Staircases and dominoes: Bounding the growth rate of 1324-avoiding permutations.

Andrew Elvey Price Joint work with David Bevan, Robert Brignall and Jay Pantone.

The University of Melbourne (and LaBRI)

Journées de combinatoire, LaBRI, 14 February 2018

Staircases and dominoes: Bounding the growth rate of 1324-avoiding permutations.

Andrew Elvey Price

Staircases and dominoes: Bounding the growth rate of 1324-avoiding permutations.

Andrew Elvey Price

• A permutation π (of length *m*) is said to appear as a pattern in permutation *q* if some *m* of the numbers in *q* appear in the same relative order as the numbers in π .

- A permutation π (of length *m*) is said to appear as a pattern in permutation *q* if some *m* of the numbers in *q* appear in the same relative order as the numbers in π .
- For example, 1324 appears as a pattern in 2753416 since the numbers 2536 are in the same relative order as 1324.

1324 IS A PATTERN IN 2753416

1324 IS A PATTERN IN 2753416

- A permutation π (of length *m*) is said to appear as a pattern in permutation *q* if some *m* of the numbers in *q* appear in the same relative order as the numbers in π .
- For example, 1324 appears as a pattern in 2753416 since the numbers 2536 are in the same relative order as 1324.

- A permutation π (of length *m*) is said to appear as a pattern in permutation *q* if some *m* of the numbers in *q* appear in the same relative order as the numbers in π .
- For example, 1324 appears as a pattern in 2753416 since the numbers 2536 are in the same relative order as 1324.
- Otherwise we say that q avoids the pattern π .

- A permutation π (of length *m*) is said to appear as a pattern in permutation *q* if some *m* of the numbers in *q* appear in the same relative order as the numbers in π .
- For example, 1324 appears as a pattern in 2753416 since the numbers 2536 are in the same relative order as 1324.
- Otherwise we say that q avoids the pattern π .
- The set of permutations which avoid π is denoted Av (π) .

- A permutation π (of length *m*) is said to appear as a pattern in permutation *q* if some *m* of the numbers in *q* appear in the same relative order as the numbers in π .
- For example, 1324 appears as a pattern in 2753416 since the numbers 2536 are in the same relative order as 1324.
- Otherwise we say that q avoids the pattern π .
- The set of permutations which avoid π is denoted Av (π) .
- For each n, the number of permutations of length n in Av(π) is denoted |Av_n(π)|.

- A permutation π (of length *m*) is said to appear as a pattern in permutation *q* if some *m* of the numbers in *q* appear in the same relative order as the numbers in π .
- For example, 1324 appears as a pattern in 2753416 since the numbers 2536 are in the same relative order as 1324.
- Otherwise we say that q avoids the pattern π .
- The set of permutations which avoid π is denoted Av (π) .
- For each n, the number of permutations of length n in Av(π) is denoted |Av_n(π)|.
- Two patterns π and τ are said to be "Wilf equivalent" if $|\operatorname{Av}_n(\pi)| = |\operatorname{Av}_n(\tau)|$ for every $n \in \mathbb{Z}_{\geq 0}$.

- A permutation π (of length *m*) is said to appear as a pattern in permutation *q* if some *m* of the numbers in *q* appear in the same relative order as the numbers in π .
- For example, 1324 appears as a pattern in 2753416 since the numbers 2536 are in the same relative order as 1324.
- Otherwise we say that q avoids the pattern π .
- The set of permutations which avoid π is denoted Av (π) .
- For each n, the number of permutations of length n in Av(π) is denoted |Av_n(π)|.
- Two patterns π and τ are said to be "Wilf equivalent" if $|\operatorname{Av}_n(\pi)| = |\operatorname{Av}_n(\tau)|$ for every $n \in \mathbb{Z}_{\geq 0}$.
- We are mostly interested in the behaviour of the sequence $|Av_n(\pi)|$ for each permutation π .

