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What is a permutation?

Answer 1: a bijection from {1, . . . , n} to {1, . . . , n}.
−→ natural point of view to study the group structure, the cycle

decomposition, . . .

Answer 2: a collection of dots in a square grid, with
exactly one dot per row or per column.

−→ natural point of view to study patterns.

General belief: these two points of view are orthogonal.

We will give a mathematical statement
supporting this belief using formal logic.
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Informal presentation of the main result

We will define two first-order logical theories:
one representing permutations-as-bijections;
the other representing permutations-as-diagrams.

Expressibility: For each theory, some properties of permutations are
expressible (i.e. there exist a first-order formula describing the property),
some are not.

Theorem (Albert, Bouvel & F. ’18)
Let P be a property expressible in both logical theories. Then P is in some
sense trivial.
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TOOB: Theory Of One Bijection (models)

Models: pair (A,R), where A is a (finite) set and R is a binary relation on
A.

Axioms: R should define a bijection A → A.

Any permutation σ : {1, . . . , n} → {1, . . . , n} is a model of the theory.

Aσ := {1, . . . , n}

x Rσ y def⇔ y = σ(x)

Conversely, any model is isomorphic to some (Aσ,Rσ).

Remark: Models corresponding to conjugate permutations are isomorphic!
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TOOB: Theory Of One Bijection (formulas)

First-order formulas: every formula that you can write with quantifiers ∃,
∀, conjunctions ∧ , disjunctions ∨ , negation ¬ and the relation R.

Examples:
σ has a fixed point:

∃x , xRx .
σ is an involution:

∀x , ∃y , xRy ∧ yRx .

Important: variables represent elements of the permutation, not sets!
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TOTO: Theory Of Two Orders (models)

Models: pair (A, <P , <V ), where A is a (finite) set and <P , <V are binary
relations on A.

Axioms: <P and <V are total orders.

Any permutation (seen as a diagram) is a
model of the theory.

Aσ := {dots in the diagram};

(x <P y) def⇔ x is on the left of y ;

(x <V y) def⇔ x is below y ;

C

A

B

D

E

A <P B <P C <P D <P E ;

B <V E <V A <V C <V D.

Conversely, any model is isomorphic to a permutation (and to exactly one).
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TOTO: Theory Of Two Orders (formulas)

First-order formulas: every formula that you can write with quantifiers ∃,
∀, conjunctions ∧ , disjunctions ∨ , negation ¬ and the relations <P and
<V .

Examples:
σ contains the pattern 213:

∃x , y , z : (x <P y <P z) ∧ (y <V x <V z).

σ contains the vincular pattern 213:

∃x , y , z : (x <P y <P z) ∧ (y <V x <V z)
∧

[
∀t,¬(x <P t <P y)

]
containment of all notions of generalized patterns,
being a simple permutation.
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Transition

So far, we have defined the logical theories and see examples of
properties that they can describe (by giving an explicit formula).

Can we give examples of properties that they cannot describe?

Immediate: “σ contains the pattern 213” is not expressible in TOOB,
since this property disguishes some conjugate permutations.

To go further, we need Ehrenfeucht-Fraïssé games, which we explain
in the context of TOTO in the next few slides.
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Ehrenfeucht-Fraïssé game EF(π, π′, ℓ)

Data: two permutations π, π′ (the board of the game), an integer ℓ ≥ 1
(number of rounds).

Two players: Duplicator and Spoiler.

Each round: Spoiler chooses an element in either π or π′. Duplicator then
chooses an element in the other permutation.

−→ denote ai and a′i the chosen elements in π and π′.

Note: ai can have been chosen either by Spoiler or Duplicator

Theorem (Ehrenfeucht-Fraïssé)
Duplicator has a winning strategy in the game EF(π, π′, ℓ) if and only if π
and π′ satisfies the same TOTO formulas with quantifier depth at most ℓ.

Notation: π ∼ℓ π
′.
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Ehrenfeucht-Fraïssé game (an example)
π π′

Note: π contains a 213 pattern (in red), but not π′.

Reminder: there is a FO-formula of quantifier-depth 4, expressing “σ
contains a 213 pattern”.

⇒ Spoiler should win the game EF(π, π′, 4).

Let us see her winning strategy.
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Ehrenfeucht-Fraïssé game (an example)
π π′

a1
a2

a3

In the first three rounds, Spoiler selects the 213 pattern in π,
independently of what does Duplicator.

