} \mu_{A}(t)=\frac{1}{N} \sum_{i=1}^{N} \lambda_{i}^{n}=\frac{1}{N} \operatorname{Tr}\left(A^{n}\right)$.
N. C. distr.: $\frac{1}{N} \operatorname{Tr}\left(A_{1} \ldots A_{n}\right)=\frac{1}{N} \sum_{i_{1}, \ldots, i_{n}=1}^{N} A_{1}\left(i_{1}, i_{2}\right) \ldots A_{n}\left(i_{n}, i_{1}\right)$.

Define: A test graph T in matrices A_{1}, \ldots, A_{K} :

- a finite connected oriented graph (V, E),
- a labeling $\gamma: E \rightarrow\{1, \ldots, K\}$ of edges by matrices.

For N by N matrices A_{1}, \ldots, A_{K}, the trace of test graphs

$$
\frac{1}{N} \operatorname{Tr}\left[T\left(A_{1}, \ldots, A_{K}\right)\right]=\frac{1}{N} \sum_{\phi: V \rightarrow\{1, \ldots, N\}} \prod_{e=(v, w) \in E} A_{\gamma(e)}(\phi(w), \phi(v))
$$

Injective trace of test graphs

Define: the injective version of the trace of test graphs

$$
\frac{1}{N} \operatorname{Tr}^{0}\left[T\left(\mathbf{A}_{N}\right)\right]=\frac{1}{N} \sum_{\substack{\phi: V \rightarrow\{1, \ldots, N\} \\ \text { injective }}} \prod_{e=(v, w) \in E} A_{\gamma(e)}(\phi(w), \phi(v))
$$

Then the following relation is similar to the moment-cumulant relations

$$
\frac{1}{N} \operatorname{Tr}[T]=\sum_{\pi \in \mathcal{P}(V)} \frac{1}{N} \operatorname{Tr}^{0}\left[T^{\pi}\right]
$$

where T^{π} is the quotient graph where vertices in a same block are identified.

Traffic-independence

The matrices $A_{N, 1}, \ldots, A_{N, L}$ are asymptotically traffic independent \Rightarrow

$$
\mathbb{E} \frac{1}{N} \operatorname{Tr}^{0}\left[T\left(A_{N, 1}, \ldots, A_{N, L}\right] \underset{N \rightarrow \infty}{\longrightarrow} 0\right.
$$

if the Graph of Colred Components $\operatorname{GCC}(T)$ is not a tree.

Traffic-independence \Rightarrow freeness over the diagonal

We prove that

$$
\varepsilon_{N}=\Delta\left[\left(P_{1}\left(X_{N, \ell_{1}}\right)-\Delta\left[P_{1}\left(X_{N, \ell_{1}}\right)\right]\right) \ldots\left(P_{n}\left(X_{N, \ell_{n}}\right)-\Delta\left[P_{n}\left(X_{N, \ell_{n}}\right)\right]\right)\right]
$$

tends to zero in the sense that

$$
\mathbb{E} \frac{1}{N} \operatorname{Tr}\left(\varepsilon_{N} \varepsilon_{N}^{*}\right)=\sum_{\substack{T \text { statisfying } \\ \text { some condition }}} \alpha_{T} \mathbb{E} \frac{1}{N} \operatorname{Tr}^{0}\left[T\left(X_{N, 1}, \ldots, X_{N, L}\right)\right]+o(1)
$$

where the condition is incompatible with the fact that $\mathcal{G C C}(T)$ is a tree.
Next challenging question: compute the \mathcal{R}-transform for interesting models! Find \mathbf{R}_{N} such that for any diagonal matrix $\boldsymbol{\lambda}$

$$
\operatorname{diag}\left[\left(\boldsymbol{\lambda}-X_{N}\right)^{-1}\right] \sim\left(\boldsymbol{\lambda}-\mathbf{R}_{N}\left(\operatorname{diag}\left[\left(\boldsymbol{\lambda}-X_{N}\right)^{-1}\right]\right)\right)^{-1}
$$

Thank you for your attention!