• For length 3 patterns, there would seem to be two Wilf classes: 132, 213, 231 and 312 are all equivalent to each other due to reflective symmetry, and similarly 123 and 321 are equivalent.

- For length 3 patterns, there would seem to be two Wilf classes: 132, 213, 231 and 312 are all equivalent to each other due to reflective symmetry, and similarly 123 and 321 are equivalent.
- Remarkably, these are all Wilf equivalent as

$$|\operatorname{Av}_n(123)| = |\operatorname{Av}_n(132)| = \frac{1}{n+1} \binom{2n}{n},$$

the *n*th Catalan number.

LENGTH 4 PATTERNS

• For length 4 patterns, there are only three Wilf classes, which have representatives 1342, 1234 and 1324.

- For length 4 patterns, there are only three Wilf classes, which have representatives 1342, 1234 and 1324.
- The sequence $|Av_n(1342)|$ is given by the coefficients of the algebraic generating function

$$\frac{32x}{1+12x-8x^2-(1-8x)^{3/2}}.$$

- For length 4 patterns, there are only three Wilf classes, which have representatives 1342, 1234 and 1324.
- The sequence $|Av_n(1342)|$ is given by the coefficients of the algebraic generating function

$$\frac{32x}{1+12x-8x^2-(1-8x)^{3/2}}.$$

• The sequence $|Av_n(1234)|$ is not algebraic, but it is D-finite.

- For length 4 patterns, there are only three Wilf classes, which have representatives 1342, 1234 and 1324.
- The sequence $|Av_n(1342)|$ is given by the coefficients of the algebraic generating function

$$\frac{32x}{1+12x-8x^2-(1-8x)^{3/2}}.$$

- The sequence $|Av_n(1234)|$ is not algebraic, but it is D-finite.
- The sequence $|Av_n(1324)|$ is a mystery.

LENGTH 4 PATTERNS

Andrew Elvey Price

MARCOS-TARDOS THEOREM

Staircases and dominoes: Bounding the growth rate of 1324-avoiding permutations.

Andrew Elvey Price

For any permutation π , the limit

$$\operatorname{gr}(\operatorname{Av}(\pi)) = \lim_{n \to \infty} \sqrt[n]{|\operatorname{Av}_n(\pi)|}$$

exists, and is finite.

For any permutation π , the limit

$$\operatorname{gr}(\operatorname{Av}(\pi)) = \lim_{n \to \infty} \sqrt[n]{|\operatorname{Av}_n(\pi)|}$$

exists, and is finite. This is called the Stanley-Wilf limit of π .

•
$$gr(Av(1342)) = 8.$$

•
$$gr(Av(1342)) = 8.$$

•
$$grAv(1234)) = 9.$$

•
$$gr(Av(1342)) = 8.$$

•
$$grAv(1234)) = 9$$

•
$$gr(Av(1234...n)) = (n-1)^2$$
.

- We already saw that for patterns π of length 3, the sequence $|Av_n(\pi)|$ is given by the Catalan numbers, so $gr(Av(\pi)) = 4$.
- gr(Av(1342)) = 8.
- grAv(1234)) = 9.
- $gr(Av(1234...n)) = (n-1)^2.$
- Very few other Stanley-Wilf limits are known.

Some History of Stanley-Wilf limits

Staircases and dominoes: Bounding the growth rate of 1324-avoiding permutations.

Andrew Elvey Price

Some History of Stanley-Wilf limits

 Arratia (1999): Conjectures that any Stanley-Wilf limit gr(Av(π)) ≤ (|π| − 1)².

Some History of Stanley-Wilf limits

• Arratia (1999): Conjectures that any Stanley-Wilf limit $gr(Av(\pi)) \le (|\pi| - 1)^2$. In other words, he conjectured that increasing permutations are the easiest permutations to avoid.

