Two first-order logics of permutations

Valentin Féray (joint work with Michael Albert and Mathilde Bouvel)

Institut für Mathematik, Universität Zürich

Journées de Combinatoire de Bordeaux, Février 2019

What is a permutation?

Answer 1: a bijection from $\{1, \ldots, n\}$ to $\{1, \ldots, n\}$.

 \longrightarrow natural point of view to study the group structure, the cycle decomposition, \ldots

Answer 2: a collection of dots in a square grid, with exactly one dot per row or per column.

 \longrightarrow natural point of view to study patterns.

Answer 1: a bijection from $\{1, ..., n\}$ to $\{1, ..., n\}$. \longrightarrow natural point of view to study the group structure, the cycle decomposition, ...

Answer 2: a collection of dots in a square grid, with exactly one dot per row or per column.

 \longrightarrow natural point of view to study patterns.

Answer 1: a bijection from $\{1, ..., n\}$ to $\{1, ..., n\}$. \longrightarrow natural point of view to study the group structure, the cycle decomposition, ...

Answer 2: a collection of dots in a square grid, with exactly one dot per row or per column.

 \longrightarrow natural point of view to study patterns.

General belief: these two points of view are orthogonal.

We will give a mathematical statement supporting this belief using formal logic.

Informal presentation of the main result

We will define two first-order logical theories:

- one representing *permutations-as-bijections*;
- the other representing *permutations-as-diagrams*.

Informal presentation of the main result

We will define two first-order logical theories:

- one representing *permutations-as-bijections*;
- the other representing *permutations-as-diagrams*.

Expressibility: For each theory, some properties of permutations are *expressible* (i.e. there exist a first-order formula describing the property), some are not.

Informal presentation of the main result

We will define two first-order logical theories:

- one representing *permutations-as-bijections*;
- the other representing *permutations-as-diagrams*.

Expressibility: For each theory, some properties of permutations are *expressible* (i.e. there exist a first-order formula describing the property), some are not.

Theorem (Albert, Bouvel & F. '18)

Let P be a property expressible in both logical theories. Then P is in some sense trivial.

TOOB: Theory Of One Bijection (models)

Models: pair (A, R), where A is a (finite) set and R is a binary relation on A.

Any permutation $\sigma : \{1, \dots, n\} \rightarrow \{1, \dots, n\}$ is a model of the theory. $A_{\sigma} := \{1, \dots, n\}$ $x R_{\sigma} y \stackrel{\text{def}}{\Leftrightarrow} y = \sigma(x)$

TOOB: Theory Of One Bijection (models)

Models: pair (A, R), where A is a (finite) set and R is a binary relation on A.

Axioms: R should define a bijection $A \rightarrow A$.

Any permutation $\sigma : \{1, \dots, n\} \rightarrow \{1, \dots, n\}$ is a model of the theory. $\begin{aligned} A_{\sigma} &:= \{1, \dots, n\} \\ & \times R_{\sigma} \ y \stackrel{\text{def}}{\leftrightarrow} y = \sigma(x) \end{aligned}$

Conversely, any model is isomorphic to some (A_{σ}, R_{σ}) .

TOOB: Theory Of One Bijection (models)

Models: pair (A, R), where A is a (finite) set and R is a binary relation on A.

Axioms: R should define a bijection $A \rightarrow A$.

Any permutation $\sigma : \{1, \dots, n\} \rightarrow \{1, \dots, n\}$ is a model of the theory. $A_{\sigma} := \{1, \dots, n\}$ $x R_{\sigma} y \stackrel{\text{def}}{\Leftrightarrow} y = \sigma(x)$

Conversely, any model is isomorphic to some (A_{σ}, R_{σ}) .

Remark: Models corresponding to conjugate permutations are isomorphic!

First-order formulas: every formula that you can write with quantifiers \exists , \forall , conjunctions \land , disjunctions \lor , negation \neg and the relation *R*.

Examples:

• σ has a fixed point:

 $\exists x, xRx.$

• σ is an involution:

 $\forall x, \exists y, xRy \land yRx.$

Important: variables represent elements of the permutation, not sets!

