# Staircases and dominoes: Bounding the growth rate of 1324-avoiding permutations. 

Andrew Elvey Price<br>Joint work with David Bevan, Robert Brignall and Jay Pantone.

The University of Melbourne (and LaBRI)

Journées de combinatoire, LaBRI, 14 February 2018

## Pattern Avoiding Permutations

## Pattern Avoiding Permutations

- A permutation $\pi$ (of length $m$ ) is said to appear as a pattern in permutation $q$ if some $m$ of the numbers in $q$ appear in the same relative order as the numbers in $\pi$.


## Pattern Avoiding Permutations

- A permutation $\pi$ (of length $m$ ) is said to appear as a pattern in permutation $q$ if some $m$ of the numbers in $q$ appear in the same relative order as the numbers in $\pi$.
- For example, 1324 appears as a pattern in 2753416 since the numbers 2536 are in the same relative order as 1324.


## 1324 IS A PATTERN IN 2753416



## 1324 IS A PATTERN IN 2753416



## Pattern Avoiding Permutations

- A permutation $\pi$ (of length $m$ ) is said to appear as a pattern in permutation $q$ if some $m$ of the numbers in $q$ appear in the same relative order as the numbers in $\pi$.
- For example, 1324 appears as a pattern in 2753416 since the numbers 2536 are in the same relative order as 1324.


## Pattern Avoiding Permutations

- A permutation $\pi$ (of length $m$ ) is said to appear as a pattern in permutation $q$ if some $m$ of the numbers in $q$ appear in the same relative order as the numbers in $\pi$.
- For example, 1324 appears as a pattern in 2753416 since the numbers 2536 are in the same relative order as 1324.
- Otherwise we say that $q$ avoids the pattern $\pi$.


## Pattern Avoiding Permutations

- A permutation $\pi$ (of length $m$ ) is said to appear as a pattern in permutation $q$ if some $m$ of the numbers in $q$ appear in the same relative order as the numbers in $\pi$.
- For example, 1324 appears as a pattern in 2753416 since the numbers 2536 are in the same relative order as 1324.
- Otherwise we say that $q$ avoids the pattern $\pi$.
- The set of permutations which avoid $\pi$ is denoted $\operatorname{Av}(\pi)$.


## Pattern Avoiding Permutations

- A permutation $\pi$ (of length $m$ ) is said to appear as a pattern in permutation $q$ if some $m$ of the numbers in $q$ appear in the same relative order as the numbers in $\pi$.
- For example, 1324 appears as a pattern in 2753416 since the numbers 2536 are in the same relative order as 1324.
- Otherwise we say that $q$ avoids the pattern $\pi$.
- The set of permutations which avoid $\pi$ is denoted $\operatorname{Av}(\pi)$.
- For each $n$, the number of permutations of length $n$ in $\operatorname{Av}(\pi)$ is denoted $\left|\mathrm{Av}_{n}(\pi)\right|$.


## Pattern Avoiding Permutations

- A permutation $\pi$ (of length $m$ ) is said to appear as a pattern in permutation $q$ if some $m$ of the numbers in $q$ appear in the same relative order as the numbers in $\pi$.
- For example, 1324 appears as a pattern in 2753416 since the numbers 2536 are in the same relative order as 1324.
- Otherwise we say that $q$ avoids the pattern $\pi$.
- The set of permutations which avoid $\pi$ is denoted $\operatorname{Av}(\pi)$.
- For each $n$, the number of permutations of length $n$ in $\operatorname{Av}(\pi)$ is denoted $\left|\mathrm{Av}_{n}(\pi)\right|$.
- Two patterns $\pi$ and $\tau$ are said to be "Wilf equivalent" if $\left|\operatorname{Av}_{n}(\pi)\right|=\left|\operatorname{Av}_{n}(\tau)\right|$ for every $n \in \mathbb{Z}_{\geq 0}$.


## Pattern Avoiding Permutations

- A permutation $\pi$ (of length $m$ ) is said to appear as a pattern in permutation $q$ if some $m$ of the numbers in $q$ appear in the same relative order as the numbers in $\pi$.
- For example, 1324 appears as a pattern in 2753416 since the numbers 2536 are in the same relative order as 1324.
- Otherwise we say that $q$ avoids the pattern $\pi$.
- The set of permutations which avoid $\pi$ is denoted $\operatorname{Av}(\pi)$.
- For each $n$, the number of permutations of length $n$ in $\operatorname{Av}(\pi)$ is denoted $\left|\mathrm{Av}_{n}(\pi)\right|$.
- Two patterns $\pi$ and $\tau$ are said to be "Wilf equivalent" if $\left|\operatorname{Av}_{n}(\pi)\right|=\left|\operatorname{Av}_{n}(\tau)\right|$ for every $n \in \mathbb{Z}_{\geq 0}$.
- We are mostly interested in the behaviour of the sequence $\left|\operatorname{Av}_{n}(\pi)\right|$ for each permutation $\pi$.


