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What is a permutation?

Answer 1: a bijection from {1,...,n} to {1,...,n}.
—> natural point of view to study the group structure, the cycle
decomposition, ...

Answer 2: a collection of dots in a square grid, with °
exactly one dot per row or per column. °
— natural point of view to study patterns. 0
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General belief: these two points of view are orthogonal.
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What is a permutation?

Answer 1: a bijection from {1,...,n} to {1,...,n}.
—> natural point of view to study the group structure, the cycle
decomposition, ...

Answer 2: a collection of dots in a square grid, with °
exactly one dot per row or per column. °
— natural point of view to study patterns. 0

General belief: these two points of view are orthogonal.

We will give a mathematical statement
supporting this belief using formal logic.
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Informal presentation of the main result

We will define two first-order logical theories:
@ one representing permutations-as-bijections;

@ the other representing permutations-as-diagrams.
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Informal presentation of the main result

We will define two first-order logical theories:
@ one representing permutations-as-bijections;

@ the other representing permutations-as-diagrams.

Expressibility: For each theory, some properties of permutations are

expressible (i.e. there exist a first-order formula describing the property),
some are not.
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Informal presentation of the main result

We will define two first-order logical theories:
@ one representing permutations-as-bijections;

@ the other representing permutations-as-diagrams.

Expressibility: For each theory, some properties of permutations are
expressible (i.e. there exist a first-order formula describing the property),
some are not.

Theorem (Albert, Bouvel & F. '18)

Let P be a property expressible in both logical theories. Then P is in some
sense trivial.
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TOOB: Theory Of One Bijection (models)

Models: pair (A, R), where A is a (finite) set and R is a binary relation on
A.

Any permutation o : {1,...,n} — {1,...,n} is a model of the theory.
A, =A{1,...,n}

xRy &y =0(x)
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TOOB: Theory Of One Bijection (models)

Models: pair (A, R), where A is a (finite) set and R is a binary relation on
A.

Axioms: R should define a bijection A — A.

Any permutation o : {1,...,n} — {1,...,n} is a model of the theory.
A, =A{1,...,n}
xRy &y =0(x)

Conversely, any model is isomorphic to some (A, R5).
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TOOB: Theory Of One Bijection (models)

Models: pair (A, R), where A is a (finite) set and R is a binary relation on
A.

Axioms: R should define a bijection A — A.

Any permutation o : {1,...,n} — {1,...,n} is a model of the theory.
A, =A{1,...,n}
xRy &y =0(x)

Conversely, any model is isomorphic to some (A, R5).

Remark: Models corresponding to conjugate permutations are isomorphic!
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TOOB: Theory Of One Bijection (formulas)

First-order formulas: every formula that you can write with quantifiers 3,
V, conjunctions A, disjunctions V, negation — and the relation R.

Examples:

@ o has a fixed point:
dx, xRx.

@ o is an involution:
Vx, dy, xRy A yRx.

Important: variables represent elements of the permutation, not sets!
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TOTO: Theory Of Two Orders (models)

Models: pair (A, <p, <y ), where A is a (finite) set and <p, <y are binary
relations on A.

Any permutation (seen as a diagram) is a ol

model of the theory. °
PYN
Ay := {dots in the diagram}; e
ol

(x <p y) & x is on the left of y;
A<pB<p C<pD<pE;

def .
(x <v y) & x is below y; B<yE<yA<yC<yD.
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TOTO: Theory Of Two Orders (models)

Models: pair (A, <p, <y ), where A is a (finite) set and <p, <y are binary
relations on A.

Axioms: <p and <y are total orders.

Any permutation (seen as a diagram) is a ol

model of the theory. .
.1&
Ay := {dots in the diagram}; e
ol

(x <p y) & x is on the left of y;
A<pB<p C<pD<pE;

def .
(x <v y) & x is below y; B<yE<yA<yC<yD.

Conversely, any model is isomorphic to a permutation (and to exactly one).
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TOTO: Theory Of Two Orders (formulas)

First-order formulas: every formula that you can write with quantifiers 3,
¥, conjunctions A, disjunctions V, negation — and the relations <p and
<y.

Examples:

@ o contains the pattern 213:
Ix,y,z: (x<py<pz) A (y <vx<y z).
@ o contains the vincular pattern 213:
Iy, z:(x<py<pz) A (y<vx<vyz)
A [Vt =(x <p t <py)]

@ containment of all notions of generalized patterns,
being a simple permutation.
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Transition

@ So far, we have defined the logical theories and see examples of
properties that they can describe (by giving an explicit formula).
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Transition

@ So far, we have defined the logical theories and see examples of
properties that they can describe (by giving an explicit formula).