SOME HISTORY OF STANLEY-WILF LIMITS

- Arratia (1999): Conjectures that any Stanley-Wilf limit gr(Av(π)) ≤ (|π| − 1)². In other words, he conjectured that increasing permutations are the easiest permutations to avoid.
- Marcos, Tardos (2004): The Stanley-Wilf limit $gr(Av(\pi))$ exists for any permutation π .
SOME HISTORY OF STANLEY-WILF LIMITS

- Arratia (1999): Conjectures that any Stanley-Wilf limit gr(Av(π)) ≤ (|π| − 1)². In other words, he conjectured that increasing permutations are the easiest permutations to avoid.
- Marcos, Tardos (2004): The Stanley-Wilf limit $gr(Av(\pi))$ exists for any permutation π .
- Albert, Elder, Rechnitzer, Wescott and Zabroski (2006): gr(Av(1324)) > 9.47, refuting Arratia's conjecture.

SOME HISTORY OF STANLEY-WILF LIMITS

- Arratia (1999): Conjectures that any Stanley-Wilf limit gr(Av(π)) ≤ (|π| − 1)². In other words, he conjectured that increasing permutations are the easiest permutations to avoid.
- Marcos, Tardos (2004): The Stanley-Wilf limit $gr(Av(\pi))$ exists for any permutation π .
- Albert, Elder, Rechnitzer, Wescott and Zabroski (2006): gr(Av(1324)) > 9.47, refuting Arratia's conjecture.
- Fox (2013):

For $\alpha < 1/4$, almost all permutations π satisfy

 $\operatorname{gr}(\operatorname{Av}(\pi)) > 2^{|\pi|^{\alpha}}.$

• This is difficult.

Staircases and dominoes: Bounding the growth rate of 1324-avoiding permutations.

Andrew Elvey Price

• This is difficult. According to Doron Zeilberger: "not even god knows |Av₁₀₀₀(1324)|".

- This is difficult. According to Doron Zeilberger: "not even god knows |Av₁₀₀₀(1324)|".
- So far humans (Andrew Conway and Paul Zinn-Justin) have computed up to $|Av_{50}(1324)|$.

- This is difficult. According to Doron Zeilberger: "not even god knows |Av₁₀₀₀(1324)|".
- So far humans (Andrew Conway and Paul Zinn-Justin) have computed up to $|Av_{50}(1324)|$.
- Tony Guttmann's analysis of this series suggests that

$$|\operatorname{Av}_n(1324)| \sim B \cdot \mu^n \cdot \mu_1^{n^{\sigma}} \cdot n^{\theta},$$

where $\mu = \text{gr}(\text{Av}(1324)) \approx 11.6$, $\sigma = 1/2$, $\mu_1 \approx 0.04$ and *B* is some constant.

- This is difficult. According to Doron Zeilberger: "not even god knows |Av₁₀₀₀(1324)|".
- So far humans (Andrew Conway and Paul Zinn-Justin) have computed up to $|Av_{50}(1324)|$.
- Tony Guttmann's analysis of this series suggests that

$$|\operatorname{Av}_n(1324)| \sim B \cdot \mu^n \cdot \mu_1^{n^{\sigma}} \cdot n^{\theta},$$

where $\mu = \text{gr}(\text{Av}(1324)) \approx 11.6$, $\sigma = 1/2$, $\mu_1 \approx 0.04$ and *B* is some constant.

• The presence of the $\mu_1^{n^{\sigma}}$ term suggests that the sequence $Av_n(1324)$ is not D-finite.

Staircases and dominoes: Bounding the growth rate of 1324-avoiding permutations.

Andrew Elvey Price

2004: Bóna

$\text{gr}(\text{Av}(1324)) \leq 288$

Staircases and dominoes: Bounding the growth rate of 1324-avoiding permutations.