## Length 3 PATTERNS

## Length 3 PATTERNS

- For length 3 patterns, there would seem to be two Wilf classes: 132, 213, 231 and 312 are all equivalent to each other due to reflective symmetry, and similarly 123 and 321 are equivalent.


## Length 3 PATTERNS

- For length 3 patterns, there would seem to be two Wilf classes: 132, 213, 231 and 312 are all equivalent to each other due to reflective symmetry, and similarly 123 and 321 are equivalent.
- Remarkably, these are all Wilf equivalent as

$$
\left|\operatorname{Av}_{n}(123)\right|=\left|\operatorname{Av}_{n}(132)\right|=\frac{1}{n+1}\binom{2 n}{n}
$$

the $n$th Catalan number.

## LENGTH 4 PATTERNS

## LENGTH 4 PATTERNS

- For length 4 patterns, there are only three Wilf classes, which have representatives 1342, 1234 and 1324.


## LENGTH 4 PATTERNS

- For length 4 patterns, there are only three Wilf classes, which have representatives 1342, 1234 and 1324.
- The sequence $\left|\mathrm{Av}_{n}(1342)\right|$ is given by the coefficients of the algebraic generating function

$$
\frac{32 x}{1+12 x-8 x^{2}-(1-8 x)^{3 / 2}} .
$$

## Length 4 PATTERNS

- For length 4 patterns, there are only three Wilf classes, which have representatives 1342, 1234 and 1324.
- The sequence $\left|\operatorname{Av}_{n}(1342)\right|$ is given by the coefficients of the algebraic generating function

$$
\frac{32 x}{1+12 x-8 x^{2}-(1-8 x)^{3 / 2}} .
$$

- The sequence $\left|\mathrm{Av}_{n}(1234)\right|$ is not algebraic, but it is D-finite.


## Length 4 PATTERNS

- For length 4 patterns, there are only three Wilf classes, which have representatives 1342, 1234 and 1324.
- The sequence $\left|\mathrm{Av}_{n}(1342)\right|$ is given by the coefficients of the algebraic generating function

$$
\frac{32 x}{1+12 x-8 x^{2}-(1-8 x)^{3 / 2}} .
$$

- The sequence $\left|\operatorname{Av}_{n}(1234)\right|$ is not algebraic, but it is D-finite.
- The sequence $\left|\mathrm{Av}_{n}(1324)\right|$ is a mystery.


## LENGTH 4 PATTERNS



## LENGTH 4 PATTERNS



## LENGTH 4 PATTERNS



## MARCOS-TARDOS THEOREM

## MARCOS-TARDOS THEOREM

For any permutation $\pi$, the limit

$$
\operatorname{gr}(\operatorname{Av}(\pi))=\lim _{n \rightarrow \infty} \sqrt[n]{\left|\operatorname{Av}_{n}(\pi)\right|}
$$

exists, and is finite.

## MARCOS-TARDOS THEOREM

For any permutation $\pi$, the limit

$$
\operatorname{gr}(\operatorname{Av}(\pi))=\lim _{n \rightarrow \infty} \sqrt[n]{\left|\operatorname{Av}_{n}(\pi)\right|}
$$

exists, and is finite.
This is called the Stanley-Wilf limit of $\pi$.

## Known Stanley-Wilf Limits

## Known Stanley-Wilf Limits

- We already saw that for patterns $\pi$ of length 3 , the sequence $\left|\operatorname{Av}_{n}(\pi)\right|$ is given by the Catalan numbers, so $\operatorname{gr}(\operatorname{Av}(\pi))=4$.


## Known Stanley-Wilf Limits

- We already saw that for patterns $\pi$ of length 3 , the sequence $\left|\operatorname{Av}_{n}(\pi)\right|$ is given by the Catalan numbers, so $\operatorname{gr}(\operatorname{Av}(\pi))=4$.
- $\operatorname{gr}(\operatorname{Av}(1342))=8$.


## Known Stanley-Wilf Limits

- We already saw that for patterns $\pi$ of length 3 , the sequence $\left|\operatorname{Av}_{n}(\pi)\right|$ is given by the Catalan numbers, so $\operatorname{gr}(\operatorname{Av}(\pi))=4$.
- $\operatorname{gr}(\operatorname{Av}(1342))=8$.
- $\operatorname{grAv}(1234))=9$.