@ Can we give examples of properties that they cannot describe?

@ Immediate: "o contains the pattern 213" is not expressible in TOOB,
since this property disguishes some conjugate permutations.
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Transition

@ So far, we have defined the logical theories and see examples of
properties that they can describe (by giving an explicit formula).

@ Can we give examples of properties that they cannot describe?

@ Immediate: "o contains the pattern 213" is not expressible in TOOB,
since this property disguishes some conjugate permutations.

@ To go further, we need Ehrenfeucht-Fraissé games, which we explain
in the context of TOTO in the next few slides.
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Ehrenfeucht-Fraissé game EF (7, 7', )
Data: two permutations m, 7’ (the board of the game), an integer ¢ > 1
(number of rounds).

Two players: Duplicator and Spoiler.
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Ehrenfeucht-Fraissé game EF (7, 7', )

Data: two permutations m, 7’ (the board of the game), an integer ¢ > 1
(number of rounds).

Two players: Duplicator and Spoiler.

Each round: Spoiler chooses an element in either 7 or 7/. Duplicator then
chooses an element in the other permutation.
— denote a; and a} the chosen elements in 7 and 7’.

Note: a; can have been chosen either by Spoiler or Duplicator
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Ehrenfeucht-Fraissé game EF (7, 7', )

Data: two permutations m, 7’ (the board of the game), an integer ¢ > 1
(number of rounds).

Two players: Duplicator and Spoiler.

Each round: Spoiler chooses an element in either 7 or 7/. Duplicator then
chooses an element in the other permutation.
— denote a; and a} the chosen elements in 7 and 7’.

Who wins? Duplicator wins if the (a1,...,a) and (af,...,a;) are in the
same P and V orders.
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Ehrenfeucht-Fraissé game EF (7, 7', )

Data: two permutations m, 7’ (the board of the game), an integer ¢ > 1
(number of rounds).

Two players: Duplicator and Spoiler.

Each round: Spoiler chooses an element in either 7 or 7/. Duplicator then
chooses an element in the other permutation.
— denote a; and a} the chosen elements in 7 and 7’.

Who wins? Duplicator wins if the (a1,...,a) and (af,...,a;) are in the
same P and V orders.

Theorem (Ehrenfeucht-Fraissé)

Duplicator has a winning strategy in the game EF(w, 7', () if and only if 7
and 7' satisfies the same TOTO formulas with quantifier depth at most /.

Notation: 7 ~p 7’.
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Ehrenfeucht-Fraissé game (an example)

T i

Note: 7 contains a 213 pattern (in red), but not 7.

Reminder: there is a FO-formula of quantifier-depth 4, expressing “o
contains a 213 pattern”.

= Spoiler should win the game EF (7, 7, 4).

Let us see her winning strategy.
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Ehrenfeucht-Fraissé game (an example)

/

7T e
[ ] [ ]
[ ) [ )
[ ] [ ]

Gl ) [ )

@ [ )
@ [ )

[ ] [ )

[ ) [ )

@ In the first three rounds, Spoiler selects the 213 pattern in ,
independently of what does Duplicator.
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Ehrenfeucht-Fraissé game (an example)

/

T n
0 0
® ®
° °
20 °
“ye ‘o
@ [ )
D) )@
® @

@ In the first three rounds, Spoiler selects the 213 pattern in ,
independently of what does Duplicator.

@ Duplicator has to choose a 213 pattern in 7’; since 7’ has no 213, the
dots a] and &) cannot be consecutive (in position).
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Ehrenfeucht-Fraissé game (an example)

/

™ s
[ ] [ ]
[ ) [
[ J [ J
ai@ )@
Q@ )
@ [ )
D) )@
® al@

@ In the first three rounds, Spoiler selects the 213 pattern in ,
independently of what does Duplicator.

@ Duplicator has to choose a 213 pattern in 7’; since 7’ has no 213, the
dots a] and &) cannot be consecutive (in position).

@ Spoiler chooses a point a, between a] and a}. Duplicator should
choose a point a; between a; and ap, but there is none.

— Spoiler wins.
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Ehrenfeucht-Fraissé game (second example)

Let 7 = d,e_; and 7’ = &, are decreasing permutations of sizes 2¢ — 1
and 2¢.

Duplicator has a winning strategy:

@ if Spoiler plays near a corner or an already chosen dot, play at the
same distance;

e if Spoiler plays far from corners/other dots, do the same.