Andrew Elvey Price

2004: Bóna 2005: Bóna $\begin{array}{l} gr(Av(1324)) \leq 288 \\ 9 \leq gr(Av(1324)) \end{array}$

2004: Bóna 2005: Bóna 2006: Albert et al

$$\begin{array}{l} gr(Av(1324)) \leq 288 \\ 9 \leq gr(Av(1324)) \\ 9.47 \leq gr(Av(1324)) \end{array}$$

2004: Bóna 2005: Bóna 2006: Albert et al 2012: Claesson et al

$$\begin{array}{c} {\rm gr}({\rm Av}(1324)) \leq 288 \\ 9 \leq {\rm gr}({\rm Av}(1324)) \\ 9.47 \leq {\rm gr}({\rm Av}(1324)) \\ {\rm gr}({\rm Av}(1324)) \leq 16 \end{array}$$

2004: Bóna 2005: Bóna 2006: Albert et al 2012: Claesson et al 2014: Bóna

$$\begin{array}{c} {\rm gr}({\rm Av}(1324)) \leq 288 \\ 9 \leq {\rm gr}({\rm Av}(1324)) \\ 9.47 \leq {\rm gr}({\rm Av}(1324)) \\ {\rm gr}({\rm Av}(1324)) \leq 16 \\ {\rm gr}({\rm Av}(1324)) \leq 13.93 \end{array}$$

2004: Bóna 2005: Bóna 2006: Albert et al 2012: Claesson et al 2014: Bóna 2015: Bóna

$$\begin{array}{c} gr(Av(1324)) \leq 288\\ 9 \leq gr(Av(1324))\\ 9.47 \leq gr(Av(1324))\\ gr(Av(1324)) \leq 16\\ gr(Av(1324)) \leq 13.93\\ gr(Av(1324)) \leq 13.74 \end{array}$$

2004: Bóna 2005: Bóna 2006: Albert et al 2012: Claesson et al 2014: Bóna 2015: Bóna 2015: Bevan

$$\begin{array}{c} gr(Av(1324)) \leq 288\\ 9 \leq gr(Av(1324))\\ 9.47 \leq gr(Av(1324))\\ gr(Av(1324)) \leq 16\\ gr(Av(1324)) \leq 13.93\\ gr(Av(1324)) \leq 13.74\\ 9.81 \leq gr(Av(1324)) \end{array}$$

2004: Bóna 2005: Bóna 2006: Albert et al 2012: Claesson et al 2014: Bóna 2015: Bóna 2015: Bevan

$$\begin{array}{c} gr(Av(1324)) \leq 288\\ 9 \leq gr(Av(1324))\\ 9.47 \leq gr(Av(1324))\\ gr(Av(1324)) \leq 16\\ gr(Av(1324)) \leq 13.93\\ gr(Av(1324)) \leq 13.74\\ 9.81 \leq gr(Av(1324)) \end{array}$$

Theorem (Bevan, Brignall, E., Pantone)

 $10.27 \le gr(Av(1324)) \le 13.5.$

• p_1 uppermost 1 in a 213.

- p_1 uppermost 1 in a 213.
- p_2 leftmost 2 in a 132 consisting of points below p_1 divider.

- p_2 leftmost 2 in a 132 consisting of points below p_1 divider.
- No points above p_1 and to the right of p_2 .

- p_2 leftmost 2 in a 132 consisting of points below p_1 divider.
- p_3 uppermost 1 in a 213 consisting of points to right of p_2 divider.

- p_3 uppermost 1 in a 213 consisting of points to right of p_2 divider.
- No points to the left of p_2 and below p_3 .

- p_3 uppermost 1 in a 213 consisting of points to right of p_2 divider.
- p_4 leftmost 2 in a 132 consisting of points below p_3 divider.

- p_4 leftmost 2 in a 132 consisting of points below p_3 divider.
- No points above p_3 and to the right of p_4 .

• The final cell avoids 213.

A LARGE STAIRCASED 1324-AVOIDER

Data provided by Einar Steingrímsson.

Upper Bound on gr(Av(1324))

Upper Bound on gr(Av(1324))

This already gives us an upper bound: $|Av_n(1324)|$ is less than the number of staircases with *n* points, which grows like 16^n .

That is, a 1324-avoiding staircase with two cells.

Staircases and dominoes: Bounding the growth rate of 1324-avoiding permutations.

Andrew Elvey Price

That is, a 1324-avoiding staircase with two cells.