## Known Stanley-Wilf Limits

- We already saw that for patterns $\pi$ of length 3 , the sequence $\left|\operatorname{Av}_{n}(\pi)\right|$ is given by the Catalan numbers, so $\operatorname{gr}(\operatorname{Av}(\pi))=4$.
- $\operatorname{gr}(\operatorname{Av}(1342))=8$.
- $\operatorname{grAv}(1234))=9$.
- $\operatorname{gr}(\operatorname{Av}(1234 \ldots n))=(n-1)^{2}$.


## Known Stanley-Wilf Limits

- We already saw that for patterns $\pi$ of length 3 , the sequence $\left|\operatorname{Av}_{n}(\pi)\right|$ is given by the Catalan numbers, so $\operatorname{gr}(\operatorname{Av}(\pi))=4$.
- $\operatorname{gr}(\operatorname{Av}(1342))=8$.
- $\operatorname{grAv}(1234))=9$.
- $\operatorname{gr}(\operatorname{Av}(1234 \ldots n))=(n-1)^{2}$.
- Very few other Stanley-Wilf limits are known.


## Some History of Stanley-Wilf limits

## Some History of Stanley-Wilf limits

- Arratia (1999): Conjectures that any Stanley-Wilf limit $\operatorname{gr}(\operatorname{Av}(\pi)) \leq(|\pi|-1)^{2}$.


## Some History of Stanley-Wilf limits

- Arratia (1999): Conjectures that any Stanley-Wilf limit $\operatorname{gr}(\operatorname{Av}(\pi)) \leq(|\pi|-1)^{2}$. In other words, he conjectured that increasing permutations are the easiest permutations to avoid.


## Some History of Stanley-Wilf limits

- Arratia (1999): Conjectures that any Stanley-Wilf limit $\operatorname{gr}(\operatorname{Av}(\pi)) \leq(|\pi|-1)^{2}$. In other words, he conjectured that increasing permutations are the easiest permutations to avoid.
- Marcos, Tardos (2004): The Stanley-Wilf limit $\operatorname{gr}(\operatorname{Av}(\pi))$ exists for any permutation $\pi$.


## Some History of Stanley-Wilf limits

- Arratia (1999): Conjectures that any Stanley-Wilf limit $\operatorname{gr}(\operatorname{Av}(\pi)) \leq(|\pi|-1)^{2}$. In other words, he conjectured that increasing permutations are the easiest permutations to avoid.
- Marcos, Tardos (2004): The Stanley-Wilf limit $\operatorname{gr}(\operatorname{Av}(\pi))$ exists for any permutation $\pi$.
- Albert, Elder, Rechnitzer, Wescott and Zabroski (2006): $\operatorname{gr}(\operatorname{Av}(1324))>9.47$, refuting Arratia's conjecture.


## Some History of Stanley-Wilf limits

- Arratia (1999): Conjectures that any Stanley-Wilf limit $\operatorname{gr}(\operatorname{Av}(\pi)) \leq(|\pi|-1)^{2}$. In other words, he conjectured that increasing permutations are the easiest permutations to avoid.
- Marcos, Tardos (2004): The Stanley-Wilf limit $\operatorname{gr}(\operatorname{Av}(\pi))$ exists for any permutation $\pi$.
- Albert, Elder, Rechnitzer, Wescott and Zabroski (2006): $\operatorname{gr}(\operatorname{Av}(1324))>9.47$, refuting Arratia's conjecture.
- Fox (2013):

For $\alpha<1 / 4$, almost all permutations $\pi$ satisfy

$$
\operatorname{gr}(\operatorname{Av}(\pi))>2^{|\pi|^{\alpha}}
$$

## EXACT ENUMERATION OF 1324-AVOIDERS

## EXACT ENUMERATION OF 1324-AVOIDERS

- This is difficult.


## EXACT ENUMERATION OF 1324-AVOIDERS

- This is difficult. According to Doron Zeilberger: "not even god knows $\mid A v_{1000}$ (1324)|".


## EXACT ENUMERATION OF 1324-AVOIDERS

- This is difficult. According to Doron Zeilberger: "not even god knows $\mid A v_{1000}$ (1324)|".
- So far humans (Andrew Conway and Paul Zinn-Justin) have computed up to $\left|\mathrm{Av}_{50}(1324)\right|$.


## EXACT ENUMERATION OF 1324-AVOIDERS

- This is difficult. According to Doron Zeilberger: "not even god knows $\mid A v_{1000}$ (1324)|".
- So far humans (Andrew Conway and Paul Zinn-Justin) have computed up to $\left|\mathrm{Av}_{50}(1324)\right|$.
- Tony Guttmann's analysis of this series suggests that

$$
\left|\operatorname{Av}_{n}(1324)\right| \sim B \cdot \mu^{n} \cdot \mu_{1}^{n^{\sigma}} \cdot n^{\theta}
$$

where $\mu=\operatorname{gr}(\operatorname{Av}(1324)) \approx 11.6, \sigma=1 / 2, \mu_{1} \approx 0.04$ and $B$ is some constant.