For ¢ = 3:
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Ehrenfeucht-Fraissé game (second example)

Let 7 = d,e_; and 7’ = &, are decreasing permutations of sizes 2¢ — 1
and 2¢.

Duplicator has a winning strategy:

@ if Spoiler plays near a corner or an already chosen dot, play at the
same distance;

e if Spoiler plays far from corners/other dots, do the same.

For ¢ = 3:
°
° YEA
® d1 )
° °
° °
° °
[ J [ J
°
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Ehrenfeucht-Fraissé game (second example)

Let 7 = d,e_; and 7’ = &, are decreasing permutations of sizes 2¢ — 1
and 2¢.

Duplicator has a winning strategy:

@ if Spoiler plays near a corner or an already chosen dot, play at the
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Ehrenfeucht-Fraissé game (second example)

Let 7 = d,e_; and 7’ = &, are decreasing permutations of sizes 2¢ — 1
and 2¢.

Duplicator has a winning strategy:

@ if Spoiler plays near a corner or an already chosen dot, play at the
same distance;

e if Spoiler plays far from corners/other dots, do the same.

For ¢ = 3:
°
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Ehrenfeucht-Fraissé game (second example)

Let 7 = d,e_; and 7’ = &, are decreasing permutations of sizes 2¢ — 1
and 2¢.

Duplicator has a winning strategy:

@ if Spoiler plays near a corner or an already chosen dot, play at the
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Ehrenfeucht-Fraissé game (second example)

Let 7 = d,e_; and 7’ = &, are decreasing permutations of sizes 2¢ — 1
and 2¢.

Duplicator has a winning strategy:

@ if Spoiler plays near a corner or an already chosen dot, play at the
same distance;

o if Spoiler plays far from corners/other dots, do the same.

For ¢ = 3:

/
PYEL e %
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A non-expressivity result

Proposition

There is no FO-formula in TOTO expressing the property “o has a fixed
point”.
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A non-expressivity result

Proposition
There is no FO-formula in TOTO expressing the property “o has a fixed
point”.

Proof: Assume there is such a formula WV and denote ¢ its quantifier
depth.
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A non-expressivity result

Proposition
There is no FO-formula in TOTO expressing the property “o has a fixed
point”.

Proof: Assume there is such a formula WV and denote ¢ its quantifier
depth.

Since Duplicator wins the game EF(d5¢_1, d5¢), either both d5¢_; and d,e
satisfy W, or none of them does.

V. Féray (UZH) Logic and permutations Bordeaux, 2019-02 12/25



A non-expressivity result

Proposition
There is no FO-formula in TOTO expressing the property “o has a fixed
point”.

Proof: Assume there is such a formula WV and denote ¢ its quantifier
depth.

Since Duplicator wins the game EF(d5¢_1, d5¢), either both d5¢_; and d,e
satisfy W, or none of them does.

But d,._; has a fixed point, while d5¢ does not. O
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Transition

Reminder of expressibility of some properties:
Having a fixed point expressible in TOOB but not in TOTO;
Containing a 231-pattern expressible in TOTO but not in TOOB.

Question
What are the properties expressible in both TOTO and TOOB? J

We expect not to find many, since, intuitively, the two logics consider
permutations with orthogonal point of views. ..
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Some properties expressible in TOTO and TOOB (1/3)

Easy examples of properties expressible in both logics:

@ Being in some conjugacy class Cy or in a finite union of those (or the
negation);
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Some properties expressible in TOTO and TOOB (1/3)

Easy examples of properties expressible in both logics:
@ Being in some conjugacy class Cy or in a finite union of those (or the

negation);

@ Being an identity permutation of any size (also called increasing
permutations).

TOOB Each element is sent to itself (Vx, xRx);

TOTO Values and positions order coincide
(Vx,y, (x <v y) & (x <py)).
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Some properties expressible in TOTO and TOOB (2/3)

“Being a transposition” is also expressible in both logics!

e In TOOB, it's trivial:
There exist two points which are sent one to the other and all
other points are fixed.
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|
Some properties expressible in TOTO and TOOB (2/3)

“Being a transposition” is also expressible in both logics!

e In TOOB, it's trivial:
There exist two points which are sent one to the other and all

other points are fixed.

@ To express it in TOTO, we observe that the diagram of a
transposition has a very particular form.