TOTO: Theory Of Two Orders (models)

Models: pair $(A, <_P, <_V)$, where A is a (finite) set and $<_P, <_V$ are binary relations on A.

Any permutation (seen as a diagram) is a model of the theory.

$$\begin{aligned} &A_{\sigma} := \{ \text{dots in the diagram} \}; \\ &(x <_{P} y) \stackrel{\text{def}}{\Leftrightarrow} x \text{ is on the left of } y; \\ &(x <_{V} y) \stackrel{\text{def}}{\Leftrightarrow} x \text{ is below } y; \end{aligned}$$

 $A <_P B <_P C <_P D <_P E;$ $B <_V E <_V A <_V C <_V D.$

TOTO: Theory Of Two Orders (models)

Models: pair $(A, <_P, <_V)$, where A is a (finite) set and $<_P, <_V$ are binary relations on A.

Axioms: $<_P$ and $<_V$ are total orders.

Any permutation (seen as a diagram) is a model of the theory.

$$\begin{aligned} &A_{\sigma} := \{ \text{dots in the diagram} \}; \\ &(x <_{P} y) \stackrel{\text{def}}{\leftrightarrow} x \text{ is on the left of } y; \\ &(x <_{V} y) \stackrel{\text{def}}{\leftrightarrow} x \text{ is below } y; \end{aligned}$$

 $A <_P B <_P C <_P D <_P E;$ $B <_V E <_V A <_V C <_V D.$

Conversely, any model is isomorphic to a permutation (and to exactly one).

TOTO: Theory Of Two Orders (formulas)

First-order formulas: every formula that you can write with quantifiers \exists , \forall , conjunctions \land , disjunctions \lor , negation \neg and the relations $<_P$ and $<_V$.

Examples:

• σ contains the pattern 213:

$$\exists x, y, z : (x <_P y <_P z) \land (y <_V x <_V z).$$

• σ contains the vincular pattern <u>21</u>3:

$$\exists x, y, z : (x <_P y <_P z) \land (y <_V x <_V z) \\ \land [\forall t, \neg (x <_P t <_P y)]$$

• containment of all notions of generalized patterns, being a simple permutation.

• So far, we have defined the logical theories and see examples of properties that they can describe (by giving an explicit formula).

- So far, we have defined the logical theories and see examples of properties that they can describe (by giving an explicit formula).
- Can we give examples of properties that they cannot describe?

Transition

- So far, we have defined the logical theories and see examples of properties that they can describe (by giving an explicit formula).
- Can we give examples of properties that they cannot describe?
- Immediate: " σ contains the pattern 213" is not expressible in TOOB, since this property disguishes some conjugate permutations.

Transition

- So far, we have defined the logical theories and see examples of properties that they can describe (by giving an explicit formula).
- Can we give examples of properties that they cannot describe?
- Immediate: " σ contains the pattern 213" is not expressible in TOOB, since this property disguishes some conjugate permutations.
- To go further, we need Ehrenfeucht-Fraïssé games, which we explain in the context of TOTO in the next few slides.

Data: two permutations π , π' (the board of the game), an integer $\ell \geq 1$ (number of rounds).

Two players: Duplicator and Spoiler.

Data: two permutations π , π' (the board of the game), an integer $\ell \geq 1$ (number of rounds).

Two players: Duplicator and Spoiler.

Each round: Spoiler chooses an element in either π or π' . Duplicator then chooses an element in the other permutation.

 \longrightarrow denote a_i and a'_i the chosen elements in π and π' .

Note: a_i can have been chosen either by Spoiler or Duplicator

Data: two permutations π , π' (the board of the game), an integer $\ell \ge 1$ (number of rounds).

Two players: Duplicator and Spoiler.

Each round: Spoiler chooses an element in either π or π' . Duplicator then chooses an element in the other permutation.

 \longrightarrow denote a_i and a'_i the chosen elements in π and π' .

Who wins? Duplicator wins if the (a_1, \ldots, a_ℓ) and (a'_1, \ldots, a'_ℓ) are in the same P and V orders.

Data: two permutations π , π' (the board of the game), an integer $\ell \geq 1$ (number of rounds).

Two players: Duplicator and Spoiler.