## EXACT ENUMERATION OF 1324-AVOIDERS

- This is difficult. According to Doron Zeilberger: "not even god knows $\mid A v_{1000}$ (1324)|".
- So far humans (Andrew Conway and Paul Zinn-Justin) have computed up to $\left|\mathrm{Av}_{50}(1324)\right|$.
- Tony Guttmann's analysis of this series suggests that

$$
\left|\operatorname{Av}_{n}(1324)\right| \sim B \cdot \mu^{n} \cdot \mu_{1}^{n^{\sigma}} \cdot n^{\theta}
$$

where $\mu=\operatorname{gr}(\operatorname{Av}(1324)) \approx 11.6, \sigma=1 / 2, \mu_{1} \approx 0.04$ and $B$ is some constant.

- The presence of the $\mu_{1}^{n^{\sigma}}$ term suggests that the sequence $\mathrm{Av}_{n}(1324)$ is not D-finite.


## Bounds on $\operatorname{GR}(\operatorname{Av}(1324))$

## Bounds on GR(Av(1324))

2004: Bóna

$$
\operatorname{gr}(\operatorname{Av}(1324)) \leq 288
$$

## Bounds on $\operatorname{GR}(\operatorname{Av}(1324))$

2004: Bóna<br>2005: Bóna

$$
\begin{aligned}
& \operatorname{gr}(\operatorname{Av}(1324)) \leq 288 \\
& 9 \leq \operatorname{gr}(\operatorname{Av}(1324))
\end{aligned}
$$

## Bounds on GR(Av(1324))

2004: Bóna<br>2005: Bóna<br>2006: Albert et al

$$
\begin{aligned}
& \operatorname{gr}(\operatorname{Av}(1324)) \leq 288 \\
& 9 \leq \operatorname{gr}(\operatorname{Av}(1324)) \\
& 9.47 \leq \operatorname{gr}(\operatorname{Av}(1324))
\end{aligned}
$$

## Bounds on GR(Av(1324))

2004: Bóna<br>2005: Bóna<br>2006: Albert et al<br>2012: Claesson et al

$$
\begin{aligned}
& \operatorname{gr}(\operatorname{Av}(1324)) \leq 288 \\
& 9 \leq \operatorname{gr}(\operatorname{Av}(1324)) \\
& 9.47 \leq \operatorname{gr}(\operatorname{Av}(1324)) \\
& \operatorname{gr}(\operatorname{Av}(1324)) \leq 16
\end{aligned}
$$

## Bounds on GR(Av(1324))

2004: Bóna<br>2005: Bóna<br>2006: Albert et al<br>2012: Claesson et al<br>2014: Bóna

$$
\begin{aligned}
& \operatorname{gr}(\operatorname{Av}(1324)) \leq 288 \\
& 9 \leq \operatorname{gr}(\operatorname{Av}(1324)) \\
& 9.47 \leq \operatorname{gr}(\operatorname{Av}(1324)) \\
& \operatorname{gr}(\operatorname{Av}(1324)) \leq 16 \\
& \operatorname{gr}(\operatorname{Av}(1324)) \leq 13.93
\end{aligned}
$$

## Bounds on GR(Av(1324))

2004: Bóna<br>2005: Bóna<br>2006: Albert et al<br>2012: Claesson et al<br>2014: Bóna<br>2015: Bóna

$$
\begin{aligned}
\operatorname{gr}(\operatorname{Av}(1324)) & \leq 288 \\
9 \leq & \operatorname{gr}(\operatorname{Av}(1324)) \\
9.47 \leq & \operatorname{gr}(\operatorname{Av}(1324)) \\
\operatorname{gr}(\operatorname{Av}(1324)) & \leq 16 \\
\operatorname{gr}(\operatorname{Av}(1324)) & \leq 13.93 \\
\operatorname{gr}(\operatorname{Av}(1324)) & \leq 13.74
\end{aligned}
$$