/

/|

/

V. Féray (UZH)

There exist two points x and y which form an inver-
sion and, for all other points, value and position order
coincide, and the following holds: z is smaller (resp.
bigger) than both x and y in position order iff it also
is in value order.
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Some properties expressible in TOTO and TOOB (3/3)

Set Dy = Uy Cruqaxy, i-e. the set of permutations whose non-fixed points
form a permutation of type \.

Lemma

Being in D), is expressible in both logics. J

Easy generalization of the expressibility of “being a transposition” (which
corresponds to A = (2).)
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Main theorem(s)

Main theorem — weak form (Albert, Bouvel & F. 18)
Let (P) be a property expressible in both TOOB and TOTO. Then
e either all permutations with sufficiently large support verify (P),

@ or there is a bound on the size of the support of permutations
verifying (P).
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Main theorem(s)

Main theorem — weak form (Albert, Bouvel & F. 18)
Let (P) be a property expressible in both TOOB and TOTO. Then
e either all permutations with sufficiently large support verify (P),

@ or there is a bound on the size of the support of permutations
verifying (P).

Main theorem — strong form (Albert, Bouvel & F. 18)

Consider the boolean algebra
2 = (Cy, D, A partition),

i.e. the smaller collection of sets containing all Cy's, all D,'s, and closed
by taking unions, intersections and complements.

Then being in some set A is expressible in both TOOB and TOTO if and
only if A is in 2.

v
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Strategy of proof (1/4)

Let (P) be a property expressible in both TOOB and TOTO, and let ¢ be
the quantifier depth of its TOTO FO formula.

Lemma (changing length of long full cycles)

If (P) is satisfied by some full cycles of length ny > 2¢, then all full cycles
of length at least 2° satisfy (P).
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Strategy of proof (1/4)

Let (P) be a property expressible in both TOOB and TOTO, and let ¢ be
the quantifier depth of its TOTO FO formula.

Lemma (changing length of long full cycles)

If (P) is satisfied by some full cycles of length ny > 2¢, then all full cycles
of length at least 2° satisfy (P).

Proof: Since (P) is expressible in TOOB, it is invariant by conjugacy.
Thus the following full cycle satisfies (P):

size np
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Strategy of proof (1/4)

Let (P) be a property expressible in both TOOB and TOTO, and let ¢ be
the quantifier depth of its TOTO FO formula.

Lemma (changing length of long full cycles)

If (P) is satisfied by some full cycles of length ny > 2¢, then all full cycles
of length at least 2° satisfy (P).

Proof: Since (P) is expressible in TOOB, it is invariant by conjugacy.
Thus the following full cycle satisfies (P):

size np size ny

whenever np, > 2¢.
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Strategy of proof (1/4)

Let (P) be a property expressible in both TOOB and TOTO, and let ¢ be
the quantifier depth of its TOTO FO formula.

Lemma (changing length of long full cycles)

If (P) is satisfied by some full cycles of length ny > 2¢, then all full cycles
of length at least 2° satisfy (P).

Proof: Since (P) is expressible in TOOB, it is invariant by conjugacy.
Thus the following full cycle satisfies (P):

size np size ny

whenever ny > 2¢. Thus the full-cycle on the RHS satisfies (P). Using
again invariance of (P) by conjugacy, all full cycles of all sizes ny > 2¢
satisfy (P).
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Strategy of proof (2/4)

Another lemma of the same flavour. Take k > 2¢-1,

Lemma (Changing repeated short cycles into a long cycle)

(P) is satisfies by some/all permutations of type (2,...,2) (k times),
iff it is satisfied by some/all permutations of type (2k + 1).
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Strategy of proof (2/4)

Another lemma of the same flavour. Take k > 2¢-1,

Lemma (Changing repeated short cycles into a long cycle)

(P) is satisfies by some/all permutations of type (2,...,2) (k times),
iff it is satisfied by some/all permutations of type (2k + 1).

Proof: . .
l:,,,,i ,,,,, o l:,,,,i ,,,,, o
| _ ~y |
. .
segments of sizes of the segment
the same size differ by 1
type (2,...,2). type (2k + 1);

(Easy to adapt to (m, ..., m) instead of (2,...,2) for m > 2.)
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Strategy of proof (3/4)

Lemma (absorbing a small cycle)

(P) is satisfied by some/all full cycles of length n > 2¢,
iff some/all permutations of type (n — 2,1) also satisfy (P).

Proof (for n =2 (mod 4)):

!',,,,?,,,,i(
~y L
K
sizes of the segment two segments of
differ by 1 the same size
type (n—2,1). type (n);

(Easy to adapt to (n — k — 1, k) instead of (n —2,2).)
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Strategy of proof (4/4)

Assume that (P) is satisfied by some permutation ¢ with a large support.