Duplicator has to choose a 213 pattern in π′; since π′ has no 213, the
dots a′1 and a′2 cannot be consecutive (in position).
Spoiler chooses a point a′4 between a′1 and a′2. Duplicator should
choose a point a4 between a1 and a2, but there is none.

−→ Spoiler wins.
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Ehrenfeucht-Fraïssé game (second example)

Let π = δ2ℓ−1 and π′ = δ2ℓ are decreasing permutations of sizes 2ℓ − 1
and 2ℓ.

Duplicator has a winning strategy:
if Spoiler plays near a corner or an already chosen dot, play at the
same distance;
if Spoiler plays far from corners/other dots, do the same.

For ℓ = 3:
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A non-expressivity result

Proposition
There is no FO-formula in TOTO expressing the property “σ has a fixed
point”.

Proof: Assume there is such a formula Ψ and denote ℓ its quantifier
depth.

Since Duplicator wins the game EF(δ2ℓ−1, δ2ℓ), either both δ2ℓ−1 and δ2ℓ
satisfy Ψ, or none of them does.

But δ2ℓ−1 has a fixed point, while δ2ℓ does not.

V. Féray (UZH) Logic and permutations Bordeaux, 2019–02 12 / 25



A non-expressivity result

Proposition
There is no FO-formula in TOTO expressing the property “σ has a fixed
point”.

Proof: Assume there is such a formula Ψ and denote ℓ its quantifier
depth.

Since Duplicator wins the game EF(δ2ℓ−1, δ2ℓ), either both δ2ℓ−1 and δ2ℓ
satisfy Ψ, or none of them does.

But δ2ℓ−1 has a fixed point, while δ2ℓ does not.

V. Féray (UZH) Logic and permutations Bordeaux, 2019–02 12 / 25



A non-expressivity result

Proposition
There is no FO-formula in TOTO expressing the property “σ has a fixed
point”.

Proof: Assume there is such a formula Ψ and denote ℓ its quantifier
depth.

Since Duplicator wins the game EF(δ2ℓ−1, δ2ℓ), either both δ2ℓ−1 and δ2ℓ
satisfy Ψ, or none of them does.

But δ2ℓ−1 has a fixed point, while δ2ℓ does not.

V. Féray (UZH) Logic and permutations Bordeaux, 2019–02 12 / 25



A non-expressivity result

Proposition
There is no FO-formula in TOTO expressing the property “σ has a fixed
point”.

Proof: Assume there is such a formula Ψ and denote ℓ its quantifier
depth.

Since Duplicator wins the game EF(δ2ℓ−1, δ2ℓ), either both δ2ℓ−1 and δ2ℓ
satisfy Ψ, or none of them does.

But δ2ℓ−1 has a fixed point, while δ2ℓ does not.

V. Féray (UZH) Logic and permutations Bordeaux, 2019–02 12 / 25



Transition

Reminder of expressibility of some properties:
Having a fixed point expressible in TOOB but not in TOTO;
Containing a 231-pattern expressible in TOTO but not in TOOB.

Question
What are the properties expressible in both TOTO and TOOB?

We expect not to find many, since, intuitively, the two logics consider
permutations with orthogonal point of views. . .
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Some properties expressible in TOTO and TOOB (1/3)

Easy examples of properties expressible in both logics:

Being in some conjugacy class Cλ or in a finite union of those (or the
negation);

Being an identity permutation of any size (also called increasing
permutations).

TOOB Each element is sent to itself (∀x , xRx);
TOTO Values and positions order coincide

(∀x , y , (x <V y) ⇔ (x <P y)).
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Some properties expressible in TOTO and TOOB (2/3)

“Being a transposition” is also expressible in both logics!

In TOOB, it’s trivial:
There exist two points which are sent one to the other and all
other points are fixed.

To express it in TOTO, we observe that the diagram of a
transposition has a very particular form.

There exist two points x and y which form an inver-
sion and, for all other points, value and position order
coincide, and the following holds: z is smaller (resp.
bigger) than both x and y in position order iff it also
is in value order.
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Some properties expressible in TOTO and TOOB (3/3)

Set Dλ =
∪

k Cλ∪(1k), i.e. the set of permutations whose non-fixed points
form a permutation of type λ.

Lemma
Being in Dλ is expressible in both logics.

Easy generalization of the expressibility of “being a transposition” (which
corresponds to λ = (2).)
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Main theorem(s)

Main theorem – weak form (Albert, Bouvel & F. 18)
Let (P) be a property expressible in both TOOB and TOTO. Then

either all permutations with sufficiently large support verify (P),
or there is a bound on the size of the support of permutations
verifying (P).