## Bounds on GR(Av(1324))

2004: Bóna<br>2005: Bóna<br>2006: Albert et al<br>2012: Claesson et al<br>2014: Bóna<br>2015: Bóna<br>2015: Bevan

$$
\begin{aligned}
\operatorname{gr}(\operatorname{Av}(1324)) & \leq 288 \\
9 \leq & \operatorname{gr}(\operatorname{Av}(1324)) \\
9.47 \leq & \operatorname{gr}(\operatorname{Av}(1324)) \\
\operatorname{gr}(\operatorname{Av}(1324)) & \leq 16 \\
\operatorname{gr}(\operatorname{Av}(1324)) & \leq 13.93 \\
\operatorname{gr}(\operatorname{Av}(1324)) & \leq 13.74 \\
9.81 \leq & \operatorname{gr}(\operatorname{Av}(1324))
\end{aligned}
$$

## Bounds on GR(Av(1324))

2004: Bóna
2005: Bóna
2006: Albert et al
2012: Claesson et al
2014: Bóna
2015: Bóna
2015: Bevan

$$
\begin{aligned}
\operatorname{gr}(\operatorname{Av}(1324)) & \leq 288 \\
9 \leq & \operatorname{gr}(\operatorname{Av}(1324)) \\
9.47 \leq & \operatorname{gr}(\operatorname{Av}(1324)) \\
\operatorname{gr}(\operatorname{Av}(1324)) & \leq 16 \\
\operatorname{gr}(\operatorname{Av}(1324)) & \leq 13.93 \\
\operatorname{gr}(\operatorname{Av}(1324)) & \leq 13.74 \\
9.81 \leq & \operatorname{gr}(\operatorname{Av}(1324))
\end{aligned}
$$

Theorem (Bevan, Brignall, E., Pantone)

$$
10.27 \leq \operatorname{gr}(A v(1324)) \leq 13.5
$$

## STAIRCASING A 1324-AVOIDER



## STAIRCASING A 1324-AVOIDER



- $p_{1}$ uppermost 1 in a 213 .


## Staircasing a 1324-AVOIDER



- $p_{1}$ uppermost 1 in a 213 .
- $p_{2}$ leftmost 2 in a 132 consisting of points below $p_{1}$ divider.


## Staircasing a 1324-AVOIDER



- $p_{2}$ leftmost 2 in a 132 consisting of points below $p_{1}$ divider.
- No points above $p_{1}$ and to the right of $p_{2}$.


## STAIRCASING A 1324-AVOIDER



- $p_{2}$ leftmost 2 in a 132 consisting of points below $p_{1}$ divider.
- $p_{3}$ uppermost 1 in a 213 consisting of points to right of $p_{2}$ divider.


## STAIRCASING A 1324-AVOIDER



- $p_{3}$ uppermost 1 in a 213 consisting of points to right of $p_{2}$ divider.
- No points to the left of $p_{2}$ and below $p_{3}$.


## STAIRCASING A 1324-AVOIDER



- $p_{3}$ uppermost 1 in a 213 consisting of points to right of $p_{2}$ divider.
- $p_{4}$ leftmost 2 in a 132 consisting of points below $p_{3}$ divider.


## STAIRCASING A 1324-AVOIDER



- $p_{4}$ leftmost 2 in a 132 consisting of points below $p_{3}$ divider.
- No points above $p_{3}$ and to the right of $p_{4}$.


## Staircasing a 1324-AVOIDER



- The final cell avoids 213.


## A LaRge staircased 1324-AVOIDER



Data provided by Einar Steingrímsson.

## Upper Bound on gr(Av(1324))



## Upper Bound on gr (Av (1324))



This already gives us an upper bound: $\left|\operatorname{Av}_{n}(1324)\right|$ is less than the number of staircases with $n$ points, which grows like $16^{n}$.

## Dominoes



## Dominoes



That is, a 1324-avoiding staircase with two cells.

## Dominoes



That is, a 1324-avoiding staircase with two cells.


## Dominoes

A domino is a gridded permutation in | $\operatorname{Av}(213)$ |
| :---: |
| $(132)$ |
|  |
|  |
|  |
|  |

That is, a 1324-avoiding staircase with two cells.


Claim: The number of $n$-point dominoes is:

## Dominoes

A domino is a gridded permutation in | $\operatorname{Av}(213)$ |
| :---: |
| $(132)$ |
|  |
|  |
|  |
|  |

That is, a 1324-avoiding staircase with two cells.


Claim: The number of $n$-point dominoes is: $\frac{2(3 n+3)!}{(n+2)!(2 n+3)!}$.

## Dominoes

The number of (1324-avoiding) dominoes with $n$ points is

$$
\frac{2(3 n+3)!}{(n+2)!(2 n+3)!}
$$

## Dominoes

The number of (1324-avoiding) dominoes with $n$ points is

$$
\frac{2(3 n+3)!}{(n+2)!(2 n+3)!}
$$

Enrica Duchi talked about these numbers yesterday!