V. Féray (UZH) Logic and permutations Bordeaux, 2019-02 21/25



Strategy of proof (4/4)

Assume that (P) is satisfied by some permutation ¢ with a large support.

Then o should either have a large cycle, or some parts repeated a large
number of times.

In the latter case, we use the second lemma to transform this in a large
cycle. So we can assume that ¢ has a large cycle.
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Strategy of proof (4/4)

Assume that (P) is satisfied by some permutation ¢ with a large support.

Then o should either have a large cycle, or some parts repeated a large
number of times.

In the latter case, we use the second lemma to transform this in a large
cycle. So we can assume that ¢ has a large cycle.

Then (third lemma), we can absorb other cycles, so that (P) is satisfied by
some/all full cycles.
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Strategy of proof (4/4)

Assume that (P) is satisfied by some permutation ¢ with a large support.

Then o should either have a large cycle, or some parts repeated a large
number of times.

In the latter case, we use the second lemma to transform this in a large
cycle. So we can assume that ¢ has a large cycle.

Then (third lemma), we can absorb other cycles, so that (P) is satisfied by
some/all full cycles.

Go in the other direction: (P) is satisfied by all permutations with large
support. L]
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Strategy of proof (4/4)

Assume that (P) is satisfied by some permutation ¢ with a large support.

Then o should either have a large cycle, or some parts repeated a large
number of times.

In the latter case, we use the second lemma to transform this in a large
cycle. So we can assume that ¢ has a large cycle.

Then (third lemma), we can absorb other cycles, so that (P) is satisfied by
some/all full cycles.

Go in the other direction: (P) is satisfied by all permutations with large
support. L]

Going from the weak to the strong form is relatively easy.
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Other results (1/2)

Stack sorting operator S defined by: S(LnR) = S(L)S(R)n.
Knuth ('68) S(o) = id iff o € Av(231);

West ('93) characterization of o's s.t. $2(o) = id;
Ulfarsson ('12) characterization of ¢'s s.t. S3(0) = id.
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Other results (1/2)

Stack sorting operator S defined by: S(LnR) = S(L)S(R)n.

Knuth ('68) S(o) = id iff o € Av(231);
West ('93) characterization of o's s.t. $2(o) = id;
Ulfarsson ('12) characterization of ¢'s s.t. S3(0) = id.

Theorem (Albert, Bouvel & F. '18)

For all £ > 1, there is a constructible TOTO formula expressing the
property S¢(o) = id.
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Other results (2/2)

TOTO(C): same theory as TOTO except that we add axioms to keep only
permutations in a given class C.
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Other results (2/2)

TOTO(C): same theory as TOTO except that we add axioms to keep only
permutations in a given class C.

For o € C = Av(321), we have:

there is a dot x with no dots at its top

there is a fixed point < . )
left, nor at its bottom right.
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TOTO(C): same theory as TOTO except that we add axioms to keep only
permutations in a given class C.

For o € C = Av(321), we have:

. . . there is a dot x with no dots at its top
there is a fixed point < . )
left, nor at its bottom right.

— “having a fixed point” is expressible in TOTO(Av(321)).
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Other results (2/2)

TOTO(C): same theory as TOTO except that we add axioms to keep only
permutations in a given class C.

For o € C = Av(321), we have:

. . . there is a dot x with no dots at its top
there is a fixed point < . )
left, nor at its bottom right.

— “having a fixed point” is expressible in TOTO(Av(321)).

Theorem (Albert, Bouvel & F. '18)

“Having a fixed point” is not expressible in TOTO(C) if and only if
C contains either all decreasing permutations or all permutations of the

form .

+ some extension (but no complete characterization) for longer cycles.
V. Féray (UZH)
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Logic and random permutations

Context: many beautiful results on 0-1/convergence laws for random
graphs (see Marc's talk). What about permutations?
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Logic and random permutations

Context: many beautiful results on 0-1/convergence laws for random
graphs (see Marc's talk). What about permutations?

Conjecture (Albert, Bouvel & F. '18)
There is a convergence law for TOTO for uniform random permutations.

Namely, let o, be a uniform random permutation of size n. Then for any
TOTO FO-formula (P),

P (o, satisfies (P))

has a limit as n — oo.

Example: P(o, has an adjacency*) — ?12

*Adjacency: two consecutive entries with consecutive values (in any order).
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Thank you for
your attention!
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