That is, a 1324-avoiding staircase with two cells.

Claim: The number of *n*-point dominoes is:

That is, a 1324-avoiding staircase with two cells.

The number of (1324-avoiding) dominoes with n points is

$$\frac{2(3n+3)!}{(n+2)!(2n+3)!}$$

The number of (1324-avoiding) dominoes with n points is

$$\frac{2(3n+3)!}{(n+2)!(2n+3)!}$$

Enrica Duchi talked about these numbers yesterday!
$$\frac{2(3n+3)!}{(n+2)!(2n+3)!}$$

$$\frac{2(3n+3)!}{(n+2)!(2n+3)!}$$

$$\frac{2(3n+3)!}{(n+2)!(2n+3)!}$$

Enrica Duchi talked about these numbers yesterday! This is also the number of...

• Fighting fish with semi-perimeter n + 2.

$$\frac{2(3n+3)!}{(n+2)!(2n+3)!}$$

- Fighting fish with semi-perimeter n + 2.
- West two-stack sortable permutations of length n + 1.

$$\frac{2(3n+3)!}{(n+2)!(2n+3)!}$$

- Fighting fish with semi-perimeter n + 2.
- West two-stack sortable permutations of length n + 1.
- Left ternary trees with n + 1 vertices.

$$\frac{2(3n+3)!}{(n+2)!(2n+3)!}$$

- Fighting fish with semi-perimeter n + 2.
- West two-stack sortable permutations of length n + 1.
- Left ternary trees with n + 1 vertices.
- Rooted non-separable planar maps with n + 1 edges.

Staircases and dominoes: Bounding the growth rate of 1324-avoiding permutations.

• vertically project the points in the permutation.

A 213-avoider and a 132-avoider with their arch systems

Staircases and dominoes: Bounding the growth rate of 1324-avoiding permutations.

- vertically project the points in the permutation.
- draw an arch between two points when the right point in the permutation is one higher than the left point.

A 213-avoider and a 132-avoider with their arch systems

These arch systems satisfy the following properties:

Staircases and dominoes: Bounding the growth rate of 1324-avoiding permutations.

These arch systems satisfy the following properties:

• Each point is at the left end of at most one arch.

These arch systems satisfy the following properties:

- Each point is at the left end of at most one arch.
- Each point is at the right end of at most one arch.

These arch systems satisfy the following properties:

- Each point is at the left end of at most one arch.
- Each point is at the right end of at most one arch.
- No two arches cross.

BIJECTING DOMINOES TO ARCH CONFIGURATIONS.

Staircases and dominoes: Bounding the growth rate of 1324-avoiding permutations.

Andrew Elvey Price

BIJECTING DOMINOES TO ARCH CONFIGURATIONS.

• This naturally extends to a bijection between dominoes and arch configurations.

Staircases and dominoes: Bounding the growth rate of 1324-avoiding permutations.

BIJECTING DOMINOES TO ARCH CONFIGURATIONS.

- This naturally extends to a bijection between dominoes and arch configurations.
- The 1324-avoiding condition corresponds to forbidding the pattern in the arch configuration.

Staircases and dominoes: Bounding the growth rate of 1324-avoiding permutations.

Andrew Elvey Price

We have reduced enumerating dominoes (with n points) to enumerating arch systems (with n points) in which

We have reduced enumerating dominoes (with n points) to enumerating arch systems (with n points) in which

• no two arches of the same colour cross.

We have reduced enumerating dominoes (with n points) to enumerating arch systems (with n points) in which

- no two arches of the same colour cross.
- no two arches have the same right endpoint or the same left endpoint.

We have reduced enumerating dominoes (with n points) to enumerating arch systems (with n points) in which

- no two arches of the same colour cross.
- no two arches have the same right endpoint or the same left endpoint.
- The pattern Θ^{-} does not occur anywhere.

We have reduced enumerating dominoes (with n points) to enumerating arch systems (with n points) in which

- no two arches of the same colour cross.
- no two arches have the same right endpoint or the same left endpoint.
- The pattern Θ does not occur anywhere.