## Dominoes

The number of (1324-avoiding) dominoes with $n$ points is

$$
\frac{2(3 n+3)!}{(n+2)!(2 n+3)!}
$$

Enrica Duchi talked about these numbers yesterday! This is also the number of...

## Dominoes

The number of (1324-avoiding) dominoes with $n$ points is

$$
\frac{2(3 n+3)!}{(n+2)!(2 n+3)!}
$$

Enrica Duchi talked about these numbers yesterday! This is also the number of...

## Dominoes

The number of (1324-avoiding) dominoes with $n$ points is

$$
\frac{2(3 n+3)!}{(n+2)!(2 n+3)!}
$$

Enrica Duchi talked about these numbers yesterday! This is also the number of...

- Fighting fish with semi-perimeter $n+2$.


## Dominoes

The number of (1324-avoiding) dominoes with $n$ points is

$$
\frac{2(3 n+3)!}{(n+2)!(2 n+3)!}
$$

Enrica Duchi talked about these numbers yesterday! This is also the number of...

- Fighting fish with semi-perimeter $n+2$.
- West two-stack sortable permutations of length $n+1$.


## Dominoes

The number of (1324-avoiding) dominoes with $n$ points is

$$
\frac{2(3 n+3)!}{(n+2)!(2 n+3)!}
$$

Enrica Duchi talked about these numbers yesterday! This is also the number of...

- Fighting fish with semi-perimeter $n+2$.
- West two-stack sortable permutations of length $n+1$.
- Left ternary trees with $n+1$ vertices.


## Dominoes

The number of (1324-avoiding) dominoes with $n$ points is

$$
\frac{2(3 n+3)!}{(n+2)!(2 n+3)!}
$$

Enrica Duchi talked about these numbers yesterday! This is also the number of...

- Fighting fish with semi-perimeter $n+2$.
- West two-stack sortable permutations of length $n+1$.
- Left ternary trees with $n+1$ vertices.
- Rooted non-separable planar maps with $n+1$ edges.


## BiJecting 213/132-AVOIDERS TO ARCH SYSTEMS



## A 213-avoider and a 132 -avoider

## BiJecting 213/132-AVOIDERS TO ARCH SYSTEMS

- vertically project the points in the permutation.


A 213-avoider and a 132-avoider with their arch systems

## BiJecting 213/132-AVOIDERS TO ARCH SYSTEMS

- vertically project the points in the permutation.
- draw an arch between two points when the right point in the permutation is one higher than the left point.


A 213-avoider and a 132-avoider with their arch systems

## BiJecting 213/132-AVOIDERS TO ARCH SYSTEMS

These arch systems satisfy the following properties:


## BiJecting 213/132-AVOIDERS TO ARCH SYSTEMS

These arch systems satisfy the following properties:

- Each point is at the left end of at most one arch.



## BiJecting 213/132-AVOIDERS TO ARCH SYSTEMS

These arch systems satisfy the following properties:

- Each point is at the left end of at most one arch.
- Each point is at the right end of at most one arch.



## BiJecting 213/132-AVOIDERS TO ARCH SYSTEMS

These arch systems satisfy the following properties:

- Each point is at the left end of at most one arch.
- Each point is at the right end of at most one arch.
- No two arches cross.



## BiJecting dominoes to arch configurations.

## BiJecting dominoes to arch configurations.

- This naturally extends to a bijection between dominoes and arch configurations.



## BiJecting dominoes to arch configurations.

- This naturally extends to a bijection between dominoes and arch configurations.
- The 1324-avoiding condition corresponds to forbidding the pattern $\int$ in the arch configuration.



## Enumerating arch systems

## EnUMERATING ARCH SYSTEMS

We have reduced enumerating dominoes (with $n$ points) to enumerating arch systems (with $n$ points) in which

## EnUMERATING ARCH SYSTEMS

We have reduced enumerating dominoes (with $n$ points) to enumerating arch systems (with $n$ points) in which

- no two arches of the same colour cross.


## EnUMERATING ARCH SYSTEMS

We have reduced enumerating dominoes (with $n$ points) to enumerating arch systems (with $n$ points) in which

- no two arches of the same colour cross.
- no two arches have the same right endpoint or the same left endpoint.


## EnUMERATING ARCH SYSTEMS

We have reduced enumerating dominoes (with $n$ points) to enumerating arch systems (with $n$ points) in which

- no two arches of the same colour cross.
- no two arches have the same right endpoint or the same left endpoint.
- The pattern $\mathfrak{\int}$ does not occur anywhere.


## EnUMERATING ARCH SYSTEMS

We have reduced enumerating dominoes (with $n$ points) to enumerating arch systems (with $n$ points) in which

- no two arches of the same colour cross.
- no two arches have the same right endpoint or the same left endpoint.
- The pattern $\mathfrak{\int}$ does not occur anywhere.