Main theorem – strong form (Albert, Bouvel & F. 18)
Consider the boolean algebra

A =
⟨
Cλ,Dλ, λ partition

⟩
,

i.e. the smaller collection of sets containing all Cλ’s, all Dλ’s, and closed
by taking unions, intersections and complements.
Then being in some set A is expressible in both TOOB and TOTO if and
only if A is in A.
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Strategy of proof (1/4)
Let (P) be a property expressible in both TOOB and TOTO, and let ℓ be
the quantifier depth of its TOTO FO formula.

Lemma (changing length of long full cycles)
If (P) is satisfied by some full cycles of length n1 ≥ 2ℓ, then all full cycles
of length at least 2ℓ satisfy (P).

Proof: Since (P) is expressible in TOOB, it is invariant by conjugacy.
Thus the following full cycle satisfies (P):

•

•

•
size n1

∼ℓ •

•

•
size n2

whenever n2 ≥ 2ℓ. Thus the full-cycle on the RHS satisfies (P). Using
again invariance of (P) by conjugacy, all full cycles of all sizes n2 ≥ 2ℓ
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Strategy of proof (2/4)

Another lemma of the same flavour. Take k ≥ 2ℓ−1.

Lemma (Changing repeated short cycles into a long cycle)
(P) is satisfies by some/all permutations of type (2, . . . , 2) (k times),
iff it is satisfied by some/all permutations of type (2k + 1).

Proof:

•

•

•

•

segments of
the same size

type (2, . . . , 2).

∼ℓ

•

•

•

•

sizes of the segment
differ by 1

type (2k + 1);
(Easy to adapt to (m, . . . ,m) instead of (2, . . . , 2) for m ≥ 2.)
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Strategy of proof (3/4)

Lemma (absorbing a small cycle)
(P) is satisfied by some/all full cycles of length n ≥ 2ℓ,
iff some/all permutations of type (n − 2, 1) also satisfy (P).

Proof (for n ≡ 2 (mod 4)):

•

•

•

•

•

•

sizes of the segment
differ by 1

type (n − 2, 1).

∼ℓ

•

•

•

•

•

•

two segments of
the same size

type (n);

(Easy to adapt to (n − k − 1, k) instead of (n − 2, 2).)
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Strategy of proof (4/4)

Assume that (P) is satisfied by some permutation σ with a large support.

Then σ should either have a large cycle, or some parts repeated a large
number of times.
In the latter case, we use the second lemma to transform this in a large
cycle. So we can assume that σ has a large cycle.

Then (third lemma), we can absorb other cycles, so that (P) is satisfied by
some/all full cycles.

Go in the other direction: (P) is satisfied by all permutations with large
support.

Going from the weak to the strong form is relatively easy.
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Other results (1/2)

Stack sorting operator S defined by: S(LnR) = S(L)S(R)n.

Knuth (’68) S(σ) = id iff σ ∈ Av(231);
West (’93) characterization of σ’s s.t. S2(σ) = id;

Ulfarsson (’12) characterization of σ’s s.t. S3(σ) = id.

Theorem (Albert, Bouvel & F. ’18)
For all ℓ ≥ 1, there is a constructible TOTO formula expressing the
property Sℓ(σ) = id.
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Other results (2/2)

TOTO(C): same theory as TOTO except that we add axioms to keep only
permutations in a given class C.

For σ ∈ C = Av(321), we have:

there is a fixed point ⇔ there is a dot x with no dots at its top
left, nor at its bottom right.

→ “having a fixed point” is expressible in TOTO(Av(321)).

Theorem (Albert, Bouvel & F. ’18)
“Having a fixed point” is not expressible in TOTO(C) if and only if
C contains either all decreasing permutations or all permutations of the
form .

+ some extension (but no complete characterization) for longer cycles.
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Logic and random permutations

Context: many beautiful results on 0-1/convergence laws for random
graphs (see Marc’s talk). What about permutations?

Conjecture (Albert, Bouvel & F. ’18)
There is a convergence law for TOTO for uniform random permutations.

Namely, let σn be a uniform random permutation of size n. Then for any
TOTO FO-formula (P),

P
(
σn satisfies (P)

)
has a limit as n → ∞.

Example: P(σn has an adjacency*) → 1
e2 .

*Adjacency: two consecutive entries with consecutive values (in any order).
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Thank you for
your attention!

V. Féray (UZH) Logic and permutations Bordeaux, 2019–02 25 / 25