It helps to count prefixes of arch systems, which may have open red arches.

We have reduced enumerating dominoes (with n points) to enumerating arch systems (with n points) in which

- no two arches of the same colour cross.
- no two arches have the same right endpoint or the same left endpoint.
- The pattern Θ does not occur anywhere.

It helps to count prefixes of arch systems, which may have open red arches.

We use a generating function A(t, z) which counts these prefixes by points (*t*) and number of open arches (*z*).

We have reduced enumerating dominoes (with n points) to enumerating arch systems (with n points) in which

- no two arches of the same colour cross.
- no two arches have the same right endpoint or the same left endpoint.
- The pattern Θ does not occur anywhere.

It helps to count prefixes of arch systems, which may have open red arches.

We use a generating function A(t, z) which counts these prefixes by points (*t*) and number of open arches (*z*).

Then the number of dominoes with *n* points is $[t^n]A(t, 0)$.

DECOMPOSITION OF ARCH SYSTEM PREFIXES

DECOMPOSITION OF ARCH SYSTEM PREFIXES

This decomposition leads to the equation:

$$A(z) = tA(z) + tzA(z) + t(1+z)\frac{A(z) - A(0)}{z} + \frac{1}{1 - tA(z)}$$

Staircases and dominoes: Bounding the growth rate of 1324-avoiding permutations.

• The generating function A(t, z) is characterised by the equation

$$A(z) = tA(z) + tzA(z) + t(1+z)\frac{A(z) - A(0)}{z} + \frac{1}{1 - tA(z)}.$$

• The generating function A(t, z) is characterised by the equation

$$A(z) = tA(z) + tzA(z) + t(1+z)\frac{A(z) - A(0)}{z} + \frac{1}{1 - tA(z)}.$$

• This can be solved by Bouquet-Melou and Jehanne's generalisation of the Kernel method.

• The generating function A(t, z) is characterised by the equation

$$A(z) = tA(z) + tzA(z) + t(1+z)\frac{A(z) - A(0)}{z} + \frac{1}{1 - tA(z)}.$$

• This can be solved by Bouquet-Melou and Jehanne's generalisation of the Kernel method. See: "*Polynomial equations with one catalytic variable, algebraic series and map enumeration*" (2006)

• The generating function A(t, z) is characterised by the equation

$$A(z) = tA(z) + tzA(z) + t(1+z)\frac{A(z) - A(0)}{z} + \frac{1}{1 - tA(z)}.$$

- This can be solved by Bouquet-Melou and Jehanne's generalisation of the Kernel method. See: "*Polynomial equations with one catalytic variable, algebraic series and map enumeration*" (2006)
- Now we have enumerated dominos!

• The generating function A(t, z) is characterised by the equation

$$A(z) = tA(z) + tzA(z) + t(1+z)\frac{A(z) - A(0)}{z} + \frac{1}{1 - tA(z)}.$$

- This can be solved by Bouquet-Melou and Jehanne's generalisation of the Kernel method. See: "*Polynomial equations with one catalytic variable, algebraic series and map enumeration*" (2006)
- Now we have enumerated dominos!
- We can use these dominoes to get better upper and lower bounds for gr(Av(1324))

Staircases and dominoes: Bounding the growth rate of 1324-avoiding permutations.

Andrew Elvey Price

• Start with a 1324-avoiding permutation, and staircase it.

- Start with a 1324-avoiding permutation, and staircase it.
- Use Φ to construct a large domino as shown.

- Start with a 1324-avoiding permutation, and staircase it.
- Use Φ to construct a large domino as shown.
- Φ is not injective.

$$\Psi$$
 : Av_n(1324) \rightarrow $(\bullet, \bullet)^n \times D_n$

Andrew Elvey Price
Upper bound on gr(Av(1324))

$$\Psi : \operatorname{Av}_n(1324) \to (\bullet, \bullet)^n \times D_n$$

Upper bound on gr(Av(1324))

$$\Psi$$
 : Av_n(1324) \rightarrow $(\bullet, \bullet)^n \times D_n$

• The vertical interleaving can be recovered from the •• sequence.