It helps to count prefixes of arch systems, which may have open red arches.

## EnUMERATING ARCH SYSTEMS

We have reduced enumerating dominoes (with $n$ points) to enumerating arch systems (with $n$ points) in which

- no two arches of the same colour cross.
- no two arches have the same right endpoint or the same left endpoint.
- The pattern $\mathfrak{\int}$ does not occur anywhere.

It helps to count prefixes of arch systems, which may have open red arches.
We use a generating function $A(t, z)$ which counts these prefixes by points $(t)$ and number of open arches $(z)$.

## Enumerating arch systems

We have reduced enumerating dominoes (with $n$ points) to enumerating arch systems (with $n$ points) in which

- no two arches of the same colour cross.
- no two arches have the same right endpoint or the same left endpoint.
- The pattern $\mathfrak{\int}$ does not occur anywhere.

It helps to count prefixes of arch systems, which may have open red arches.
We use a generating function $A(t, z)$ which counts these prefixes by points $(t)$ and number of open arches $(z)$.
Then the number of dominoes with $n$ points is $\left[t^{n}\right] A(t, 0)$.

## DECOMPOSITION OF ARCH SYSTEM PREFIXES



## DECOMPOSITION OF ARCH SYSTEM PREFIXES



This decomposition leads to the equation:

$$
A(z)=t A(z)+t z A(z)+t(1+z) \frac{A(z)-A(0)}{z}+\frac{1}{1-t A(z)} .
$$

## EnUMERATING ARCH SYSTEMS

- The generating function $A(t, z)$ is characterised by the equation

$$
A(z)=t A(z)+t z A(z)+t(1+z) \frac{A(z)-A(0)}{z}+\frac{1}{1-t A(z)} .
$$

## EnUMERATING ARCH SYSTEMS

- The generating function $A(t, z)$ is characterised by the equation

$$
A(z)=t A(z)+t z A(z)+t(1+z) \frac{A(z)-A(0)}{z}+\frac{1}{1-t A(z)} .
$$

- This can be solved by Bouquet-Melou and Jehanne's generalisation of the Kernel method.


## EnUMERATING ARCH SYSTEMS

- The generating function $A(t, z)$ is characterised by the equation

$$
A(z)=t A(z)+t z A(z)+t(1+z) \frac{A(z)-A(0)}{z}+\frac{1}{1-t A(z)} .
$$

- This can be solved by Bouquet-Melou and Jehanne's generalisation of the Kernel method. See: "Polynomial equations with one catalytic variable, algebraic series and map enumeration" (2006)


## EnUMERATING ARCH SYSTEMS

- The generating function $A(t, z)$ is characterised by the equation

$$
A(z)=t A(z)+t z A(z)+t(1+z) \frac{A(z)-A(0)}{z}+\frac{1}{1-t A(z)} .
$$

- This can be solved by Bouquet-Melou and Jehanne's generalisation of the Kernel method. See: "Polynomial equations with one catalytic variable, algebraic series and map enumeration" (2006)
- Now we have enumerated dominos!


## EnUMERATING ARCH SYSTEMS

- The generating function $A(t, z)$ is characterised by the equation

$$
A(z)=t A(z)+t z A(z)+t(1+z) \frac{A(z)-A(0)}{z}+\frac{1}{1-t A(z)} .
$$

- This can be solved by Bouquet-Melou and Jehanne's generalisation of the Kernel method. See: "Polynomial equations with one catalytic variable, algebraic series and map enumeration" (2006)
- Now we have enumerated dominos!
- We can use these dominoes to get better upper and lower bounds for $\operatorname{gr}(\operatorname{Av}(1324))$


## UPPER BOUND ON GR(AV(1324))

## UPPER BOUND ON GR(AV(1324))

- Start with a 1324 -avoiding permutation, and staircase it.



## UPPER BOUND ON GR(Av(1324))

- Start with a 1324 -avoiding permutation, and staircase it.
- Use $\Phi$ to construct a large domino as shown.



## UPPER BOUND ON GR(AV(1324))

- Start with a 1324 -avoiding permutation, and staircase it.
- Use $\Phi$ to construct a large domino as shown.
- $\Phi$ is not injective.



## UPPER BOUND ON GR(AV(1324))

$$
\Psi: \operatorname{Av}_{n}(1324) \rightarrow(\bullet, \bullet)^{n} \times D_{n}
$$



## UPPER BOUND ON GR(AV(1324))

$$
\Psi: \operatorname{Av}_{n}(1324) \rightarrow(\bullet, \bullet)^{n} \times D_{n}
$$




## UPPER BOUND ON GR(AV(1324))

$$
\Psi: \operatorname{Av}_{n}(1324) \rightarrow(\bullet, \bullet)^{n} \times D_{n}
$$




- The vertical interleaving can be recovered from the $\bullet \bullet$ sequence.