Each round: Spoiler chooses an element in either π or π' . Duplicator then chooses an element in the other permutation.

 \longrightarrow denote a_i and a'_i the chosen elements in π and π' .

Who wins? Duplicator wins if the (a_1, \ldots, a_ℓ) and (a'_1, \ldots, a'_ℓ) are in the same P and V orders.

Theorem (Ehrenfeucht-Fraïssé)

Duplicator has a winning strategy in the game $EF(\pi, \pi', \ell)$ if and only if π and π' satisfies the same TOTO formulas with quantifier depth at most ℓ .

Notation: $\pi \sim_{\ell} \pi'$.

 π'

Note: π contains a <u>21</u>3 pattern (in red), but not π' .

Reminder: there is a FO-formula of quantifier-depth 4, expressing " σ contains a <u>21</u>3 pattern".

 \Rightarrow Spoiler should win the game EF($\pi, \pi', 4$).

Let us see her winning strategy.

• In the first three rounds, Spoiler selects the <u>21</u>3 pattern in π , independently of what does Duplicator.

- In the first three rounds, Spoiler selects the <u>21</u>3 pattern in π , independently of what does Duplicator.
- Duplicator has to choose a 213 pattern in π' ; since π' has no 213, the dots a'_1 and a'_2 cannot be consecutive (in position).

- In the first three rounds, Spoiler selects the <u>21</u>3 pattern in π , independently of what does Duplicator.
- Duplicator has to choose a 213 pattern in π' ; since π' has no 213, the dots a'_1 and a'_2 cannot be consecutive (in position).
- Spoiler chooses a point a'_4 between a'_1 and a'_2 . Duplicator should choose a point a_4 between a_1 and a_2 , but there is none.

 \longrightarrow Spoiler wins.

Let $\pi = \delta_{2^\ell - 1}$ and $\pi' = \delta_{2^\ell}$ are decreasing permutations of sizes $2^\ell - 1$ and 2^ℓ .

- if Spoiler plays near a corner or an already chosen dot, play at the same distance;
- if Spoiler plays far from corners/other dots, do the same.

Let $\pi = \delta_{2^\ell - 1}$ and $\pi' = \delta_{2^\ell}$ are decreasing permutations of sizes $2^\ell - 1$ and 2^ℓ .

- if Spoiler plays near a corner or an already chosen dot, play at the same distance;
- if Spoiler plays far from corners/other dots, do the same.

Let $\pi = \delta_{2^\ell - 1}$ and $\pi' = \delta_{2^\ell}$ are decreasing permutations of sizes $2^\ell - 1$ and 2^ℓ .

- if Spoiler plays near a corner or an already chosen dot, play at the same distance;
- if Spoiler plays far from corners/other dots, do the same.

Let $\pi = \delta_{2^\ell - 1}$ and $\pi' = \delta_{2^\ell}$ are decreasing permutations of sizes $2^\ell - 1$ and 2^ℓ .

- if Spoiler plays near a corner or an already chosen dot, play at the same distance;
- if Spoiler plays far from corners/other dots, do the same.

Let $\pi = \delta_{2^\ell - 1}$ and $\pi' = \delta_{2^\ell}$ are decreasing permutations of sizes $2^\ell - 1$ and 2^ℓ .

- if Spoiler plays near a corner or an already chosen dot, play at the same distance;
- if Spoiler plays far from corners/other dots, do the same.

Let $\pi = \delta_{2^\ell - 1}$ and $\pi' = \delta_{2^\ell}$ are decreasing permutations of sizes $2^\ell - 1$ and 2^{ℓ} .

Duplicator has a winning strategy:

- if Spoiler plays near a corner or an already chosen dot, play at the same distance:
- if Spoiler plays far from corners/other dots, do the same.

For $\ell = 3$:

Let $\pi = \delta_{2^\ell - 1}$ and $\pi' = \delta_{2^\ell}$ are decreasing permutations of sizes $2^\ell - 1$ and 2^ℓ .

Duplicator has a winning strategy:

- if Spoiler plays near a corner or an already chosen dot, play at the same distance;
- if Spoiler plays far from corners/other dots, do the same.