Staircases and dominoes: Bounding the growth rate of 1324-avoiding permutations.

Upper bound on gr(Av(1324))

$$\Psi$$
 : Av_n(1324) \rightarrow $(\bullet, \bullet)^n \times D_n$

The vertical interleaving can be recovered from the ●● sequence.
Ψ is injective. gr(Av(1324)) ≤ 2 × 27/4 = 13.5

LOWER BOUND

Staircases and dominoes: Bounding the growth rate of 1324-avoiding permutations.

LOWER BOUND

This staircase always defines a 1324-avoider.

• To get a lower bound, we can count staircases whose cells alternate 132-avoiding and 12-avoiding.

- To get a lower bound, we can count staircases whose cells alternate 132-avoiding and 12-avoiding.
- We can enumerate these exactly: their exponential growth rate is 9.

• Count 1324-avoiding staircases in which every third cell is 12-avoiding.

• Since we have enumerated dominoes, we can enumerate these exactly.

• Since we have enumerated dominoes, we can enumerate these exactly. Their growth rate is ≈ 9.895.

- Since we have enumerated dominoes, we can enumerate these exactly. Their growth rate is ≈ 9.895.
- There is a simple way to improve on this: After constructing a 1324 avoiding permutation in the way just described, each element in an Av(12) section can be replaced with any 213-avoider.

- Since we have enumerated dominoes, we can enumerate these exactly. Their growth rate is ≈ 9.895.
- There is a simple way to improve on this: After constructing a 1324 avoiding permutation in the way just described, each element in an Av(12) section can be replaced with any 213-avoider.
- To avoid over counting, we only use 213-avoiders which start with 1.

- Since we have enumerated dominoes, we can enumerate these exactly. Their growth rate is ≈ 9.895.
- There is a simple way to improve on this: After constructing a 1324 avoiding permutation in the way just described, each element in an Av(12) section can be replaced with any 213-avoider.
- To avoid over counting, we only use 213-avoiders which start with 1.
- Taking limits carefully, this gives a lower bound for gr(Av(1324)) of 10.125.

BETTER BOUNDS

Staircases and dominoes: Bounding the growth rate of 1324-avoiding permutations.

• In current work with David Bevan, Robert Brignall and Jay Pantone, we have refined this to show that $gr(Av(1324)) \ge 10.271$.

- In current work with David Bevan, Robert Brignall and Jay Pantone, we have refined this to show that $gr(Av(1324)) \ge 10.271$.
- We have been unable to refine the upper bound further than $gr(Av(1324)) \le 13.5$.

- In current work with David Bevan, Robert Brignall and Jay Pantone, we have refined this to show that $gr(Av(1324)) \ge 10.271$.
- We have been unable to refine the upper bound further than $gr(Av(1324)) \le 13.5$.
- There is still a long way to go to get near Guttmann's estimate of 11.6.

QUESTIONS FOR THE AUDUENCE

QUESTIONS FOR THE AUDUENCE

Can anyone...

Staircases and dominoes: Bounding the growth rate of 1324-avoiding permutations.

QUESTIONS FOR THE AUDUENCE

Can anyone...

• Find a bijective proof of the number of dominoes?

Can anyone...

- Find a bijective proof of the number of dominoes?
- Enumerate the number of 1324-avoiding staircases with 3 cells?

Can anyone...

- Find a bijective proof of the number of dominoes?
- Enumerate the number of 1324-avoiding staircases with 3 cells?
- Improve the upper bound?

Can anyone...

- Find a bijective proof of the number of dominoes?
- Enumerate the number of 1324-avoiding staircases with 3 cells?
- Improve the upper bound?
- Compute |Av₁₀₀₀(1324)|??

THANK YOU

Staircases and dominoes: Bounding the growth rate of 1324-avoiding permutations.