## UPPER BOUND ON GR(AV(1324))

$$
\Psi: \operatorname{Av}_{n}(1324) \rightarrow(\bullet, \bullet)^{n} \times D_{n}
$$




- The vertical interleaving can be recovered from the $\bullet$ sequence.
- $\Psi$ is injective. $\operatorname{gr}(\operatorname{Av}(1324)) \leqslant 2 \times 27 / 4=13.5$


## Lower Bound

## Lower Bound



This staircase always defines a 1324-avoider.

## Lower Bound

- To get a lower bound, we can count staircases whose cells alternate 132 -avoiding and 12 -avoiding.


## Lower Bound

- To get a lower bound, we can count staircases whose cells alternate 132 -avoiding and 12 -avoiding.
- We can enumerate these exactly: their exponential growth rate is 9.


## BETTER LOWER BOUND



## BETTER LOWER BOUND



- Count 1324-avoiding staircases in which every third cell is 12 -avoiding.


## BETTER LOWER BOUND

## BETTER LOWER BOUND

- Since we have enumerated dominoes, we can enumerate these exactly.


## BETTER LOWER BOUND

- Since we have enumerated dominoes, we can enumerate these exactly. Their growth rate is $\approx 9.895$.


## BETTER LOWER BOUND

- Since we have enumerated dominoes, we can enumerate these exactly. Their growth rate is $\approx 9.895$.
- There is a simple way to improve on this: After constructing a 1324 avoiding permutation in the way just described, each element in an $\operatorname{Av}(12)$ section can be replaced with any 213-avoider.


## BETTER LOWER BOUND

- Since we have enumerated dominoes, we can enumerate these exactly. Their growth rate is $\approx 9.895$.
- There is a simple way to improve on this: After constructing a 1324 avoiding permutation in the way just described, each element in an $\mathrm{Av}(12)$ section can be replaced with any 213-avoider.
- To avoid over counting, we only use 213-avoiders which start with 1.


## BETTER LOWER BOUND

- Since we have enumerated dominoes, we can enumerate these exactly. Their growth rate is $\approx 9.895$.
- There is a simple way to improve on this: After constructing a 1324 avoiding permutation in the way just described, each element in an $\operatorname{Av}(12)$ section can be replaced with any 213-avoider.
- To avoid over counting, we only use 213-avoiders which start with 1.
- Taking limits carefully, this gives a lower bound for $\operatorname{gr}(\operatorname{Av}(1324))$ of 10.125 .


## BETTER BOUNDS

## BETTER BOUNDS

- In current work with David Bevan, Robert Brignall and Jay Pantone, we have refined this to show that $\operatorname{gr}(\operatorname{Av}(1324)) \geq 10.271$.


## BETTER BOUNDS

- In current work with David Bevan, Robert Brignall and Jay Pantone, we have refined this to show that $\operatorname{gr}(\operatorname{Av}(1324)) \geq 10.271$.
- We have been unable to refine the upper bound further than $\operatorname{gr}(\operatorname{Av}(1324)) \leq 13.5$.


## BETTER BOUNDS

- In current work with David Bevan, Robert Brignall and Jay

Pantone, we have refined this to show that
$\operatorname{gr}(\operatorname{Av}(1324)) \geq 10.271$.

- We have been unable to refine the upper bound further than $\operatorname{gr}(\operatorname{Av}(1324)) \leq 13.5$.
- There is still a long way to go to get near Guttmann's estimate of 11.6.


## QUESTIONS FOR THE AUDUENCE

## QUESTIONS FOR THE AUDUENCE

## Can anyone...

## QUESTIONS FOR THE AUDUENCE

Can anyone...

- Find a bijective proof of the number of dominoes?


## QUESTIONS FOR THE AUDUENCE

Can anyone...

- Find a bijective proof of the number of dominoes?
- Enumerate the number of 1324 -avoiding staircases with 3 cells?


## QUESTIONS FOR THE AUDUENCE

Can anyone...

- Find a bijective proof of the number of dominoes?
- Enumerate the number of 1324 -avoiding staircases with 3 cells?
- Improve the upper bound?


## QUESTIONS FOR THE AUDUENCE

Can anyone...

- Find a bijective proof of the number of dominoes?
- Enumerate the number of 1324 -avoiding staircases with 3 cells?
- Improve the upper bound?
- Compute $\left|\mathrm{Av}_{1000}(1324)\right|$ ??


## THANK YOU

