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Three-distance theorem
Let α be given and let us place the points 0, α, 2α, · · · , Nα on the
unit circle

Theorem The points 0, α, 2α, · · · , Nα partition the unit circle into
intervals having at most three lengths, one being the sum of the
other two
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Three-distance theorem

Let α be given and let us place the points 0, α, 2α, · · · , Nα on the
unit circle

It is also called the Steinhaus theorem, the three length, the three
gap, or else, the three step theorem

It was initially conjectured by Steinhaus, first proved by
V.T. Sós’58, Surányi’58, Slater’64, Świerczkowski’59, Halton’65

There exist various types of proofs: arithmetical, combinatorial,
dynamical, geometry of the space of 2d lattices, etc.

The lengths correspond to factors of a given length for Sturmian
sequences



Three and two-distance cases

We assume α irrational
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Two-distance case and Farey points

N- Farey point 0 ≤ p/q ≤ 1, gcd(p, q) = 1, 1 ≤ q ≤ N

Let p1/q1 and p2/q2 be two successive N-Farey points s.t.

p1/q1 < α < p2/q2

Case N = q1 + q2 There are q2 intervals of length q1α− p1 and q1
intervals of length p2 − q2α

Remark The closest points to 0 are q1α− p1 and p2 − q2α
One checks that

q2||q1α||+ q1||q2α|| = q2(q1α− p1) + q1(p2 − q2α) = 1

How to describe the succession of lengths?

Let us consider the map that sends a point kα to its neighbor
point when placing 0, α, · · · (N − 1)α
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A dynamical description for the neighbor map
We place the points 0, α, · · · , (N − 1)α
We consider the map that sends a point kα to its neighbor
The neighbor map can be described as a permutation over
{0, · · · ,N − 1}

0 1 2 3 4 5 6 7 8 9 10 11 12
• • • • • • • • • • • • •

We describe the permutation as the action of an exchange of
two intervals.

q1 = 8, q2 = 5, N = 8 + 5 = 13, 3/8 < α < 2/5

0 1 2 3 4 5 6 7 8 9 10 11 12
• • • • • • • • • • • • •

0 1 2 3 45 6 7 8 9 10 11 12
• • • • • • • • • • • • •

+8 −5



Neighbor map and two-interval exchange
We express the permutation of the set {0, 1, · · · ,N} given by the
neighbor map as an exchange of two intervals obtained by
translating [0, q2) by +q1, and [q1, q1 + q2) by −q2.
This is a permutation since gcd(q1, q2) = 1.
We take the orbit of 0 under the action of this exchange of two
intervals.

q1 = 8, q2 = 5, N = 8 + 5 = 13, 3/8 < α < 2/5

0 1 2 3 4 5 6 7 8 9 101112
• • • • • • • • • • • • •

0 1 2 3 45 6 7 8 9 101112
• • • • • • • • • • • • •

+8 −5
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Two-distance case and Farey points

N- Farey point 0 ≤ p/q ≤ 1, gcd(p, q) = 1, 1 ≤ q ≤ N

p1/q1 < α < p2/q2

Case N = q1 + q − 2 There are q2 intervals of length q1α− p1 and
q1 intervals of length p2 − q2α.

Proof

q2||q1α||+ q1||q2α|| = q2(q1α− p1) + q1(p2 − q2α) = 1.

The closest points to 0 are q1α− p1 and p2 − q2α.

One gets a permutation of the set {0, 1, · · · ,N} by
translating [0, q2) by +q1, and [q1, q2) by −q2.

; The neighbor map that sends a point kα to its neighbor point
when placing 0, α, · · · (N − 1)α. ,



Three-distance case

p1/q1 < α < p2/q2

One has

N − q1 intervals of length ||q1α||
N − q2 intervals of length ||q2α||
q1 + q2 − N intervals of length ||q1α||+ ||q2α||

0 1 2 3 4 5 6 7 8 9
• • • • • • • • • •

0 12 3 45 6 7 8 9
• • • • • • • • • •

N = 10, 3/8 < α < 2/5
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The coding over {A,B,C} is obtained as the orbit of 0 under an
cexchange of three intervals

0 7→ 8 7→ 3 7→ 6 7→ 1 7→ 4 7→ 7 7→ 2 7→ 5 7→ 0
A C B C B B C B C
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Toward interval-exchanges [D. Taha]



Three-distance and three-gap theorems

Three-length theorem [Sós’58] The points 0, α, 2α, · · · , Nα
partition the unit circle into intervals having at most three lengths,
one being the sum of the other two.

The sequence of lengths is a coding of a three-interval exchange on
the set {0, · · · ,N}.

Three-gap theorem [Slater] Let I be an interval of R/Z. The gaps
between the successive integers j such that {αj} ∈ I take at most
three values, one being the sum of the other two.

The sequence of gaps is a coding of a three-interval exchange on I .
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Higher-dimensional versions

Linear forms in d variables on the one-dimensional torus T

Translations on the d-dimensional torus Td



Points mα + nβ on T



We consider the two-dimensional version of the three distance
theorem obtained by placing on the unit circle the points

mα + nβ for m, n in a finite set SN

SN can be a square, a rectangle, or a more general shape

CardSN →∞ with N

[Bleher et al., Erdös, Liang, Chung and Graham, Chevallier, Geelen
and Simpson, Haynes and Marklof, etc.]

nα mod 1⇔ Sturmian words⇔ Discrete lines ; Quasicrystals, C&P

nα+mβ mod 1⇔ 2D Sturmian words⇔ Discrete planes ; QC,C&P
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Square shapes

We place the points mα + nβ, for 0 ≤ n,m ≤ N on the unit circle.
We consider lengths between consecutive points.