For $\ell = 3$:

a

Let $\pi = \delta_{2^\ell - 1}$ and $\pi' = \delta_{2^\ell}$ are decreasing permutations of sizes $2^\ell - 1$ and 2^{ℓ} .

Duplicator has a winning strategy:

- if Spoiler plays near a corner or an already chosen dot, play at the same distance;
- if Spoiler plays far from corners/other dots, do the same.

For $\ell = 3$:

a

Let $\pi = \delta_{2^\ell - 1}$ and $\pi' = \delta_{2^\ell}$ are decreasing permutations of sizes $2^\ell - 1$ and 2^{ℓ} .

Duplicator has a winning strategy:

- if Spoiler plays near a corner or an already chosen dot, play at the same distance;
- if Spoiler plays far from corners/other dots, do the same.

For $\ell = 3$:

Proposition

There is no FO-formula in TOTO expressing the property " σ has a fixed point".

Proposition

There is no FO-formula in TOTO expressing the property " σ has a fixed point".

Proof: Assume there is such a formula Ψ and denote ℓ its quantifier depth.

Proposition

There is no FO-formula in TOTO expressing the property " σ has a fixed point".

Proof: Assume there is such a formula Ψ and denote ℓ its quantifier depth.

Since Duplicator wins the game $\mathsf{EF}(\delta_{2^{\ell}-1}, \delta_{2^{\ell}})$, either both $\delta_{2^{\ell}-1}$ and $\delta_{2^{\ell}}$ satisfy Ψ , or none of them does.

Proposition

There is no FO-formula in TOTO expressing the property " σ has a fixed point".

Proof: Assume there is such a formula Ψ and denote ℓ its quantifier depth.

Since Duplicator wins the game $\mathsf{EF}(\delta_{2^{\ell}-1}, \delta_{2^{\ell}})$, either both $\delta_{2^{\ell}-1}$ and $\delta_{2^{\ell}}$ satisfy Ψ , or none of them does.

But $\delta_{2^{\ell}-1}$ has a fixed point, while $\delta_{2^{\ell}}$ does not.

Reminder of expressibility of some properties: Having a fixed point expressible in TOOB but not in TOTO; Containing a 231-pattern expressible in TOTO but not in TOOB.

Question

What are the properties expressible in both TOTO and TOOB?

We expect not to find many, since, intuitively, the two logics consider permutations with orthogonal point of views...

Some properties expressible in TOTO and TOOB (1/3)

Easy examples of properties expressible in both logics:

Being in some conjugacy class C_λ or in a finite union of those (or the negation);

Some properties expressible in TOTO and TOOB (1/3)

Easy examples of properties expressible in both logics:

- Being in some conjugacy class C_λ or in a finite union of those (or the negation);
- Being an identity permutation of any size (also called increasing permutations).

TOOB Each element is sent to itself $(\forall x, xRx)$; TOTO Values and positions order coincide $(\forall x, y, (x <_V y) \Leftrightarrow (x <_P y))$.

Some properties expressible in TOTO and TOOB (2/3)

"Being a transposition" is also expressible in both logics!

• In TOOB, it's trivial:

There exist two points which are sent one to the other and all other points are fixed.

Some properties expressible in TOTO and TOOB (2/3)

"Being a transposition" is also expressible in both logics!

• In TOOB, it's trivial:

There exist two points which are sent one to the other and all other points are fixed.

• To express it in TOTO, we observe that the diagram of a transposition has a very particular form.

There exist two points x and y which form an inversion and, for all other points, value and position order coincide, and the following holds: z is smaller (resp. bigger) than both x and y in position order iff it also is in value order.

Some properties expressible in TOTO and TOOB (3/3)

Set $\mathcal{D}_{\lambda} = \bigcup_{k} \mathcal{C}_{\lambda \cup (1^{k})}$, i.e. the set of permutations whose non-fixed points form a permutation of type λ .

Lemma

Being in \mathcal{D}_{λ} is expressible in both logics.

Easy generalization of the expressibility of "being a transposition" (which corresponds to $\lambda = (2)$.)

Main theorem(s)

Main theorem - weak form (Albert, Bouvel & F. 18)

Let (P) be a property expressible in both TOOB and TOTO. Then

- either all permutations with sufficiently large support verify (P),
- or there is a bound on the size of the support of permutations verifying (P).

Main theorem(s)

Main theorem – weak form (Albert, Bouvel & F. 18)

Let (P) be a property expressible in both TOOB and TOTO. Then

- either all permutations with sufficiently large support verify (P),
- or there is a bound on the size of the support of permutations verifying (P).

Main theorem – strong form (Albert, Bouvel & F. 18)

Consider the boolean algebra

$$\mathfrak{A} = \langle \mathcal{C}_{\lambda}, \mathcal{D}_{\lambda}, \lambda \text{ partition} \rangle,$$

i.e. the smaller collection of sets containing all C_{λ} 's, all D_{λ} 's, and closed by taking unions, intersections and complements.

Then being in some set A is expressible in both TOOB and TOTO if and only if A is in \mathfrak{A} .

Let (*P*) be a property expressible in both TOOB and TOTO, and let ℓ be the quantifier depth of its TOTO FO formula.

Lemma (changing length of long full cycles)

If (P) is satisfied by some full cycles of length $n_1 \ge 2^{\ell}$, then all full cycles of length at least 2^{ℓ} satisfy (P).

Let (*P*) be a property expressible in both TOOB and TOTO, and let ℓ be the quantifier depth of its TOTO FO formula.

Lemma (changing length of long full cycles)

If (P) is satisfied by some full cycles of length $n_1 \ge 2^{\ell}$, then all full cycles of length at least 2^{ℓ} satisfy (P).

Proof: Since (P) is expressible in TOOB, it is invariant by conjugacy. Thus the following full cycle satisfies (P):

Let (*P*) be a property expressible in both TOOB and TOTO, and let ℓ be the quantifier depth of its TOTO FO formula.

Lemma (changing length of long full cycles)

If (P) is satisfied by some full cycles of length $n_1 \ge 2^{\ell}$, then all full cycles of length at least 2^{ℓ} satisfy (P).

Proof: Since (P) is expressible in TOOB, it is invariant by conjugacy. Thus the following full cycle satisfies (P):

whenever $n_2 \geq 2^{\ell}$.

Let (*P*) be a property expressible in both TOOB and TOTO, and let ℓ be the quantifier depth of its TOTO FO formula.

Lemma (changing length of long full cycles)

If (P) is satisfied by some full cycles of length $n_1 \ge 2^{\ell}$, then all full cycles of length at least 2^{ℓ} satisfy (P).

Proof: Since (P) is expressible in TOOB, it is invariant by conjugacy. Thus the following full cycle satisfies (P):

whenever $n_2 \ge 2^{\ell}$. Thus the full-cycle on the RHS satisfies (*P*). Using again invariance of (*P*) by conjugacy, all full cycles of all sizes $n_2 \ge 2^{\ell}$ satisfy (*P*).

V. Féray (UZH)

Another lemma of the same flavour. Take $k \ge 2^{\ell-1}$.

Lemma (Changing repeated short cycles into a long cycle)

(P) is satisfies by some/all permutations of type (2, ..., 2) (k times), iff it is satisfied by some/all permutations of type (2k + 1).

Another lemma of the same flavour. Take $k > 2^{\ell-1}$.

Lemma (Changing repeated short cycles into a long cycle)

(P) is satisfies by some/all permutations of type $(2, \ldots, 2)$ (k times), iff it is satisfied by some/all permutations of type (2k + 1).

V. Féray (UZH)

Lemma (absorbing a small cycle)

(P) is satisfied by some/all full cycles of length $n \ge 2^{\ell}$, iff some/all permutations of type (n - 2, 1) also satisfy (P).

Proof (for $n \equiv 2 \pmod{4}$):

V. Féray (UZH)

Assume that (P) is satisfied by some permutation σ with a large support.

Assume that (P) is satisfied by some permutation σ with a large support.

Then σ should either have a large cycle, or some parts repeated a large number of times.

In the latter case, we use the second lemma to transform this in a large cycle. So we can assume that σ has a large cycle.