Question Are there finitely many lengths?

Theorem [Holzman] There are finitely many lengths if 1, α, β are
Q-linearly dependent.



Square shapes

We place the points mα + nβ, for 0 ≤ n,m ≤ N on the unit circle.
We consider lengths between consecutive points.
We assume 1, α, β linearly independent.

Question Are there finitely many lengths?

Theorem [Boshernitzan and Dyson] Badly approximable vectors
(α, β) produce a finite number of distances.

||m, n||2|||mα + nβ||| ≥ C for all (m, n) 6= 0

Theorem [Haynes-Marklof’17] The number of lengths is generically
unbounded.

Proof An approach via homogeneous dynamics based on the
ergodic properties of the diagonal action on the space of lattices



Effective realizations in the square case
Consider the points nα + mβ ∈ T, for 0 ≤ n,m < N, and the
cardinality of distances ∆N(α, β) between consecutive points.

[Berthé-Kim’18] We provide effective constructions for the
following existence results.

There exist pairs (α, β), with 1, α, β rationally independent
and (α, β) not badly approximable producing at most

7 lengths.

There exist pairs (α, β), with 1, α, β rationally independent,
such that

lim sup
N→∞

#∆N(α, β) =∞.

Proof We use regular continued fraction expansions for α and β
with intertwined sequences of partial quotients. We combine
several ‘rectangular’ levels of points of the form nα + mβ, for
0 ≤ n < N and 0 ≤ m < M, where N or M is a denominator of a
principal convergent of α or β.
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A dynamical approach: the neighbor map as an exchange
of pieces

Notation |n|q ≡ n (mod q), and 0 ≤ |n|q < q.

Let

Eqi ,q
′
j
(α, β) = {nα + mβ ∈ T : 0 ≤ n < qi , 0 ≤ m < q′j},

with
q′j = b′qi + 1 b′ > 0.

A permutation acting on Eqi ,q
′
j
(α, β):

φqi ,q′j : nα+ mβ 7→
∣∣n − (−1)iqi−1

∣∣
qi
α+

∣∣m + (−1)jb′q′j−1
∣∣
q′j
β.

We assume
‖q′jβ‖ < ‖qi−1α‖ − b′‖q′j−1β‖.

Lemma The neighbor point of nα + mβ is given by
φqi ,q′j (nα + mβ).

This provides a rectangular case where there are only 4 possible
lengths.



An analog of the two-distance case
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From 4 to 7 lengths qk < N ≤ q′k

There are 4 lengths for (qk , q
′
k).

We reduce the set of points to (qk ,N). We make an induction and go
from 4 lengths to 6 lengths.

We insert points to reach (N,N). We perform an ‘exduction’ and get 7
lengths.

n

m

NN − qk

N



Square case

We place on the unit circle the points mα + nβ, for 0 ≤ n,m < N.
We consider lengths between consecutive points.

Question Is it possible to find (α, β), with 1, α, β rationally
independent, with at most 6 lengths for the square case?



d-dimensional parallelepipedic case

Let d ≥ 3.
Let α1, . . . , αd ∈ T and 2 ≤ n1 ≤ . . . ≤ nd be integers.
We place the points

d∑
i=1

kiαi for 0 ≤ ki < ni , i = 1, . . . , d .

Theorem [Chevallier] The number of lengths is at most

d−1∏
i=1

ni + 3
d−2∏
i=1

ni + 1.

d = 2 ; The upper bound is N + 3 for {mα+ nβ, 0 ≤ n,m < N}



Our strategy for Brun shapes

We consider the points nα + mβ, for n,m ∈ SN , for a family
of shapes (SN)N .

Theorem [Arnoux-B.-Kim-Steiner-Thuswaldner] Brun
algorithm produces shapes (SN)N for which there are 3
lengths. These shapes are no more square or rectangular ones
(they are approximations of Rauzy fractals).

The cardinality of points in SN tends to infinity and the
shapes SN contain a ball of radius tending to infinity with N.

Patterns are obtained by iterating a geometric,
higher-dimensional substitution E ∗1 (σ) and then, taking a
projection from Z3 to Z2.

The resulting three-dimensional patterns obtained by iterating
E ∗1 (σ) lie within a discrete plane, i.e., a discretized version of
a Euclidean plane with normal vector (1, α, β).
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Translations on T2



Translations on T2

[Vijay] 11 mutual distances Eleven Euclidean distances are enough

[Chevallier] A triangulation of R2 with at most 10 triangles whose
set of vertices is {0, α, · · · ,Nα}+ Z2, invariant under
Z2-translations, and the maximum of the diameters tends to 0
with N. Based on Ferguson-Forcade and Brun algorithm.

[Arnoux-B-Kim-Steiner-Thuswaldner] For a.e. (α, β), a tesselation
of R2 with at most 6 shapes whose set of vertices is
{0, α, · · · ,Nα}+ Z2, invariant under Z2-translations, and the
maximum of the diameters tends to 0 with N.

Based on Brun algorithm.

Pieces are given by subpieces of the Rauzy fractal.



And now

Beyond dimension 2 (strong convergence)

Beyond fractal shapes to recover boxes
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