Assume that (P) is satisfied by some permutation σ with a large support.

Then σ should either have a large cycle, or some parts repeated a large number of times.

In the latter case, we use the second lemma to transform this in a large cycle. So we can assume that σ has a large cycle.

Then (third lemma), we can absorb other cycles, so that (P) is satisfied by *some/all* full cycles.

Assume that (P) is satisfied by some permutation σ with a large support.

Then σ should either have a large cycle, or some parts repeated a large number of times.

In the latter case, we use the second lemma to transform this in a large cycle. So we can assume that σ has a large cycle.

Then (third lemma), we can absorb other cycles, so that (P) is satisfied by *some/all* full cycles.

Go in the other direction: (P) is satisfied by all permutations with large support.

Assume that (P) is satisfied by some permutation σ with a large support.

Then σ should either have a large cycle, or some parts repeated a large number of times.

In the latter case, we use the second lemma to transform this in a large cycle. So we can assume that σ has a large cycle.

Then (third lemma), we can absorb other cycles, so that (P) is satisfied by *some/all* full cycles.

Go in the other direction: (P) is satisfied by all permutations with large support.

Going from the weak to the strong form is relatively easy.

Stack sorting operator S defined by: S(LnR) = S(L)S(R)n.

Knuth ('68) $S(\sigma) = \text{id iff } \sigma \in Av(231);$ West ('93) characterization of σ 's s.t. $S^2(\sigma) = \text{id};$ Ulfarsson ('12) characterization of σ 's s.t. $S^3(\sigma) = \text{id}.$

Stack sorting operator S defined by: S(LnR) = S(L)S(R)n.

Knuth ('68) $S(\sigma) = \text{id iff } \sigma \in Av(231);$ West ('93) characterization of σ 's s.t. $S^2(\sigma) = \text{id};$ Ulfarsson ('12) characterization of σ 's s.t. $S^3(\sigma) = \text{id}.$

Theorem (Albert, Bouvel & F. '18)

For all $\ell \geq 1$, there is a constructible TOTO formula expressing the property $S^{\ell}(\sigma) = id$.

TOTO(C): same theory as TOTO except that we add axioms to keep only permutations in a given class C.

TOTO(C): same theory as TOTO except that we add axioms to keep only permutations in a given class C.

For $\sigma \in \mathcal{C} = Av(321)$, we have:

there is a fixed point \Leftrightarrow

there is a dot x with no dots at its top left, nor at its bottom right.

TOTO(C): same theory as TOTO except that we add axioms to keep only permutations in a given class C.

For $\sigma \in \mathcal{C} = Av(321)$, we have:

there is a fixed point \Leftrightarrow

there is a dot x with no dots at its top left, nor at its bottom right.

 \rightarrow "having a fixed point" is expressible in TOTO(Av(321)).

TOTO(C): same theory as TOTO except that we add axioms to keep only permutations in a given class C.

For $\sigma \in \mathcal{C} = Av(321)$, we have:

there is a fixed point \Leftrightarrow there is a dot x with no dots at its top left, nor at its bottom right.

 \rightarrow "having a fixed point" is expressible in TOTO(Av(321)).

Theorem (Albert, Bouvel & F. '18)

"Having a fixed point" is not expressible in TOTO(C) if and only if C contains either all decreasing permutations or all permutations of the form \square .

+ some extension (but no complete characterization) for longer cycles.

Logic and random permutations

Context: many beautiful results on 0-1/convergence laws for random graphs (see Marc's talk). What about permutations?

Logic and random permutations

Context: many beautiful results on 0-1/convergence laws for random graphs (see Marc's talk). What about permutations?

Conjecture (Albert, Bouvel & F. '18)

There is a convergence law for TOTO for uniform random permutations.

Namely, let σ_n be a uniform random permutation of size n. Then for any TOTO FO-formula (P),

 $\mathbb{P}(\sigma_n \text{ satisfies } (P))$

has a limit as $n \to \infty$.

Example: $\mathbb{P}(\sigma_n \text{ has an adjacency}^*) \rightarrow \frac{1}{e^2}$.

*Adjacency: two consecutive entries with consecutive values (in any order).

Thank you for your attention!